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Abstract Organic dyes have great potential for its use in
solar cells. In this recent work, the molecular structure and
properties of Dye 7 were obtained using density functional
theory (DFT) and different levels of calculation. Upon
comparing the molecular structure and the ultraviolet
visible spectrum with experimental data reported in the
literature, it was found that the M05-2X/6-31G(d) level of
calculation gave the best approximation. Once the appro-
priate methodology had been obtained, the molecule was
characterized by obtaining the infrared spectrum, dipole
moment, total energy, isotropic polarizability, molecular
orbital energies, free energy of solvation in different
solvents, and the chemical reactivity sites using the
condensed Fukui functions.
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Abbreviations
DFT Density functional theory
TD-DFT Time-dependent density functional theory
IR Infrared
UV-vis Ultraviolet
Å Angstrom

λmax Wavelength of maximum absorption
THF Tetrahydrofuran
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
ΔG(solv) Free energy of solvation
IEF-PCM Integral equation formalism of the

polarized continuum model

Introduction

Photovoltaic devices have gained wide acceptance as a
clean and renewable energy source [1]. These devices are
based on the concept of charge separation at an interface
between two materials with different conduction mecha-
nisms [2, 3]. One important invention in this field is the
photovoltaic dye-sensitized solar cell (DSSC) [4], which
has been the subject of intense research due to its ability to
convert solar energy into electrical energy [5, 6], as well as
its low cost compared to solar cells that use polycrystalline
silicon [7]. There are four main factors that affect the
performance of a DSSC: the photosensitive dye, the anode,
the cathode and the electrolyte. The dye plays a crucial role
in enhancing the efficiency of the cell, which is why it is
one of the most intensely studied factors [8]. In the present
work, a theoretical study of the molecular structure and
properties of a dye (Dye 7) was performed. This dye
consists of a triphenylamine molecule that serves as
electron donor group [9, 10], a thiophene to adjust the
absorption spectra of the molecules [11], and a cyanoacrylic
acid that acts as an acceptor group[12], as shown in Fig. 1.
In the investigation described below, different levels of
theory were used in order to establish the most appropriate
methodology to study this dye. Besides optimizing the
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geometry of Dye 7, the infrared and ultraviolet spectra were
presented, the dipole moment calculated, as were the total
energy, isotropic polarizability, molecular orbital energies,
and the free energy of solvation in different solvents;. Its
chemically reactive sites were also discerned using the
condensed Fukui functions.

Molecular modeling

Density functional theory (DFT) was used in this study
[13]. DFT was developed by Walter Kohn in the 1960s, and
was implemented in this study using the commercial
software Gaussian 03W [14]. The geometry of the molecule
in its fundamental state was obtained by the established
technique in Gaussian 03W. The force constants and
vibrational frequencies were determined by calculating
analytical frequencies for stationary points obtained after
optimizing the geometry. Both calculations were done at the
same level of theory. The basis sets used in this study were
3-21G(d) and 6-31G(d) (for more details, see [15]). The
density functionals used in this research were: BLYP [16,
18], B3LYP [16–19], PBE [20, 21], PBE1PBE [21], TPSS
[22], TPSSh [23] and M05-2X [24]. A detailed description
of these density functionals can be found in the updated
bibliography of computational chemistry [25–28]. The
calculation of the ultraviolet spectrum of the molecule
Dye 7 was done via time-dependent DFT equations
according to the method implemented in the Gaussian
molecular package 03W [25, 29–32]. The equations were
solved for 20 excited states. The infrared (IR) and
ultraviolet-visible (UV-vis) spectra were analyzed and
visualized using the program SWizard [33]. In all cases,

the displayed spectra show the calculated frequencies and
absorption wavelengths.

The condensed Fukui functions were calculated using
AOMIX molecular analysis software [34, 35], starting from
single-point energy calculations.

Results and discussion

The molecular structure of Dye 7 was analyzed at different
levels of theory, as mentioned above. The bond lengths
obtained from our calculations as well as experimental data
reported in the literature on the systems that comprise our
dye are shown in Table 1 for the most representative bonds.
It is clear that there is good agreement among the results
obtained for different models for each bond. However, to
check which methodology gives the most accurate results
for the molecular structure of Dye 7, a statistical technique
known as population standard deviation was applied
(PSTD) to the results for the bond lengths. When applying
this technique, the experimental result was used as a
reference for the average value; in this way, the models
that give the lowest deviation will give the best representations
of our study system. It is important to note that we have not
considered a tolerance level for the deviation, as our priority
was to establish the model that best fits the experimental
results. The results from the PSTD are shown in Table 2,
which indicates that the most accurate methodology for the
theoretical study is M05-2X/6-31G(d). The interatomic bond
lengths (Å) and the angles (in degrees) calculated at this
level of calculation are shown in Fig. 2.

A second validation of the models involved comparing
the theoretical wavelengths of maximum absorption (λmax)

Fig. 1 Molecular structure of Dye 7: triphenylamine (donor), a thiophene (to adjust the absorption spectra of the molecules) and cyanoacrylic acid
(acceptor)
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Table 1 Bond lengths calculated at different levels of theory for Dye 7, and well as experimental data reported in the literature

Model C1–C2 C3–C4 C4–C5 C1–C6 C1–H7 C13–H12 C13–C14 C16–C19 C15–C17 C23–C24 C24–C26

BLYP/3-21G* 1.415 1.404 1.408 1.404 1.089 1.089 1.415 1.404 1.408 1.421 1.395

B3LYP/3-21G* 1.403 1.394 1.397 1.394 1.082 1.082 1.403 1.394 1.397 1.408 1.387

PBE/3-21G* 1.412 1.401 1.406 1.401 1.092 1.092 1.412 1.402 1.406 1.418 1.393

PBE1PBE/3-21G* 1.400 1.391 1.395 1.391 1.084 1.084 1.400 1.391 1.395 1.405 1.385

TPSS/3-21G* 1.410 1.401 1.405 1.401 1.087 1.087 1.410 1.401 1.405 1.416 1.393

TPSSh/3-21G* 1.406 1.397 1.401 1.397 1.084 1.084 1.406 1.397 1.401 1.411 1.389

M05-2X/3-21G* 1.397 1.390 1.393 1.390 1.079 1.079 1.397 1.390 1.393 1.400 1.386

BLYP/6-31G(d) 1.414 1.404 1.407 1.403 1.092 1.092 1.414 1.403 1.407 1.420 1.395

B3LYP/6-31G(d) 1.403 1.394 1.397 1.394 1.085 1.085 1.403 1.394 1.396 1.408 1.387

PBE/6-31G(d) 1.410 1.400 1.403 1.399 1.094 1.094 1.410 1.400 1.403 1.416 1.392

PBE1PBE/6-31G(d) 1.399 1.390 1.393 1.390 1.086 1.086 1.399 1.390 1.393 1.403 1.384

TPSS/6-31G(d) 1.408 1.399 1.402 1.399 1.088 1.088 1.408 1.399 1.402 1.414 1.391

TPSSh/6-31G(d) 1.404 1.395 1.398 1.395 1.086 1.086 1.404 1.395 1.398 1.409 1.388

M05-2X/6-31G(d) 1.397 1.390 1.392 1.390 1.082 1.082 1.397 1.390 1.392 1.400 1.385

Experimental 1.397 1.397 1.397 1.397 1.084 1.084 1.397 1.397 1.397 1.397 1.397

Model C26-C30 C24-H27 C2-N33 C30-C34 C34-C35 C34-H36 C35-C37 C37-C38 C37-S39 C38-C40 C38-H41

BLYP/3-21G* 1.425 1.089 1.448 1.459 1.371 1.095 1.444 1.412 1.764 1.409 1.088

B3LYP/3-21G* 1.411 1.082 1.434 1.456 1.355 1.088 1.442 1.397 1.741 1.404 1.080

PBE/3-21G* 1.422 1.091 1.436 1.454 1.369 1.098 1.440 1.412 1.748 1.405 1.090

PBE1PBE/3-21G* 1.407 1.083 1.424 1.452 1.352 1.089 1.440 1.395 1.726 1.401 1.081

TPSS/3-21G* 1.421 1.087 1.440 1.455 1.368 1.093 1.441 1.410 1.750 1.405 1.085

TPSSh/3-21G* 1.415 1.084 1.434 1.454 1.361 1.090 1.441 1.403 1.740 1.404 1.082

M05-2X/3-21G* 1.402 1.079 1.426 1.462 1.343 1.084 1.450 1.386 1.721 1.409 1.076

BLYP/6-31G(d) 1.423 1.092 1.439 1.455 1.374 1.097 1.443 1.410 1.766 1.405 1.091

B3LYP/6-31G(d) 1.410 1.085 1.427 1.453 1.358 1.089 1.442 1.396 1.743 1.400 1.084

PBE/6-31G(d) 1.419 1.093 1.428 1.449 1.370 1.098 1.438 1.408 1.748 1.400 1.092

PBE1PBE/6-31G(d) 1.405 1.085 1.417 1.449 1.353 1.090 1.439 1.392 1.727 1.397 1.084

TPSS/6-31G(d) 1.418 1.088 1.431 1.451 1.369 1.092 1.439 1.406 1.748 1.400 1.087

TPSSh/6-31G(d) 1.412 1.085 1.426 1.451 1.362 1.089 1.440 1.400 1.739 1.398 1.084

M05-2X/6-31G(d) 1.401 1.082 1.418 1.459 1.346 1.086 1.450 1.386 1.723 1.404 1.080

Experimental 1.397 1.084 1.418 1.475 1.334 1.099 1.475 1.370 1.714 1.423 1.079

Model C42-S39 C40-C42 C35-H44 C42-C45 C45-C46 C46-C48 C46-C49 C48-N50 C49-O51 C49-052 O52-53H

BLYP/3-21G* 1.781 1.412 1.094 1.425 1.383 1.417 1.488 1.182 1.244 1.400 1.010

B3LYP/3-21G* 1.758 1.397 1.086 1.421 1.367 1.411 1.477 1.168 1.231 1.376 0.996

PBE/3-21G* 1.763 1.411 1.096 1.422 1.380 1.412 1.481 1.183 1.243 1.390 1.008

PBE1PBE/3-21G* 1.742 1.395 1.087 1.419 1.363 1.408 1.472 1.167 1.228 1.366 0.992

TPSS/3-21G* 1.765 1.409 1.091 1.422 1.379 1.413 1.480 1.181 1.243 1.394 1.005

TPSSh/3-21G* 1.756 1.403 1.088 1.421 1.372 1.411 1.476 1.175 1.237 1.383 0.999

M05-2X/3-21G* 1.735 1.387 1.082 1.428 1.353 1.413 1.473 1.159 1.224 1.366 0.991

BLYP/6-31G(d) 1.784 1.410 1.095 1.426 1.389 1.427 1.492 1.179 1.230 1.375 0.986

B3LYP/6-31G(d) 1.761 1.396 1.088 1.423 1.372 1.424 1.483 1.165 1.216 1.353 0.975

PBE/6-31G(d) 1.765 1.408 1.097 1.422 1.385 1.422 1.486 1.179 1.227 1.364 0.985

PBE1PBE/6-31G(d) 1.743 1.393 1.088 1.421 1.367 1.420 1.479 1.164 1.212 1.343 0.972

TPSS/6-31G(d) 1.765 1.406 1.090 1.423 1.384 1.423 1.484 1.176 1.226 1.366 0.983

TPSSh/6-31G(d) 1.756 1.400 1.088 1.422 1.376 1.422 1.481 1.170 1.220 1.356 0.978

M05-2X/6-31G(d) 1.739 1.387 1.084 1.430 1.358 1.428 1.482 1.157 1.209 1.342 0.971

Experimental 1.714 1.370 1.099 1.475 1.334 1.475 1.475 1.172 1.200 1.334 0.970
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for Dye 7 obtained using the models with the value
obtained experimentally in research conducted by Zhang
et al. [4]. In their research, they found that λmax occurred at
432 nm in the solvent tetrahydrofuran (THF). Knowing this
fact, it was possible to re-validate which of the models best
represented our molecular system. Thus, the UV-vis
spectrum of Dye 7 in THF solvent was calculated at the
B3LYP/6-31G(d), BLYP/6-31G(d), M05-2X/6-31G(d),
PBE1PBE/6-31G(d), PBE/6-31G(d), TPSS/6-31G(d) and
TPSSh/6-31G(d) levels of theory using time-dependent
DFT (TD-DFT). The results obtained are shown in Fig. 3.

The calculated UV-vis spectra are provided in Table 3,
and it is quite apparent that the closest theoretical value of
λmax to the experimental one is 444.44 nm, which was
afforded by M05-2X/6-31G(d).

The calculated value of λmax is an important parameter
which indicates that this molecular system should be
considered for use as a functional material (a dye in this
case) in a DSSC, as the value of this parameter for Dye 7 falls
within the range of the solar spectrum of visible light [36].

At all of the levels of theory tested, the observed signal
corresponded to the HOMO (highest occupied molecular
orbital) to LUMO (lowest unoccupied molecular orbital)
transition. Table 4 shows the results of TD-DFT calcu-
lations performed using the functional M05-2X and the
basis set 6-31G(d), including the electronic state transitions,
their corresponding wavelengths (in nm) and energies (in
eV), as well as their assignments in terms of the orbitals
involved in the transitions.

Taking into account the results for the molecular
structure and UV-vis spectrum calculations, it is clear that
the functional M05-2X and the basis set 6-31G(d) is the

most appropriate level of calculation to perform the rest of
the characterization of Dye 7.

The infrared spectrum (IR) for Dye 7 calculated with M05-
2X/6-31G(d) is shown in Fig. 4. The vibrational bands were
assigned using the molecular visualization software for
Windows ChemCraft. C–S stretching is observed as a peak
at 584 cm−1. At 796 cm−1, a peak due to vibrations of carbon-
chain hydrogens out of the plane of the aromatic rings can be
seen, while another peak due to the corresponding vibrations
for the bending of C–H in thiophene is present at 1091 cm−1.
Vibrations due to the bending of the bond O–H produce a
peak at 1236 cm−1. Other intense peaks include those due to
the stretching of the C–N bond in the amine and the C–C in
the thiophene occurring at 1392 cm−1 and 1521 cm−1

respectively; meanwhile, at 1677 cm−1, a peak due to the
double-bond stretching of C(45)=C(46) is noted. The peak at
1872 cm−1 represents the stretching of the double bond C=O,
while the vibration at 2417 cm−1 corresponds to the stretching
of the triple bond C≡N. The C–H vibrations for the aromatic
rings occur at 3244 cm−1, and stretching of the O–H bond is
observed at 3784 cm−1.

The molecular dipole moment is an experimental
measure of the charge distribution in a molecule. The
precision of the global distribution of electrons in a
molecule is difficult to quantify, since it involves all
multipoles. In this calculation, the values of the total
energy of the system, the total dipole moment and the
isotropic polarizability in the fundamental state obtained at
the M05-2X/6-31G(d) level of calculation are −1736.99 a.u.,
6.7374 debye and 433.06 bohr3. Moreover, the calculated
energies of the HOMO and LUMO are 6.29 eV and 1.85 eV,
respectively. These results are of great importance, since they
can be used during synthesis to determine the solubility and
chemical reactivity of the molecule, and they can also be
employed in organic electronics and photovoltaics, as
reported in different works [37–39].

The free energy of solvation ΔG(solv) of the molecule
was calculated for Dye 7 using M05-2X/6-31G(d) coupled
with the integral equation formalism of the polarized
continuum model (IEF-PCM) for different solvents. The
solubility of a molecule depends on several kinetic and
thermodynamic factors. However, the magnitude and sign
of ΔG(solv) can be used as an approximate index of
solubility. In this sense, a negative sign and a large
magnitude indicates increased solubility. The results of
this calculation for the studied molecule can be
summarized as follows: cyclohexane=−1.85 kcal mol−1,
chloroform=−4.68 kcal mol−1, water=−5.02 kcal mol−1,
THF=−5.30 kcal mol−1, acetone=−12.86 kcal mol−1,
ethanol=−14.43 kcal mol−1 and methanol=−15.03 kcal
mol−1. Based on these results, it appears that the molecule
under investigation will be most soluble in methanol and
ethanol.

Table 2 Results of the population standard deviation for the bond
lengths obtained with different models

Model Population standard deviation

BLYP/3-21G* 0.0258

B3LYP/3-21G* 0.0189

PBE/3-21G* 0.0236

PBE1PBE/3-21G* 0.0175

TPSS/3-21G* 0.0232

TPSSh/3-21G* 0.0203

M05-2X/3-21G* 0.0150

BLYP/6-31G(d) 0.0238

B3LYP/6-31G(d) 0.0171

PBE/6-31G(d) 0.0214

PBE1PBE/6-31G(d) 0.0159

TPSS/6-31G(d) 0.0204

TPSSh/6-31G(d) 0.0179

M05-2X/6-31G(d) 0.0130
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The HOMO and LUMO orbitals of Dye 7 calculated at
the M05-2X/6-31G(d) level of theory are shown in Fig. 5.
The HOMO orbital density is located over the double bonds
of the carbon chain and the nitrogen (N33); meanwhile, the
density of the LUMO orbital is concentrated over the C–C
single bonds. This provides a good idea of the reactivity of
the molecule.

The reactive sites can be identified through these
orbital densities. The calculated HOMO and LUMO

densities shown in Fig. 5 indicate that electrophilic attack
may occur preferentially at the C=C double bonds or at
N33, while nucleophilic attack occurs at C–C single
bonds.

The condensed Fukui functions can also be used to
determine the reactivity of each atom in the molecule. The
corresponding condensed Fukui functions are f þk ¼
qk N þ 1ð Þ � qkðNÞ (for nucleophilic attack), f �k ¼
qkðNÞ � qk N � 1ð Þ (for electrophilic attack) and f 0k ¼

Fig. 2 Interatomic bond distances (Å) and bond angles (in degrees) for Dye 7 obtained at the M05-2X/6-31G(d) level of calculation
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qk N þ 1ð Þ � qk N � 1ð Þ½ �=2 (for radical attack), where qk is
the effective Mulliken charge of atom k in the molecule.

The calculations of the condensed Fukui functions for
nucleophilic and electrophilic attacks were performed using
AOMIX (a molecular analysis program), which gave the
following results: f þk ¼ 0:1876 and f �k ¼ 0:1906.

Electrophilic attack will occur at atoms that produce a
negative charge, and where the Fukui function f �k is a
maximum. This value confirms that the most probable site
of electrophilic attack is N33. Nucleophilic attacks, on the
other hand, will occur at atoms that produce a positive
charge and where the Fukui function f þk is a maximum.

Fig. 3 Ultraviolet-visible (UV-vis) spectrum of Dye 7 calculated using time-dependent DFT (TD-DFT) with the basis set 6-31G(d) and the
functionals used in this research

Table 3 Values of the wavelength of maximum absorption by Dye 7
calculated using the various models tested

Model λmax (nm)

BLYP/6-31G(d) 500.00

B3LYP/6-31G(d) 598.80

PBE/6-31G(d) 495.05

PBE1PBE/6-31G(d) 564.97

TPSS/6-31G(d) 480.77

TPSSh/6-31G(d) 666.67

M05-2X/6-31G(d) 444.44

Experimental 432.00

Table 4 Electronic transition states of Dye 7 (calculated with TD-DFT at the M05-2X/6-31G(d) level of theory)

State Wavelength (nm) Energy (eV) f Assignment (H = HOMO,L = LUMO)

1 444.1 2.79 1.7821 S H-0→L+0(+73%) H-1→L+0(11%)

2 325.2 3.81 0.0338 S H-1→L+0(+61%) H-0→L+1(+12%) H-0→L+0(+8%)

3 295.5 4.2 0.2897 S H-0→L+1(+64%) H-0→L+0(12%) H-1→L+0(9%)

4 280.2 4.42 0.0564 S H-0→L+2(+79%)

5 271.3 4.57 0.2703 S H-0→L+3(+81%) H-1→L+3(+8%)

6 268.1 4.62 0.0851 S H-7→L+0(+71%) H-4→L+0(+12%)

7 252.1 4.92 0.0215 S H-0→L+5(+33%) H-0→L+4(9%) H-6→L+0(+8%) H-1→L+1(+8%) H-3→L+0(+6%)

8 250.8 4.94 0.0052 S H-1→L+1(+18%) H-4→L+0(12%) H-0→L+5(12%) H-7→L+0(+9%) H-0→L+4(6%)

9 243.4 5.09 0.0001 S H-9→L+0(+67%) H-9→L+8(12%) H-9→L+1(9%)

10 241 5.15 0.0261 S H-0→L+6(+57%) H-4→L+0(+10%) H-1→L+6(+8%) H-3→L+3(5%)

11 239.2 5.18 0.0028 S H-1→L+1(+24%) H-4→L+0(+23%) H-2→L+0(14%) H-0→L+4(11%) H-0→L+6(8%)

12 234.1 5.3 0.0824 S H-3→L+0(+40%) H-0→L+5(24%) H-6→L+0(+14%)

13 227.8 5.44 0.001 S H-0→L+7(+47%) H-1→L+7(39%)

14 223.2 5.55 0.0095 S H-0→L+4(+49%) H-1→L+1(+26%) H-0→L+1(+7%)

15 221 5.61 0.0054 S H-2→L+0(+68%) H-4→L+0(+17%)

16 215.4 5.76 0.0469 S H-6→L+0(+51%) H-3→L+0(33%)

17 209.6 5.92 0.0093 S H-5→L+0(+88%) H-5→L+1(+6%)

18 206.6 6 0.0012 S H-1→L+10(+17%) H-15→L+0(16%) H-0→L+10(12%) H-9→L+8(6%)

19 206 6.02 0.0678 S H-8→L+0(+42%) H-4→L+1(+15%) H-10→L+0(13%) H-4→L+0(+6%)

20 203.1 6.1 0.0158 S H-1→L+2(+35%) H-2→L+3(10%) H-2→L+2(+6%) H-0→L+5(+6%)
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Thus, the atom most likely to suffer a nucleophilic attack is
C45.

Conclusions

In this work, a general comparison of the optimizations of
the molecular structure and the ultraviolet spectrum in THF
solvent achieved with different density functionals and
basis sets was performed. This comparison indicated that
the functional that gave results that were closest to the
experimental results was M05-2X, along with the basis set
6-31G(d), so this level of theory was then used to study
Dye 7 molecule, which is intended for use in photovoltaic
devices. The total energy of this system, its dipole moment,

its isotropic polarizability, its molecular orbitals and its
infrared spectrum were calculated using M05-2X/6-31G(d).

The free energy of solvation ΔG(solv) of the molecule,
calculated using the same level of theory along with the
integral equation formalism of the polarized continuum
model (IEF-PCM), indicates that the molecule is potentially
soluble in methanol and ethanol.

The M05-2X/6-31G(d) methodology can be used as an
useful tool for studying the molecular structure and
electronic properties of Dye 7, as well as other structures
derived from it.
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Abstract Results from force fields implemented in Hyper-
Chem, a program frequently used in studies of bioactive
compounds, have been compared using the example of the
conformational analysis of a 1-carbonylthiosemicarbazide
that exhibits strong antibacterial activity. By comparing
these results with the original force fields and the
experimental NMR ROESY spectrum, it was shown that
these implementations can lead to erroneous results.
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OPLS . Conformational search .
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Introduction

In the past 20 years, quests for pharmaceutically active
compounds have evolved from the “spray-and-pray” ap-
proach to computer-guided studies with high throughput
analyses of chemical libraries. While not always successful,

this enhanced approach has resulted in recent years in the
near-mandatory augmentation of bioactivity screening
results with some form of molecular modeling of the
studied compounds. Out of necessity (in the case of QM/
MM [1] calculations for large receptors and enzymatic
systems), or in order to save time, these calculations are
usually carried out at low levels of theory, such as
molecular mechanics. Most frequently, these calculations
aim to establish descriptors that can be used in structure–
activity relationships (SAR, QSAR, etc.), and during the
initial phase they usually attempt to find the most stable
conformation of the ligand. Even at such an early stage, this
aim is not very easy to define, as a ligand bound to a
receptor or in the active site of an enzyme may adopt a
conformation that is quite different from the most stable
one. Furthermore, the dielectric properties of the receptor or
the active site are usually different (lower) than those of a
bulk aqueous solution. It is thus not clear which conforma-
tion of a molecule should be sought. Different conforma-
tions result in different values of the descriptors used in the
SAR analysis, so the results obtained from calculations may
or may not have any relevance to the desired structure–
activity relationship. It appears that the safest mode of
action is to proceed from the most stable conformation,
which can be obtained from the conformational search [2].
Alternatively, results from molecular dynamics or simulated
annealing can be used.

Yet another problem arises from a technical standpoint: the
number of parameters employed in most force fields is
insufficient to describe ligands, and the missing ones should
be evaluated prior to further studies. Since this is time-
consuming, several approximate solutions are implemented,
including the use of similar parameters, the on-the-fly
evaluation of these missing parameters from the existing
parameters, or the introduction of default generic parameters
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in place of the missing ones. In studies of compounds with
potential pharmaceutical activity, calculations are usually
carried out using widely available software that does not
necessarily include full implementations of molecular
mechanical force fields. Furthermore, the starting confor-
mation is frequently the one that corresponds to the local
energy minimum closest to the structure introduced via the
graphical interface of the program. This protocol can lead to
erroneous results: a fact not fully appreciated in the literature.
Herein, we illustrate these problems using the example of the
conformational analysis of a 1-carbonylthiosemicarbazide
using three protein-oriented force fields implemented in
HyperChem, a program that is frequently employed in such
calculations [3–66].

Experimental methods

Chemistry

4-Benzoyl-1-(4-methyl-imidazol-5-yl)-carbonylthiosemi-
carbazide was synthesized by the routine protocol [67–70].
In short, 4-methyl-imidazole-5-carboxylic acid hydrazide
was reacted with benzoyl isothiocyanate as described in
[71]. Its NMR spectrum was recorded on a Bruker Avance
II Plus spectrometer at 25°C in DMSO-d6 using the solvent
methyl group signal as the internal standard (δH 2.50 or δC
40.0, respectively). The ROESY spectrum was recorded
with a spin-lock time of 1 s.

Computational details

The conformational search engine of the HyperChem pro-
gram [72] was employed at the MM level of theory, using
the Amber99 [73], CHARMM [74], and OPLS [75] force
fields as implemented in version 8. All dihedral angles along
the longest chains between and including substituents were
considered. Optimization of the structures obtained from the
conformational searches was performed in Gaussian09 [76]
using the M05-2X DFT functional [77, 78] with the 6-31+G
(d,p) basis set [79–81] and the SMD continuum solvent
model [82]. Theoretical NMR shifts were obtained using
the B3PW91 DFT functional [83, 84] with the 6-31+G(d)
basis set for optimization and 6-311++G(2df,p) [85] for
energy calculations. Solvent was modeled using the
continuum IEF-PCM model [86–88]. The default thresh-
old was used in all geometry optimization calculations,
while it was increased tenfold to 0.01 kcal mol−1Å−1 in
MM calculations. All structures obtained at QM levels
were confirmed to be stationary points corresponding to
energy minima by vibrational analysis (3n − 6 normal
modes of vibration, where n stands for the number of
atoms in the molecule).

Results and discussion

When used in lieu of the crystal structure of the pharmaceu-
tically active form of a drug bound into the active (or
allosteric) site of an enzyme, computations can provide only
speculative suggestions regarding the source of its bioactivity.
Nevertheless, useful information can be inferred in favorable
cases. One of the most important questions that must be taken
into account in order to calculate the energetics of binding is
the selection of the appropriate conformational states. 1-
Carbonylthiosemicarbazide skeletons have six rotatable
bonds, leading to a huge conformational space, which should
be sampled in order to find the most stable conformations.
Such a large space cannot be searched systematically at either
the ab initio or DFT level. The problem is further complicated
by the fact that there is no guarantee that the most stable
conformations are relevant to bioactivity. In fact, in terms of
the chemical reactivities of these compounds, we have shown
that dehydrocyclizations occur from the energy-rich confor-
mation due to the geometrical requirements of these reactions
[89]. In the case of enzymatic reactions, conformational
flexibility is not restricted to aqueous solution but frequently
also plays an important role in protein-bound ligands [90].
The problem of conformational preference is also interesting
from another point of view; flexible binding and docking
studies frequently rely on geometries that have been
optimized using empirical force fields, so it is interesting to
see how these perform when applied to molecules that they
were not optimized for. We therefore carried out extensive
conformational searches for a 1-carbonylthiosemicarbazide
at the molecular mechanics level in order to compare
structures obtained from different force fields with the
experimental results.

We used the conformational search engine implemented in
HyperChem with three force fields used in the modeling of
proteins: Amber, CHARMM, and OPLS. All seven dihedral
angles (six from the carbonylthiosemicarbazide skeleton and
one from the benzoyl moiety) along the longest chain between
the aromatic rings were considered. The ten most stable
structures obtained with each force field are overlaid in Fig. 1.
All of these structures were further optimized at the DFT
level, and the results of these calculations are compared
graphically in Fig. 2. The most stable structure obtained
from each force field is illustrated by the structure in the last
column of Fig. 1. Confusingly, the most stable conforma-
tions obtained with these three force fields are very different.
Table 1 compares the torsional angles of the conformers of
lowest energy. The atom numbering used to define angles is
given in Fig. 3. Amber calculations yielded a stretched
structure that is practically planar. In the structure obtained
with CHARMM, aromatic rings are stacked, while the
planes of these rings are nearly perpendicular and the chain
between them is looped due to the presence of the internal
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hydrogen bond in the structure obtained with OPLS. These
results highlight the fact that protocols that employ molec-
ular mechanics only should be used (e.g., those used in most
molecular dynamics and docking studies) with caution.

Because of these significant differences in the optimal
conformations obtained with different force fields, we have
carried out ROESY 1H-NMR experiments to deduce which

of the conformations presented in Fig. 1 represents the
structure in solution. For this purpose, proton NMR spectra
and ROESY experiments were carried out in DMSO.
Complete assignment of resonances was based on the set
of COSY, HSQC and HMBC spectra [67–70]. An exam-
ination of through-space proton–proton interactions by
means of ROESY experiments highlighted correlations
within the benzamide residue only; the ROESY spectrum
(see Fig. 4) shows only a weak correlation between protons
at 11.88 (C(S)NHC(O)) and 7.99 ppm (Phe2,6) and a strong
correlation between ortho (7.99 ppm) and meta (7.55)

Fig. 2 Comparison of the energies of the top ten structures obtained
from conformational searches using Amber, CHARMM and OPLS

Fig. 1 Most stable conforma-
tions obtained with Amber,
CHARMM, and OPLS force
fields

Table 1 Torsional angles of the conformers with the lowest energies

Torsional angle Amber CHARMM OPLS

5-4-6-8 −17.8 40.7 −23.1
4-6-8-9 178.8 21.8 174.6

6-8-9-10 180.0 164.4 179.1

8-9-10-12 178.8 −165.4 −7.4
9-10-12-13 2.7 -6.9 80.1

10-12-13-15 180.0 39.6 175.6

12-13-15-20 0.1 −136.7 28.4
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phenyl protons. From these results, we were able to
conclude that hydrogen atoms of terminal aromatic rings
are separated by at least 5Å. This excludes the stacked
structure obtained from CHARMM calculations from being
the dominant conformation, because in this structure phenyl
ring rotation is hindered geometrically, and the distances
between hydrogen atoms from different rings are in the
range of 3.2 to 4.8Å. Also, the structure obtained from
OPLS calculations is questionable because some contacts
between hydrogen atoms of terminal rings are at a distance
of about 4.7–4.8Å, although this cannot be rigorously
excluded from considerations based on the NMR results.
The assignment of NMR signals was confirmed by
theoretical calculations that were carried at the B3PW91/
6-311++G(2df,p)//B3PW91/6-31+G(d) level using a con-
tinuum solvent model of DMSO solution. The DFT-
optimized geometries agree with those obtained with the
Amber force field, and are practically identical in the gas
phase, in DMSO, and in the aqueous solution.

Since the OPLS results could not be rigorously rejected,
we have compared them with the analogous calculations
carried out using the OPLS-2005 implementation in the
Impact program of the Schrodinger package [91]. This
implementation contains all types of atoms present in the
studied compound, so we assume that the results obtained

using it are the correct results for the OPLS force field. In
particular, the structures that are most stable in the Hyper-
Chem implementation of Amber, CHARMM, and OPLS
(see Fig. 1) were reoptimized using the Impact implemen-
tation of OPLS. The Amber and CHARMM structures did
not change significantly. The conformation obtained from
the best HyperChem OPLS structure underwent the most
changes (see Fig. 5), and in fact approached the one
obtained using Amber, with the whole molecule being
almost planar. The only major difference is one dihedral
angle (4-6-8-9), which is nearly 180° in Amber but nearly
0° in OPLS-2005 (the Impact implementation of OPLS),
making the molecule less elongated. Most importantly,
however, in OPLS-2005, the structure obtained from
Amber as implemented in HyperChem is the most stable;
it is 1.6 kcal mol−1 more stable than the one obtained from

Fig. 5 The most stable conformation obtained using the OPLS-2005
implementation in the Schrodinger package

Fig. 3 Atom numbering used to define torsional angles

Fig. 4 ROESY spectrum (left)
and the enlargement of the
central part (right)
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the HyperChem implementation of OPLS and 16.9 kcal
mol−1 more stable than the one obtained from the Hyper-
Chem CHARMM implementation.

Conclusions

We have compared the performances of three popular force
fields used to model enzymatic reactions and in docking
studies when they were applied to find the conformation of
a 1-carbonylthiosemicarbazide that exhibits strong antibac-
terial activity [67–70]. By comparing the theoretical results
with experimental NMR data, we concluded that the
Amber99 and OPLS-2005 force fields yielded the correct
structure. Our finding parallels a recent report on a similar
force field comparison for peptides [92]. Our results
indicate that incomplete implementations of the force fields
(like those used in HyperChem) can lead to erroneous
results.
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Abstract Cyclic peptides are exciting novel hosts for chiral
and molecular recognition. In this work, the inclusion
complexes of cyclic decapeptide (CDP) with the 1-phenyl-
1-propanol enantiomers (E-PP) are firstly studied using the
density functional theory (DFT) B3LYP method. Our
calculated results indicated that S(-)-1-phenyl-1-propanol (S-
PP) could form a more stable inclusion complex with CDP
than that of R(+)-1-phenyl-1-propanol (R-PP). The obvious
differences in binding energy and thermodynamics data
suggest that the cyclic decapeptide could differentiate the
two enantiomers. Furthermore, molecular dynamics simula-
tion results have supported the conclusions obtained by DFT.
The current investigation shows that cyclic peptide is a
desirable host molecule for chiral and molecular recognition.

Keywords Chiral recognition . Cyclic peptide . 1-phenyl-1-
propanol . Inclusion complex

Introduction

Inclusion complex is the focus of current host-guest
chemistry and supramolecular chemistry [1–5]. Experi-
mental [6–8] and theoretical [9–13] investigations on this
topic have been actively pursued for decades. Particularly,

studies on searching the desired host molecules dominate
the scene. Many examples of host molecules, such as
cyclodextrins (CDs) [14–16], macrocyclic antibiotics [17,
18], proteins [19] and chiral micelles [20] are available
now. The representative host molecule cyclodextrins
(CDs) have received much attention because they can
separate many enantiomers by forming inclusion com-
plexes with specific guest molecules [21, 22], this
characteristic has been successfully applied to many fields
including solubility enhancement, drug delivery, chemical
protection, separation technology, and supramolecular
chemistry [23, 24]. Another reason of the popularity of
CDs is that the high symmetry and rigidity of their
structures facilitate the study of inclusion complexes by
NMR techniques [25]. However, this lack of conforma-
tional flexibility is a limitation regarding efficiency of
inclusion complex. It’s difficult for the CDs molecules to
adjust their geometries to fit the guest molecules in an
optimal interaction mode. Notably, these conformational
disadvantages of CDs are just good qualities for cyclic
peptides which are polypeptide linked by amino acid
residues. In recent years, cyclic peptides have been
synthesized and used as anticancer, antimalarial, antibac-
terial drug carriers and enzyme inhibitors, where they act
as host molecules to form inclusion complexes with
biological molecules [26–29].

Understanding the structural details of the inclusion
complexes of cyclic peptides with guest molecules may
help us delineate the features that are responsible for the
remarkable potency of cyclic peptides. However, knowl-
edge of the precise interaction mechanism of cyclo-
peptides with enantiomers of a chiral molecule at the
molecular level is still very limited [30]. Especially,
conformations and structures of cyclic peptides are not yet
clear experimentally. Some theoretical studies on the
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structures of cyclic peptides have been performed over the
past several years [31–34]. Guangju Chen and co-workers
have reported the structural characteristics of an important
type of cyclopeptides formed by cyclo[(-β3-HGly)4-]
based on density function theory (B3LYP) [35]. Their
results provide us with new insights into the formation of
polypeptide. Inspired by the study of Guangju Chen and
co-workers on cyclopeptide, we have performed a density
functional theory (DFT) study of the interactions between
cyclic peptides and enantiomers, which may have much
theoretical and practical importance. In the present work,
we focused on the structure of model cyclic peptide
derived from glycine. The glycine, as the simplest amino
acid, was used to create a cyclopeptide template. Cyclic
decapeptide (assigned as CDP) (shown in Chart 1a),
constructed with ten identical glycines, is used as a
receptor that is capable of including trapping the guest
molecules inside the peptide cavity possibly caused by the
conformational flexibility and noncovalent interactions.

1-phenyl-1-propanol, a chiral molecule existing in a
couple of enantiomers forms (assigned as E-PP, E=R or S,
shown in Chart 1b), is a good candidate for constructing a
simple model to study chiral discrimination. The separation
of the enantiomers of 1-phenyl-1-propanol has already been
carried out in the experiment [36]. However, the separation
result is not desirable. In this work, CDP and E-PP are
selected as host molecule and guest molecules, respectively,
to investigate the conformational and structural features of
CDP/E-PP and the interaction of CDP with E-PP.

Computational methods

The search of the energy minimum

In this paper, the selected initial structure of CDP is E-type
backbone due to the E-type backbone of cyclopeptide is

more stable than that of B-type when the number of amino
acid residues is equal to or bigger than 10 [37].

The coordinate system used to define the inclusion process
of CDP with E-PP is shown in Chart 2, which was adopted
from a previous work [38]. Briefly, the CDP ring was
positioned symmetrically around the Z-axis, such that all
oxygen and nitrogen atoms in the glycine are in the XY
plane. The E-PP molecule was docked into the cavity of
CDP along with the Z-axis. Multiple initial positions were
generated by movement of E-PP along the Z-axis. The
relative position between CDP and E-PP was measured by
the Z-coordinate of the labeled carbon atom of E-PP (shown
in Chart 2). In order to find a more stable structure of CDP/
E-PP, we calculated all of the structures of each E-PP
molecule by scanning θ, circling around the Z-axis, at
20° intervals from -180° to 180° and scanning the Z-coordinate
at 0.3 Å intervals with semi-empirical calculations (PM3),
which can be currently applied in biochemical systems with its
improved description of the interactions between non-bonded
atoms, e.g., hydrogen bond and steric effects [39]. All of local
energy minimum structures from potential energy surface
(PES) by scan calculations were fully optimized at the
B3LYP/3-21G level of theory [40, 41]. Subsequently, CDP/
E-PP with the lowest energy obtained by B3LYP/3-21G
calculations were fully optimized using the basis set of 6-31+
G(d,p). Additionally, the frequency calculations for CDP/E-
PP were also carried out to verify the optimized structures
to be energy minima without any imaginary frequency.

Definition of the binding energy (BE)

In order to investigate the driving forces leading to CDP/E-
PP between CDP and E-PP, the binding energy (BE) upon
CDP/E-PP for the minimum energy structure is evaluated
from the following equation.

BE ¼ E½CDP=E� PP� � E½E� PP� � E½CDP� ð1Þ

Chart 1 Schematic representa-
tion for the conformations of (a)
cyclic decapetide (CDP) and
(b) 1-phenyl-1-propanol
enantiomers (E-PP)
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Where, E[CDP/E-PP], E[E-PP] and E[CDP] represent the
energies of CDP/E-PP, E-PP and CDP, respectively. The
magnitude of BE would be a sign of the driving force
toward CDP/E-PP. A negative value of BE means that the
corresponding CDP/E-PP is energetically stable; the more
negative the BE is, the more stable the complex is.

The deformation energies of CDP and E-PP were
calculated by Eq. 2 and 3 [42].

DE½E� PP� ¼ E½E� PP�optsp � E½E� PP�opt ð2Þ

DE½CDP� ¼ E½CDP�optsp � E½CDP�opt; ð3Þ
where DE[E-PP] and DE[CDP] are the deformation
energies of E-PP and CDP respectively; E½E� PP�optsp and
E½E� PP�opt are the single point energy of E-PP on the
configuration taken from the optimized CDP/E-PP and the
energy of the optimized geometry of E-PP respectively;
E½CDP�optsp and E½CDP�opt are the single point energy of
CDP on the configuration taken from the optimized CDP/
E-PP and the energy of the optimized geometry of CDP
respectively.

Thermodynamic analysis for the inclusion process of CDP
with E-PP

The geometries of the two inclusion complexes were
fully optimized without any geometrical or symmetry
constrains using the B3LYP/6-31+G(d,p) method. The
frequencies were performed for the evaluation of the
enthalpy changes (ΔΗ) and Gibbs free energy changes
(ΔG) of the inclusion process between CDP and E-PP.

Moreover, the electronic properties of CDP/E-PP were
studied using the natural bond orbital (NBO) analysis at

the B3LYP/6-31+G(d,p) level of theory [43]. NBO
calculations quantify the H-bond interactions between
host and guest molecules via the determination of the
stabilization energy E(2). The stabilization energy E(2)

related to the delocalization trend of electrons from donor
to acceptor orbital is calculated via perturbation theory. A
large stabilization energy E(2) between a lone pair LP(Y)
of an atom Y and an antibonding σ* (X—H) orbital is
generally indicative of a strong X� H � � �Y hydrogen
bond [44]. Basis set superposition error (BSSE) of binding
energies is calculated by using the counterpoise correc-
tions method [45]. All calculations were carried out using
the GAUSSIAN 03 program package [46].

Results and discussion

Most stable conformation and binding energy

Two obtained PESs are shown in Fig. 1. It can be seen that
the inclusion processes of CDP with E-PP are energetically
favorable. Interestingly, most of energy minima structures
locate at approximately Z=0 Å for E-PP approaches. Based
on the related scanned energy minima at the level of PM3,
B3LYP/3-21G calculations were performed to optimize
CDP/E-PP as presented in Fig. 2. Other possible locations
and angles of E-PP were examined using the B3LYP
method, which were shown to be energetically less favorable
and therefore not listed. Based on the B3LYP/3-21G
optimized equilibrium geometries of the CDP/E-PP,
calculations at the B3LYP/6-31+G(d,p) level were then
performed.

The BE values including BSSE corrections for most
stable inclusion configurations are listed in Table 1. The
BE values for CDP/S-PP and CDP/R-PP are -19.94 and -
10.54 kJ mol-1, respectively, which demonstrate that CDP
can form stable complexes with E-PP. The CDP/S-PP was
more favorable than CDP/R-PP by an energy difference
of 9.40 kJ mol-1, suggesting that S-PP is bound more
firmly by CDP.

Energies of the inclusion complexes

To investigate the thermodynamics of the inclusion
process, the statistical thermodynamic calculations were
performed at the B3LYP/6-31+G(d,p) level of theory.
The calculated results are listed in Table 1. It is obvious
that the inclusion process of CDP with E-PP are
exothermic judged from the negative enthalpy changes.
The negative enthalpy changes also suggest that both
the inclusion processes are enthalpically favorable. On
the other hand, the enthalpy change of CDP/S-PP
(-20.93 kJ mol-1) is about 8.30 kJ mol-1 lower than that of

Chart 2 Coordinate systems used to define the inclusion process (H
atoms included in CDP are omitted)
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CDP/R-PP (-12.63 kJ mol-1). The thermodynamic results
indicate that the S-PP structure is preferred to form
inclusion complex with CDP based on enthalpy grounds.

One interesting feature of the guest is its conformational
flexibility. A better guest conformational flexibility is
favorable to the host–guest interactions, it makes it possible
for the guest molecule to modify its conformation to
ensure a better penetration [47]. Investigation of the
deformation energy of the chosen guest E-PP at the
B3LYP/6-31+G(d,p) level of theory (as shown in Table 1)

demonstrated that the deformation of S-PP requires slightly
more energy to adapt conformation to fit the cavity of CDP
than that of R-PP as indicated by the DE[E-PP] data of
about 2.29 and 0.93 kJ mol-1 respectively. On the other hand,
there are some distortion of CDP in the inclusion process as
well. CDP needs 3.68 kJ mol-1 to adapt conformational
adaptation for CDP/S-PP and 1.48 kJ mol-1 for CDP/R-PP,
indicating that the deformation of CDP is advantageous
for the inclusion complex formation.

Conformational characteristics of CDP/E-PP

The favorable structures of CDP/E-PP optimized at the
B3LYP/6-31+G(d,p) level are graphically presented in
Fig. 3. Figure 3a shows that for CDP/S-PP, the phenyl of

Fig. 1 Scan of total energy of the inclusion complex of the E-PP
enantiomers into CDP at different positions (z) and orientations (θ):
(a) S(-)-1-phenyl-1-propanol (S-PP) and CDP; (b) R(+)-1-phenyl-1-
propanol (R-PP) and CDP. The position of the E-PP molecule was
determined by the Z-coordinate of the labeled carbon atom (*) in the
phenyl group. θ refers to the angle of each guest molecule circling
around the Z-axis of the system

Fig. 2 B3LYP/3-21G stabilization energy including BSSE correction
of the CDP/E-PP: (a) S-PP and CDP; (b) R-PP and CDP. θ refers the
start angle of each guest molecule into CDP circling around the Z-axis
of the system
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S-PP is almost totally encapsulated in the cyclic decapep-
tide cavity. While the OH group remains on the rim of
the CDP, which is in favor of formation of H-bond with
some groups of CDP. The optimized geometries reveal
that there are two hydrogen bond interactions between
CDP and S-PP. Figure 3b shows clearly that for the CDP/
R-PP, the phenyl of R-PP are partially included in CDP
and the orientation of OH group directed toward the inside
of the CDP cavity, allowing the lone pair of the oxygen
atom to act as an H-bond acceptor thus stabilizing the
CDP/R-PP.

Hydrogen bond analysis and NBO analysis

To investigate the reason why geometries of CDP/E-PP are
different, the hydrogen bond and NBO analyses are further
performed at the B3LYP/6-31+G(d,p) level of theory. The
detailed information of intermolecular hydrogen bond
interactions for CDP/E-PP are listed in Table 2 and shown
in Fig. 4. It can be seen from Table 2 that the distinct
differences for hydrogen bond interactions occur in the
different inclusion complexes. In the CDP/S-PP structure,
there are two hydrogen bond interactions. One occurs
between O1 of CDP and O11 of S-PP, a strong hydrogen
bond O11� H11 � � �O1 (dH. . .O ¼ 1:93Å). The other
occurs between the O11 of S-PP and C10 of CDP, a weak

hydrogen bond C10� H10 � � �O11 (dH. . .O ¼ 2:48Å). In
the CDP/R-PP structure, only one weak hydrogen bond is
formed. Namely, the O5 atom of CDP donates a hydrogen
bond (dH. . .O ¼ 2:22Å) to O11 of R-PP. Distinctly, the
intermolecular hydrogen bonds play a crucial role in the
stability of inclusion complexes conformational change. It
was suggested that the contribution of the O� H � � �O
hydrogen bond interactions to the structural stability in
CDP/S-PP is greater than those in CDP/R-PP. This
explains why the BE for the CDP/S-PP is 9.40 kJ mol-1

lower than that of CDP/R-PP.
The following NBO analyses confirm the occurrence of

these intermolecular hydrogen bonds. The stabilization
energies E(2) calculated at the B3LYP/6-31+G(d,p) level
of the established H-bond in the CDP/E-PP are listed in
Table 2. Significant interaction energies are obtained for the
expected hydrogen bonds, especially for the O� H � � �O
one. The interaction energy of the O� H � � �O hydrogen
bond of CDP/S-PP is 23.24 kJ mol-1, which is a
conventional hydrogen bond (16–25 kJ mol-1 for O�
H � � �O hydrogen bonds in carbohydrates) [48]. The
interaction energy of the O� H � � �O hydrogen bond of
the CDP/R-PP is 3.61 kJ mol-1, which belongs to a typical
weak hydrogen bond for which energies vary between 2.1
and 8.4 kJ mol-1 [49]. Noteworthy, one extra C� H � � �O
hydrogen bond was observed for CDP/S-PP. Quantum
mechanical calculations have been performed to determine
the energetic of the C� H � � �O bonds in the complexes,
which are far below values of conventional hydrogen
bonding [50, 51], but appreciably above energies of van
der Waals contacts. Briefly, these hydrogen bond interactions
play important roles in the inclusion processes of CDP
with E-PP.

Molecular dynamics simulations

Regarding the identification of the preferred inclusion
modes, it would be more realistic to select a set of
inclusion complex structures, besides a single optimized
configuration. Inclusion phenomena are dynamic in
nature; therefore the establishment of host-guest intermo-
lecular interactions cannot be analyzed from a single
structure [52]. Perhaps, other unexplored inclusion com-
plexes can lead to different hydrogen bonding patterns.
Molecular dynamics (MD) simulations could provide such
a view [53]. To obtain the possible inclusion modes
between CDP and E-PP, the two guests, R-PP and S-PP,
were firstly docked into CDP by using AutoDock 4.0
program [54]. The grid map of 32×32×32 points and a
grid-point spacing of 0.375 Å have been employed during
the dock processes. One better-scoring representative from
1000 predication inclusion models for CDP with E-PP has
been selected as an initial structure for MD simulations.

Table 1 The binding energies and thermodynamic parameters upon
the inclusion complexes of CDP/S-PP and CDP/R-PP at the B3LYP/
6-31+G(d,p) level of theory

Parameter CDP/S-PP CDP/R-PP

BEa(kJ mol-1) -27.67 -18.79

BSSE(kJ mol-1) 7.73 8.25

BEb(kJ mol-1) -19.94 -10.54

DE[E-PP]c (kJ mol-1) 2.29 0.93

DE[CDP]d (kJ mol-1) 3.68 1.48

ΔΗ°(kJ mol-1) -20.93 -12.63

ΔG°(kJ mol-1) 28.47 37.14

ΔS°(J mol-1 K-1) -165.67 -166.95

ΔΗpcm
e (kJ mol-1) -6.52 5.37

ΔGpcm
f (kJ mol-1) -38.34 -29.42

ΔSpcm
g (J mol-1 K-1) 106.72 116.69

a BE is the binding energy upon complex
b BE is the binding energy including the basis set superposition error
(BSSE) correction
cDE[E-PP] is the deformation energy of E-PP
dDE[CDP] is the deformation energy of CDP
eΔHpcm is the enthalpy change obtained by PCM model
fΔGpcm is the Gibbs free energy change obtained by PCM model
gΔSpcm is the entropy change obtained by PCM model
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All MD simulations were carried out using the AMBER9
[55] package with the AMBER force fields of parm99 [56,
57] and gaff [58]. The systems were explicitly solvated by
using the TIP3P water potential inside a box large enough
to ensure the solvent shell extended to 10 Å in all
directions of each system studied. For the equilibration
of the investigated systems, the following procedures were
carried out. First, 22500 steps energy minimization were
carried out to remove unfavorable contacts. Then the
systems were heated over 100 ps from 0 to 300 K with a
little restrains of 10 kcal mol-1 Å-2. The equilibration time
for each simulation was 500 ps (NPT) followed by 10 ns
of data collection for trajectory analysis, that is, 5000

structures for each simulation were saved for further data
analysis by uniformly sampling the trajectory.

With the help of a 10 ns long molecular dynamics, it
is shown that the CDP/E-PP are stable in water
environment. The detailed information of intermolecular
hydrogen bonds interactions for the CDP/E-PP in the
course of the simulations are listed in Table 3. The
quantities and lifetimes of H-bonds reflect the ability of
CDP to bind E-PP, respectively. These observations
clearly show that the lifetimes and number of H-bonds for
CDP/S-PP are longer and larger than those of CDP/R-PP.
Specifically, the longest lifetime of H-bond for CDP/S-PP is
up to 99.58% of the simulation times, while the longest

Fig. 3 Energy-minimized struc-
ture obtained by B3LYP/ 6-31+
G(d,p) calculations for CDP/E-
PP: (a) side view (left) and
top view (right) for CDP/S-PP
and (b) side view (left) and top
view (right) for CDP/R-PP

Donor Acceptor H…A (Å) D…A (Å) D–H…A (°) E(2) (kJ mol-1)

CDP/S-PP LP O1 BD*O11-H11 1.93 2.87 160.36 23.24

LP O11 BD*C10-H10 2.48 3.40 140.94 8.41

CDP/R-PP LP O5 BD*O11-H11 2.22 2.93 129.74 3.61

Table 2 The electron donors,
electron acceptors and the
corresponding E(2) energies,
distances and angles obtained at
the B3LYP/6-31+G(d,p) level
of theory
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lifetime of H-bond for CDP/R-PP is only 44.06% of the
simulation times. Compared to R-PP, S-PP exhibits the
anticipated binding propensity to associate with CDP. The
MD results indicate that theCDP/S-PP system is appreciably
more stable than CDP/R-PP. Briefly, the MD results support
the conclusions obtained by B3LYP/6-31+G(d,p).

Solvent effects

Complex phenomena take place in condensed phase. Thus,
solvent plays a critical role in the intermolecular interac-
tions that lead to the formation of inclusion complexes,
especially in the case of polar compounds with hydrogen
donor/acceptor groups. To consider the role of the solvent,
the polarized continuum model (PCM) [59–61] has been

employed to simulate the solvent effects as implemented
within the solvent reaction field based on the optimized
structures as listed in Table 1. As shown in Table 1, positive
entropy changes (ΔSpcm) in the two inclusion processes are
106.72 and 116.69 J mol-1 K-1 respectively, which are
attributed to the releasing of water molecules in the cavity
of CDP. Based on the discussions above, it can be
concluded that entropy effects on the stability of the
CDP/E-PP are favorable factors, that is, the formations of
CDP/E-PP are entropy driven processes in aqueous
solution.

Conclusions

In this work, CDP/E-PP have been investigated theoret-
ically using the density functional theory (DFT) B3LYP
method. Almost all possible locations of E-PP with CDP
were taken into account to obtain the most stable
conformation of CDP/E-PP. The optimized structures
and the binding energy (BE) indicate that CDP/S-PP is
more stable than CDP/R-PP. The conformational charac-
teristics of CDP/E-PP show that the distinct differences
for hydrogen bond interactions occur in the different CDP/
E-PP. For CDP/S-PP, the better stabilization may be
attributed to the formation of two hydrogen bonds between
CDP and E-PP. For CDP/R-PP, only one hydrogen bond
has been formed between CDP and E-PP, which might
account for the stabilization of CDP/E-PP. The NBO
analyses confirm the occurrence of these intermolecular
hydrogen bonds: the NBO results show that there is one
conventional hydrogen bond and one weak hydrogen bond
in the CDP/S-PP inclusion complex while there is only
one weak hydrogen bond in the CDP/R-PP inclusion
complex. Briefly, these hydrogen bond interactions will
contribute to the overall stability and structure of the
inclusion complexes of CDP with E-PP. Furthermore, the
MD simulation results are in agreement with the con-
clusions obtained by the B3LYP/6-31+G(d,p) method.

Additionally, the thermodynamic calculated results
demonstrated that enthalpy changes (ΔΗ) are prominent
in the inclusion processes. The enthalpy changes
suggest that the formation of CDP/E-PP is an enthalpy
driven process. Their obvious differences in binding
energy and enthalpy change suggest that CDP could well
distinguish E-PP. Take the solution effects into account,
the entropy is still a favorable driving force for the
formation of CDP/E-PP. The current studies provide a
revealing insight into conformational characteristics and
thermodynamics properties for CDP/E-PP at the molecu-
lar level. The observations in this work indicate that CDP
is a desirable host molecule for chiral and molecular
recognition.

Fig. 4 Host–guest hydrogen bonds are presented by dotted lines:
(a) CDP/S-PP and (b) CDP/R-PP. H in white, C in gray, N in blue,
O in red

Table 3 The intermolecular hydrogen bonds of CDP/S-PP and CDP/
R-PP during molecular dynamics (MD) simulations

Complex Donor Acceptor Lifetime (%) Distance (Å)

CDP/S-PP O1 O11-H11 99.58 2.82

O11 C10-H10 95.82 3.65

CDP/R-PP O5 O11-H11 44.06 2.99
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Abstract As a part of the task of constructing the
equivalent potential of water in order to obtain a reliable
electronic structure for a protein, the equivalent potential of
water for an arginine molecule was constructed by
performing first-principles, all-electron, ab initio calcula-
tions. The process consisted of three steps. First, the
electronic structure of arginine was calculated using a free
cluster calculation. Then, the minimum-energy geometric
structure of the system Arg++9H2O was found using free
cluster calculations. Then, based on the optimized geomet-
ric structure of the Arg++9H2O system, the electronic
structure of Arg+ in the potential of water was calculated
using the SCCE method. Finally, by performing SCCE
calculations, the effect of water on the electronic structure
of Arg+ was simulated with dipoles. The results show that
the effect of water on the electronic structure of Arg+ is to
broaden the energy gap tenfold, and to increase the eight
eigenvalues below the HOMO by about 0.0546 Ry on
average. The water potential can be accurately simulated
using dipoles.

Keywords Arginine . Electronic structure .Water . Free
cluster calculation . Self-consistent cluster-embedding
calculation

Introduction

Researchers at the Human Genome Project have now
finished mapping the body’s 25,000 genes, but scientists

are still hard at work on an even greater task: researching
the geometric structures and biological functions of
proteins. Elucidating the electronic structures of proteins
allows us to better understand some of the actions of
proteins. It is, however, difficult to calculate the electronic
structure of a protein, as it requires an incredible amount of
computational effort. In the last two decades, the fields of
computational condensed matter physics and quantum
chemistry have both focused on developing so-called O
(N) methods, for which the computational effort scales
linearly with the number (N) of atoms [1–17]. Self-
consistent cluster-embedding calculation (SCCE) [16, 17]
is an O(N), first-principles, all-electron, ab initio calculation
method that is based on density functional theory. Unlike
traditional calculation methods, the one-electron wave-
functions obtained with the SCCE method are localized; i.
e., each one-electron wavefunction localizes only in a part
of the region occupied by the system. The advantage of the
SCCE method is that the localized valence electrons of the
material can be described well, and the computational effort
can be greatly reduced while maintaining the calculation
precision. SCCE calculations have been successfully
applied to several insulators, semiconductors, metals,
crystals with defects and impurities, and surfaces [17–23].
SCCE calculations were first applied to calculate the
electronic structure of a protein in 2000 [24]. So far, the
electronic structures of three proteins with four three-
dimensional structures have been obtained with SCCE
[25–27]. Another protein was calculated by both Sato et al.
[28] and Yoshihiro et al. [29] using their own methods.

Our previous protein calculations did not take the
influence of solvent into account due to limited computa-
tional capacity. In general, a protein in water as a solvent
has a biological function, and its geometric structure is
different from that in the isolated state. In other words,
almost no biological processes can occur without the
presence of solvent. Thus, it is necessary to take the
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influence of solvent into account in electronic structure
calculations of proteins.

Several continuous medium models for water have been
developed [30–37]. Concerning the macro properties of a
macroscopic system, the effect of a large number of water
molecules can be reasonably considered to represent the
effect of a continuous medium. However, for an active site
of a protein (which is usually located on the tip of the
lateral chain of a residue, and is comparable in size to a
water molecule) and its localized molecular orbitals, a
conductor-like polarizable continuous medium is clearly
not an acceptable model for water. We really need to
consider the effect of the nearest individual water mole-
cules. However, it is impossible to add a large amount of
water molecules to the electronic structure calculation of
protein in solution due to the intense computational effort
required, though this computational effort can be greatly
reduced using the SCCE method. Thus, in order to calculate
the electronic structure of a protein in solution, it is
necessary to construct an equivalent potential of water that
is simple, easy-to-use and requires little additional compu-
tational effort.

It is reasonable to construct equivalent potentials of
water for the electronic structures of the 20 kinds of amino
acid (the building blocks of proteins). These equivalent
potentials can then be used to represent the impact of the
potential of water on a protein. Equivalent potentials of
water for 13 amino acids have already been constructed:
those for cysteine (Cys), lysine (Lys+), histidine (His),
glutamic acid (Glu−), alanine (Ala), asparagine (Asp−),
serine (Ser), threonine (Thr), asparagine (Asn), glycine
(Gly), leucine (Leu), proline (Pro) and isoleucine (Ile)
[38–48]. In this paper, we report the equivalent potential of
water for arginine (Arg+).

This work is based on two considerations. (1) Our
purpose is not to mimic the situation found in water at room
temperature, but to mimic the potential that acts on the
electronic structure of Arg+ due to the presence of water.
From the viewpoint of the electronic structure of Arg+, it is
reasonable to consider only the nearest water molecules that
form hydrogen bonds with Arg+, and minimize the total
energy. The reasons for this are as follows. (i) In our
calculation, the Arg+ was fixed within its solvated structure.
(ii) There are only a limited number of the nearest water
molecules that can form hydrogen bonds with an Arg+. (iii)
Although they fluctuate significantly, the water molecules
surrounding the Arg+ are those that have the highest
probability of being at the positions that minimize the total
energy of the Arg++9H2O system. (iv) The potential of a
removed dipole (such as a polar water molecule located far
from the Arg+) attenuates as 1/r2. So the nearest water
molecules that form hydrogen bonds with the Arg+ and
minimize the total energy, at least to a first-order approx-

imation, contribute most of the effect of the potential of the
solvent on the Arg+ electronic structure, no matter where
the other water molecules are distributed. (2) Dipoles made
up of point charges can easily be added to the SCCE
calculation with almost no additional computational effort,
and do not increase the CPU time. On the other hand, the
average potentials of polar water molecules can be
reasonably simulated by dipoles. Thus, in this work, we
chose to use dipoles to simulate the potential of water.

Basic theory

The “free cluster calculation” and the “self-consistent
cluster-embedding (SCCE) calculation” methods, which
are based on density functional theory (DFT) [49, 50],
have been described in detail elsewhere (see references
[16, 17, 47] and the website http://www.esprotein.org.cn).
Especially, we refer readers to [47]—which describes such
calculations for glycine (Gly)—for further details
concerning DFT, the free cluster calculation, the SCCE
calculation, and the computational procedure.

The Arg++9H2O system, the calculation process
and results

Before the calculation, we determined that the number of
“nearest” water molecules around Arg+ was nine, according
to hydrogen bonding and our experience. We then obtained
both the optimized geometric structure and the electronic
structure of the Arg+ +9H2O system with the free-cluster
calculation method. Evidently, just nine water molecules
cannot adequately describe the effect of water on the
geometric structure of Arg+ considering the degrees of
freedom of the geometric structure of Arg+ in solution.
However, it is appropriate to use nine water molecules to
describe the effect of water on the electronic structure of
Arg+ in solution:

(1) Both the properties and the biological functions of an
amino acid depend mainly on the molecular orbitals
near the HOMO (highest occupied molecular orbital),
which are easily affected by the solvent environment.
The molecular orbitals that are much lower than the
HOMO are barely affected by the solvent. Therefore,
we used nine water molecules to simulate the effect of
water on the molecular orbitals near the HOMO. The
degrees of freedom is small if we choose ten
molecular orbitals near the HOMO, so the use of nine
water molecules should be appropriate.

(2) The valence electrons in the amino acid Arg+ are all
localized. The molecular orbitals near the HOMO are
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mainly localized around the amidogen (H3N
+), car-

boxyl (COO−) or lateral chain. Each H atom of Arg+

may form a hydrogen bond with an O atom of a water
molecule; likewise, each O atom of Arg+ may form a
hydrogen bond with an H atom of a water molecule,
and one O atom can form at most two hydrogen bonds
with two H atoms. Considering the fact above, and
that a water molecule has one O atom and two H
atoms, nine water molecules can form hydrogen bonds
with neither more nor less than 15 H atoms and 2 O
atoms of Arg+, so long as they stay at the right
positions.

(3) There is no doubt that the greater the number of
molecules used the better the result will be. However,
the following two facts indicate that nine water
molecules may be the best choice. First, when a water
molecule is near the amino acid, it will impede the
approaches of other water molecules. The potential of
a removed dipole (such as a polar water molecule)
attenuates as 1/r2. Therefore, a certain number of
water molecules that form hydrogen bonds with Arg+,
at least to a first-order approximation, contribute most
of the effect of the solvent on the electronic structure
of Arg+. Second, suppose that eleven water molecules
are positioned around Arg+. In this case, 30 geometric
structures would be obtained, all of which have almost
the same total energy. This degeneracy could make the
calculations impossible and nonsensical. On the other
hand, the complex interactions among water molecules
are of no interest here. Thus, nine water molecules
were applied in our calculations.

Distribution of the water molecules

The coordinates of the 27 atoms of Arg+ listed in Table 1
were found from a PDB structure file provided by the
Laboratory of Mass Spectrometry and Gaseous Ion Chem-
istry at the Rockefeller University (http://prowl.rockefeller.
edu/aainfo/struct.htm).

The polar water molecules mainly affect the charged
H3N

+ and COO− of Arg+, as well as its lateral chain. At
the start, the nine water molecules were distributed in
positions surrounding the Arg+ according to our experi-
ence. Three were placed in the neighborhood of the H3N

+,
with each water molecule’s oxygen end oriented toward
one of the hydrogen atoms of H3N

+. One water was near
the COO−, with its hydrogen end oriented toward the two
oxygen atoms of COO−, while five others were placed
near the H atoms of the lateral chain. Each water
molecule, depending on its initial position and orienta-
tion, was able to form hydrogen bonds with H or O atoms
of Arg+ and thus to lower the total energy of the Arg+ +
9H2O system.

The von Barth and Hedin [51] form of the exchange-
correlation potential, as parameterized by Rajagopal and
coworkers [52] was used in the calculations. An optimized
linear combination of the Gaussian basis sets of C, N, O,
and H atoms was also used [53–57]; parts of the original
bases were uncontracted, several diffuse bases were
inserted, and two polarization functions were added. They
were the same as those used in the electronic structure
calculations of proteins [24–27]; i.e., C, 8s6p, 26 Gaussian
bases; N, 8s7p, 29 Gaussian bases; O, 8s7p, 29 Gaussian
bases; H, 8s1p, 11 Gaussian bases. The total number of
Gaussian bases was 954. The space occupied by the Arg+ +
9H2O system was divided into 594,002 grid points so as to
calculate the exchange-correlation energy.

The software Free Cluster Calculation was developed by
the group of Prof. Callaway in the Department of Physics
and Astronomy, Louisiana State University (USA) [58].
The electronic structures of many molecules and clusters
have been calculated using this software [59–65]. By
solving the Kohn–Sham equation self-consistently, we

Table 1 Atomic coordinates of Arg+

No. Atom X (Å) Y (Å) Z (Å)

1 Cα 2.807 0.022 1.011

2 C 1.442 −0.625 0.785

3 C 0.374 0.463 0.679

4 C −0.992 −0.183 0.454

5 N −2.019 0.863 0.352

6 C −3.234 0.288 0.151

7 N −4.307 1.041 0.030

8 N −3.342 −1.066 0.076

9 N 3.128 0.924 −0.137
10 C 3.862 −1.054 1.116

11 O 4.528 −1.158 2.132

12 O 4.056 −1.850 0.145

13 H 2.787 0.600 1.932

14 H 1.209 −1.282 1.621

15 H 1.462 −1.204 −0.136
16 H 4.053 1.362 0.015

17 H 2.405 1.661 −0.209
18 H 3.147 0.373 −1.014
19 H 0.607 1.120 −0.156
20 H 0.354 1.042 1.601

21 H −1.225 −0.840 1.290

22 H −0.971 −0.762 −0.467
23 H −1.802 1.473 −0.424
24 H −5.116 0.454 −0.113
25 H −4.432 1.587 0.870

26 H −4.308 −1.319 −0.075
27 H −2.781 −1.406 −0.692
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obtained the electronic structure, the total energy, and the
force exerted on each atomic nucleus.

Adjusting the nine water molecules

For the Arg++9H2O system, only the positions of water
molecules relative to Arg+ were adjusted. In other words,
during the optimization, all of the nuclei in Arg+ were
fixed, and the nuclei in the water molecules were moved
according to the forces while the geometric structure of
each water molecule was fixed. Using a first-principles,
all-electron, ab initio method, the electronic structure of
the Arg++9H2O system was calculated self-consistently.
Each time one of the nine water molecules was moved
along the direction of applied force while the other water
molecules remained fixed. Twelve step lengths, ranging
from small to very large, were used for adjustments in
order to avoid the adjustment from falling into a local
minimum. Therefore, in all probability, our final opti-
mized structure does not depend on the initial geometry.
The position of the water molecule that gave the lowest
total energy among the twelve step lengths was then
saved. Then we moved the position of another water
molecule that was subjected to the strongest applied force.
Once the positions of all nine water molecules had all
been adjusted in this manner, one round was finished and
the second round was begun. After hundreds of rounds of
such adjustments, the total energy of the system hovered
near a particular value, which meant that the optimized
geometric structure of the Arg++9H2O system had been
obtained. The total energy was −2577.5250 Ry, 1.1193 Ry
lower than that of the initial configuration. The atomic
coordinates of the nine water molecules are given in
Table 2. Figure 1 shows the optimized configuration of the
whole Arg++9H2O system, the atoms of which are
numbered according to Tables 1 and 2. In order to more
clearly depict the positions of water molecules relative to
Arg+, three parts of the Arg++9H2O system are shown
individually in Figs. 2, 3, and 4.

In principle, we can not obtain the global minimum.
However, we are sure that the total energy of the
geometric structure is very close to the minimum, as
the room for further adjustment is very small. Therefore,
the calculated electronic structure of Arg+ under the
influence of water should be a good approximation to the
real electronic structure of Arg+ in aqueous solution for
the following reasons. First, we did not intend to explore
the positions of water molecules relative to Arg+. Second,
there are no fixed hydrogen bonds between the water
molecules and the protein in solution, so there are no fixed
relative positions between them. The water molecules are
most probably at the positions that minimize the total
energy of the system. Third, in order to reduce the total

computational effort, charge-density fitting was used in
both the free-cluster calculation and the band structure
calculation. A pseudo charge density that differs from the
real one but can give a total energy which is very close to
that calculated using the real charge density was used to
calculate the electronic structure. It is believed that the
electronic structure obtained using this pseudo charge
density is a good approximation.

We used the free cluster calculation to optimize the
geometric structure of the Arg++9H2O system instead of the
molecular dynamics method (MD) due to the following
reasons. (1) Our ultimate goal was to obtain the electronic
structure of Arg+ in water accurately, which means no
pseudopotential, no adjustable parameters in the calculation,
and the use of an adequate set of Gaussian bases which was
the same as that used to calculate the electronic structure of
the protein. In fact, for the Arg++9H2O system containing 54
atoms (184 electrons), we used 954 Gaussian bases, which is
much larger than the number that can be used in MD. It is
also well known that pseudopotential and Gaussian bases will

Table 2 Final atomic coordinates of the nine water molecules

Water molecule Atom X (Å) Y (Å) Z (Å)

1 O28 6.2340 −3.1642 1.2762

H29 5.9581 −2.5443 1.9514

H30 5.6411 −2.9999 0.5429

2 O31 5.2578 1.4501 1.5159

H32 5.1485 0.6634 2.0502

H33 5.9858 1.9184 1.9245

3 O34 1.5349 3.4552 −0.1350
H35 1.4722 3.8896 0.7157

H36 1.3979 4.1557 −0.7728
4 O37 3.4152 −0.7761 −2.3060

H38 3.7272 −1.4388 −1.6897
H39 4.1544 −0.6307 −2.8965

5 O40 −2.0128 1.5450 −2.2426
H41 −2.8409 1.6984 −2.6975
H42 −1.3405 1.7722 −2.8849

6 O43 −0.5368 −2.9396 2.4153

H44 0.1590 −3.3980 2.8864

H45 −1.3331 −3.1429 2.9060

7 O46 −4.6120 2.7440 2.1828

H47 −4.0549 2.8875 2.9478

H48 −5.5039 2.8594 2.5104

8 O49 −6.2333 −1.2269 −0.3169
H50 −6.8282 −1.4392 0.4022

H51 −6.7092 −1.4850 −1.1063
9 O52 −1.6697 −2.0717 −2.2289

H53 −1.2055 −2.9083 −2.1994
H54 −1.7061 −1.8500 −3.1593
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affect the electronic structure as well as the geometric structure.
(2)We did not want to change the structure of Arg+ in solution
and the structures of water molecules at all during the search
for the lowest-energy conformation of Arg+ +9H2O complex.
It may be difficult for MD to guarantee this. By the way, our
free cluster calculation can partially perform the relaxation
automatically, but the computational effort associated with
this is large due to the large Gaussian bases.

Electronic structure of Arg+ in the potential of water

Based on the optimized geometric structure, the system was
then divided into ten embedded clusters for the self-consistent

cluster-embedding calculation (SCCE) [66]. Arg+ was set as
the first cluster, and the nine water molecules were set as the
other nine clusters. In the SCCE calculation, the total
potential was the same as that in the free cluster calculation,
but the localized one-electron wavefunctions were substitut-
ed for extended one-electron wavefunctions: each one-
electron wavefunction was then localized in the region of a
cluster. Thus, the electronic structure of Arg+ was isolated
from that of the water molecules.

The SCCE calculation involves two kinds of iterations:
intra-cluster iteration and inter-cluster iteration:

(i) Intra-cluster iteration. For each embedded cluster, the
Kohn–Sham equation [50] was calculated self-
consistently: the r1 r!� �

of the embedded cluster was
self-consistently changed during the iterations, while the
rest of the system served as its fixed environmentr2 r!� �

:

Fig. 3 Positions of waters 2 and 3 relative to the backbone of
arginine. One hydrogen atom of water 2 points to O11. Its oxygen
atom points to H16. The hydrogen atoms H17 and H19 share the
oxygen atom of water 3

Fig. 2 Positions of water molecules 1, 4, and 6 relative to the lateral
part of arginine. The oxygen atom of water 4 forms a hydrogen bond
with H18, and one of its hydrogen atoms connects with O12. Each
oxygen atom of the carboxyl group connects to one hydrogen atom of
water 1. The oxygen atom of water 1 is shared by H14 and H21

Fig. 1 Geometric structure of
the Arg++9H2O system

J Mol Model (2012) 18:859–870 863



(ii) Inter-cluster iteration. The ten embedded clusters
were synchronously calculated by ten CPUs. After
the intra-cluster iterations of all ten embedded clusters
had converged, the results were used to construct new
environments r2 r!� �

for each embedded cluster, and a
new inter-cluster iteration was started. After ten inter-
cluster iterations, converged results were obtained.

Listed in Table 3 are the eigenvalues and Mulliken
populations of ten orbitals near the HOMO of Arg+ under
the influence of nine water molecules.

Simulating the potential of water by dipoles

After the electronic structure of Arg+ in the potential of
water had been obtained, nine dipoles were substituted for
the nine water molecules: the O atom of each water
molecule was replaced with a negative point charge, while
the two H atoms were replaced with a positive charge
located at the middle of the line connecting the two H
atoms. The electronic structure of Arg+ was recalculated
using the SCCE calculation by adjusting the point charges
according to the difference in the electronic structure of
Arg+ obtained when the water potential and the dipole
potential were considered.

It is important to note that the electronic structure of
Arg++9H2O obtained with the free cluster calculation
cannot be used as fitting criteria to adjust the dipoles in
the SCCE calculation, as the two systems have different
numbers of electrons and different distribution regions of
the electrons. It is the electronic structure of Arg+ in the
Arg++9H2O system obtained using the SCCE calculation
that can be used to approximate the electronic structure of
Arg+ in water, and is suitable for use as fitting criteria. To
aid in the evaluation of the difference in electronic structure
between Arg++9H2O and Arg++ 9 dipoles, two quantitative
criteria were established:

(1) The mean square deviation of eigenvalues

ΔEs ¼ 1

Ns

XNs

n¼1

"sn � "sn0
� �2" #1=2

; ðaÞ

where "snand "sn0 are the eigenvalues of the nth

molecular orbital with spin σ calculated in this section

Fig. 4 The positions of the water molecules 5, 7, 8, and 9 relative to
arginine. The oxygen atom of water 8 is shared by H26 and H24. The
oxygen atom of water 9 is shared by H22 and H27. The oxygen end of
water 5 points to H23. The oxygen atom of water 7 is closest to H25

Table 3 Some of the eigenvalues and Mulliken populations of Arg under the potential of the nine water molecules

State Energy (Ry) Mulliken population

C N O H

s p s p s p s p

49 −0.3481 −2.3765 0.0030 5.2051 1.8548 0.0004 −0.0004 −3.6936 0.0072

48 −0.4155 −0.0684 0.4853 0.1707 0.5371 0.0000 0.0001 −0.1314 0.0066

The above states are unoccupied

47 −0.5212 0.0059 −0.0141 0.0715 −0.0058 0.0781 0.9236 −0.0595 0.0003

46 −0.5539 0.0404 0.0827 0.0315 0.0123 −0.0269 0.9071 −0.0473 0.0002

45 −0.5700 0.2849 −0.1268 0.0280 0.0046 −0.0288 0.8138 0.0238 0.0004

44 −0.7704 0.0613 0.1555 −0.0053 0.6350 −0.0004 0.0277 0.1174 0.0088

43 −0.7929 0.0110 0.5269 −0.0168 0.1214 −0.0109 0.3000 0.0638 0.0045

42 −0.8201 −0.0061 0.4960 0.0393 0.1067 0.0046 0.0855 0.2638 0.0102

41 −0.8319 0.0247 0.1362 −0.0202 0.5882 0.0021 0.0183 0.2369 0.0138

40 −0.8536 0.0538 0.3869 −0.0102 0.1325 −0.0011 0.2928 0.1393 0.0060

Because of the tiny populations associated with the d electrons, they are not given in this table and the tables below
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and in the previous section, respectively. Nσ is the
number of electrons with spin σ.

(2) The equivalent mean square deviation of charge
density

ΔCs ¼ 1

N

XN
i¼1

XN
j¼1

XNs

n¼1

Cs»
ni C

s
nj �

XNs

n¼1

Cs»
ni0C

s
nj0

 !2
2
4

3
5
1=2

; ðbÞ

where Cs
ni and Cs

ni0 are the expansion coefficients of
the eigenfunctions of the nth molecular orbitals with
spin σ calculated in this section and in the previous
section, respectively. N is the number of Gaussian
bases used to expand the one-electron wavefunction.
(Note the charge density:

rs ~rð Þ ¼ PNs

n¼1
jys

n ~rð Þj2 ¼ PNs

n¼1

PN
i¼1

Cs»
ni U

»
i ~rð Þ

� � PN
j¼1

Cs
njUj ~rð Þ

" #

¼PN
i¼1

PN
j¼1

PNs

n¼1
Cs»
ni C

s
nj

� �
U

»
i ~rð ÞUj ~rð Þ

;

where the Gaussian bases Ui r!� �
are identical in the

two calculations.)

The electronic structure of Arg+ in the dipole potential is
considered to be proximate to that in the water potential
when criteria (a) and (b) are minimized. In practice,
however, we mainly use criterion (a), because the reliability
of criterion (b) can be impacted by the charge density fitting
procedure [58, 67] used in the calculations.

The values of the two criteria after a new combination of
dipole charge values were calculated with SCCE were then
compared with the previous values. After hundreds of
adjustments, the value of criterion (a) decreased from
5.4700×10−3 to 1.9246×10−3, which indicated that the
electronic structure of Arg+ of the system Arg++ 9 dipoles
was mostly proximate to the system Arg++9H2O.

There are a number of studies in the literature that
address the problem of achieving a simplified discrete
solvent representation using point charges; each has its own
advantages. On the website http://www.lsbu.ac.uk/water/
models.html, 23 water models and more than 1200 papers
can be found on this subject. The review written by Guillot
[68] listed 46 distinct water models, which indirectly
indicates their lack of success in quantitatively reproducing
the properties of real water. In our previous studies [40, 42],
two popular three-charge water models, TIP4P-FQ [69] and
SPC [70], were tried as well as the dipole model. However,
when calculating the electronic structure of an amino acid,
the more complicated three-charge water models did not
give a better fit than the simple dipole model (this will be
discussed in another paper). Two facts should be empha-
sized here. First, we are not attempting to construct a
general water model, since this is a complex problem with a

lot of associated issues, but rather to construct an equivalent
potential of water especially for electronic structure
calculations of proteins in solution. For example, the
dipoles constructed for Arg+ will be applied to Arg+

peptides located on the surface of a protein. Second, we
are not attempting to construct an exact special equivalent
potential of water. Actually, this does not exist: it is
impossible to make the electronic structure of Arg+ in the
dipole potential absolutely identical to that in the water
potential. Our aim is rather to construct a simple and easy-
to-use potential which, at least to a first-order approxima-
tion, contributes most of the effect of the solvent on the
electronic structure of the protein.

The distance between the positive charge and negative
charge of a dipole was fixed at 0.5858 Å during the
calculations. The initial charges of the nine dipoles were all
set to be 0.5e. The charges of the nine dipoles were then
adjusted in turns until the two criteria reached their minima.
The final charges and coordinates of the nine dipoles are
given in Table 4. An ichnography of the geometric structure
of Arg++ 9 dipoles is shown in Fig. 5. Table 5 lists the
eigenvalues and Mulliken populations of ten orbitals near
the HOMO of Arg+ in the Arg+ + 9 dipoles system.

Results analysis

The electronic structure of Arg+ was calculated to study the
influence of water on the electronic structure of Arg+. The

Table 4 Point charges and coordinates of the nine dipoles

Dipole Charge (e) X (Å) Y (Å) Z (Å)

1 −0.69 6.2340 −3.1642 1.2762

0.69 5.7996 −2.7721 1.2471

2 −1.11 5.2578 1.4501 1.5159

1.11 5.5672 1.2909 1.5159

3 −0.83 1.5349 3.4552 −0.1350
0.83 1.4350 4.0226 −0.0286

4 −2.15 3.4152 −0.7761 −2.3060
2.15 3.9408 −1.0347 −2.2931

5 −0.77 −2.0128 1.5450 −2.2426
0.77 −2.0907 1.7353 −2.7912

6 −0.37 −0.5368 −2.9396 2.4153

0.37 −0.5870 −3.2705 2.8962

7 −0.70 −4.6120 2.7440 2.1828

0.70 −4.7794 2.8735 2.7291

8 −0.46 −6.2333 −1.2269 −0.3169
0.46 −6.7687 −1.4621 −0.3520

9 −0.60 −1.6697 −2.0717 −2.2289
0.60 −1.4558 −2.3792 −2.6794
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total energy of an isolated Arg+ molecule is −1207.4910
Ry. The eigenvalues and Mulliken populations of ten
orbitals near the HOMO of Arg+ are listed in Table 6.

The eigenvalues of states 40–49 of Arg+ in the three
cases (in the potential of dipoles, water molecules and no
potential) are shown in Table 7. The last row gives the
energy gap between states 48 and 47. A sketch map is
shown in Fig. 6 that compares the three sets of eigenvalues.

The properties of Arg+are determined mainly by the
molecular orbitals near the HOMO. Tables 3, 5 and 6 show
that the molecular orbitals below the HOMO are similar in
the potential of water and the dipole potential. We now
provide a detailed description of eight orbitals below the

LUMOs of the two cases. Orbitals 46 and 47 are mainly
occupied by the 2p electrons of O in COO−. Orbital 45 is a
hybridized state contributed to mainly by the 2p electrons
of O and the 2s electrons of C in COO−, as well as the 2s
and 2p electrons of Cα. Orbital 44 is mainly occupied by
the 2p electron of N5. Orbital 43 is a hybridized state that is
mainly occupied by 2p electrons from the C and O atoms
of the COO−. Orbital 42 is occupied mainly by 2p
electrons from two carbon atoms (C2, C3) in the
backbone. Orbital 41, a hybridized state, is occupied by
2p electrons from the N atom of the lateral chain. Orbital
40 is mainly occupied by 2p electrons from the COO− and
a carbon atom (C2).

Fig. 5 Geometric structure of
the Arg+ + 9 dipoles system

Table 5 Some of the eigenvalues and Mulliken populations of Arg+ in the potential of 9 dipoles

State Energy (Ry) Mulliken population

C N O H

s p s p s p s p

49 −0.2912 −0.7409 0.1198 1.7448 0.6819 0.0001 −0.0001 −0.8154 0.0098

48 −0.4140 −0.0069 0.4920 0.0157 0.4051 0.0000 0.0001 0.0878 0.0064

The above states are unoccupied

47 −0.5281 0.0117 −0.0358 0.0313 0.0077 0.0618 0.9496 −0.0268 0.0005

46 −0.5441 0.0150 −0.0071 0.0162 0.0053 0.0008 0.9800 −0.0103 0.0001

45 −0.5811 0.2094 −0.0338 0.0221 0.0150 −0.0194 0.8207 −0.0142 0.0002

44 −0.7707 0.0197 0.3342 0.0246 0.4127 0.0021 0.1451 0.0540 0.0076

43 −0.7887 0.0054 0.3208 −0.0091 0.3693 0.0038 0.2365 0.0675 0.0059

42 −0.8200 0.0101 0.4360 0.0060 0.1902 0.0350 0.1045 0.2072 0.0110

41 −0.8305 0.0486 0.1619 −0.0198 0.5116 0.0324 0.0533 0.1981 0.0140

40 −0.8527 0.0364 0.3525 0.0052 0.0336 0.1043 0.2934 0.1684 0.0062
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The orbitals in the case of free Arg+ are different from
the former two cases, except for orbitals 45, 46, and 47.
Orbital 44 is occupied by the 2p electrons of the C and O
atoms of COO−. Besides those 2p electrons, orbital 43 is
also occupied by the 2p electron of N5. Orbital 42 is mainly
occupied by the 2p electrons of the N3 atom of the lateral
chain. Orbital 41 is highly hybridized and is mainly
occupied by the 2p electrons of C and O atoms of COO−

and the 2p electron of C2C3. Orbital 40 is occupied
primarily by the 2p electrons of N7 and N8.

By comparing the second column with the third one in
Table 7, and Fig. 3a with Fig. 3b, it was found that the

influence of water does not change the electronic structure
of Arg+. Its main effect is to broaden the energy gap
tenfold, and to increase the eigenvalues of all orbitals by
about 0.0546 Ry on average.

By comparing columns 2 and 3 of Table 7 and Fig. 3b
with Fig. 3c, we found that below the HOMO, the
eigenvalues of Arg+ in the dipole potential are very close
to those in the potential of water, except for orbitals 45 and
46. Compared to the water case, orbital 45 is lowered by
0.0111 Ry while orbital 46 increases by 0.0098 Ry in the
dipole case. Moreover, the energy gap in the case of water
is very close to that obtained in the dipole potential.
Because unoccupied orbitals make no contribution to the
charge density, it safe to conclude that the potential of
dipoles gives a good simulation of the effect of water on the
electronic structure of Arg+.

Although the equivalent potential of water was espe-
cially constructed for our calculation of the electronic
structure of the protein, it is transferable. We have been
using dipoles to construct the equivalent potentials of
water for the electronic structures of 20 amino acids. It is
possible to apply the obtained equivalent potentials to
SCCE calculations as well as any first-principles, all-
electron, ab initio calculation method that is used to
calculate the electronic structure of the protein in solution.
Amino acids lose their water molecules when they turn
into amino acid residues, and then combine into several
interlaced polypeptide chains, thereby forming a protein.
Each chain has only one N-terminal H3N

+, one C-terminal
COO−, and many lateral chains. For the electronic
structure of a protein with a known geometric structure
in solution, water solvent does not affect the molecular

Table 6 Some of the eigenvalues and Mulliken populations of an isolated Arg+

State Energy (Ry) Mulliken Population

C N O H

s p s p s p s p

49 −0.4178 −1.3125 −0.0126 0.7820 0.0546 −0.0006 0.0005 1.4756 0.0131

48 −0.5335 0.0063 0.4915 0.0008 0.3822 0.0006 0.0156 0.0968 0.0061

The above states are unoccupied

47 −0.5430 −0.0073 0.1494 −0.0627 0.0065 0.0008 0.8892 0.0232 0.0009

46 −0.5561 0.0409 −0.0081 0.0018 0.0017 0.0005 0.9707 −0.0076 0.0001

45 −0.6032 0.1940 0.0939 −0.0549 −0.0067 −0.0206 0.7913 0.0029 0.0002

44 −0.8227 0.0108 0.4833 −0.0023 0.0185 0.0150 0.4676 0.0052 0.0018

43 −0.8563 0.0127 0.2101 −0.0052 0.0109 0.2388 0.4997 0.0319 0.0012

42 −0.8960 0.0318 0.1385 −0.0492 0.7592 0.0005 0.0123 0.0969 0.0101

41 −0.9304 0.0096 0.3972 0.0089 0.0469 0.1358 0.2931 0.1027 0.0058

40 −0.9431 0.0587 0.1847 −0.0139 0.5961 0.0277 0.0676 0.0662 0.0129

Table 7 Three sets of eigenvalues of Arg+

State Eigenvalues (Ry)

No potential Potential of
water molecules

Potential
of dipoles

49 (unoccupied) −0.4178 −0.3481 −0.2912
48 (unoccupied) −0.5335 −0.4155 −0.4140
47 (EF) −0.5430 −0.5212 −0.5281
46 −0.5561 −0.5539 −0.5441
45 −0.6032 −0.5700 −0.5811
44 −0.8227 −0.7704 −0.7707
43 −0.8563 −0.7929 −0.7887
42 −0.8960 −0.8201 −0.8200
41 −0.9304 −0.8319 −0.8305
40 −0.9431 −0.8536 −0.8527
Eg = E48 − E47 0.0095 0.1057 0.1141
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orbitals of amino acid residues in the interior of the
protein due to screening effects. Thus, we only need to put
the dipoles (when using our dipole potentials) near the N-
terminus and C-terminus of a chain, and near the tips of
lateral chains of the amino acid residues that are on the
surface of the protein. A program will soon be developed
that yields both the charges and the locations of the
dipoles around an amino acid residue located on the
surface of a protein so long as the atomic coordinates of
the protein are provided. This should help us to calculate
the electronic structure of a protein in solution (to
determine its active sites and reactive sites) more reliably.

Conclusions

The equivalent potential of water for the electronic
structure of Arg+ in solution was successfully simulated
with dipoles by performing first-principles, all-electron, ab
initio calculations. Three steps were performed in the
simulation process. First, the geometric structure of the
Arg++9H2O system was optimized by free cluster calcu-
lation. Second, based on the optimized structure, the
electronic structure of Arg+ in the potential of water
molecules was obtained with the SCCE calculation.

Finally, using dipoles, the electronic structure of Arg+ in
the potential of water was simulated.

Comparing the electronic structure of Arg+ among the
three cases (no potential, in the potential of water, and in
the dipole potential), the main effects of water on the
electronic structure of Arg+ were a broadening of the
energy gap tenfold, and an increase in the eight eigenvalues
below the HOMO by about 0.0546 Ry on average. The
effect of water on the electronic structure of Arg+ can be
simulated well by dipoles: for the molecular orbitals under
the HOMO, the eigenvalues in the latter two cases are very
close to each other. Dipoles are simple and easy to use, and
thus are suitable for simulating the effect of water on the
electronic structure of Arg+. Employing the equivalent
potential represented by dipoles requires almost no addi-
tional computational effort, and adds no more CPU time.

The work required to construct equivalent potentials for
other amino acids will soon be finished. They will then be
directly applied to calculations of the electronic structures
of proteins in solution.
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Fig. 6 Ten eigenvalues (47 is the eigenvalue of the HOMO orbital) of Arg+ in three cases: the isolated state (a), in the potential of water (b), and
in the potential of dipoles (c)
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Abstract Vectorial proton transfer among carbonyl oxygen
atoms was studied in two models of tripeptide via quantum
chemical calculations using the hybrid B3LYP functional
and the 6-31++G** basis set. Two principal proton transfer
pathways were found: a first path involving isomerization
of the proton around the double bond of the carbonyl
group, and a second based on the large conformational
flexibility of the tripeptide model where all carbonyl
oxygen atoms cooperate. The latter pathway has a rate-
determining step energy barrier that is only around half of
that for the first pathway. As conformational flexibility
plays a crucial role in second pathway, the effect of
attaching methyl groups to the alpha carbon atoms was
studied. The results obtained are presented for all four
possible stereochemical configurations.

Keywords Conformational rearrangement . Density
functional theory . Protonated peptides . Proton transfer

Introduction

Recently, interactions of peptides or proteins with protons
have been very extensively studied both experimentally and
theoretically [1–13]. There is no doubt that such interac-
tions occurring in a water environment play crucial roles in
all biological systems, such as in the catalysis involved in
many enzymatic reactions [14, 15], especially amide bond
hydrolysis [1], as well as bioenergetic proton transport [16,
17]. From a structural point of view, the formation of
hydrogen-bonded bridges between water and protonated
peptides can change molecular geometries and conforma-
tional equilibriums, resulting in different biological activi-
ties. When a longer peptide chain is available, the proton
can interact with more groups, and proton transfer may
occur among them.

Oligopeptides and proteins contain several positions to
which the proton can attach. These are most notably the
terminal amino group, carbonyl oxygen atoms, amide
nitrogen atoms of the peptide backbone, and basic side
chains (lysine, arginine, histidine). The best position on the
peptide backbone to attach the proton is the terminal amino
group, because it has the highest basicity. However,
peptides contain other groups that are less basic. These
are mainly oxygen and nitrogen atoms of peptide bonds.
Proton interactions with such atoms are not particularly
strong but they may play an important role under certain
circumstances. The hydrolysis of a peptide bond in an acid
solution is a good example. In the gas phase, the
importance of this type of interaction is increasing, as it is
expected to play a key role in peptide fragmentation
processes when peptides are analyzed by mass spectrometry
[18, 19]. Such methods are becoming more and more
important with the development of soft ionization methods
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such as a fast atom bombardment (FAB) [20], matrix-
assisted laser desorption/ionization (MALDI) [21], and
electrospray ionization (ESI) [22].

Because oxygen and nitrogen atoms are regularly
distributed along the peptide chain, they can support
vectorial proton transfer along it. This idea has been the
subject of several computational studies [2–5]. These
studies concluded that proton transfer between oxygen and
nitrogen atoms within a single amide group is accompa-
nied by a high energy barrier [2] of about 39.1 kcal mol−1.
The speed of this process can be increased in the presence
of some protic compounds. However, in this case, the
mechanism changes from direct proton transfer to transfer
accompanied by proton exchange, and the energy barriers
are still higher than those in processes involving only
carbonyl oxygen atoms as interaction positions. The
proton can interact with these by two ways. In both of
them, the proton lies in the plane of the amide bond and is
attached to the oxygen from either the Cα or the nitrogen
side (e.g., two such structures are E/Z isomers). Two
principal proton transfer steps have been recognized [5,
23]. In the first, the proton jumps between adjacent
carbonyl oxygen atoms; this transfer has almost no barrier.
The second step is proton rotation (isomerization) around
the double bond of a single carbonyl group. The energy
barriers of the latter process were found to be within the
range of 16–23 kcal mol−1. This proton isomerization is
strongly influenced by the presence of a single water
molecule [24]. In this case, the rate-determining step,
which is still isomerization, has almost half the energy
barrier (8 kcal mol−1) of the previous pathway. It was
recently found that the isomerization step can be bypassed
if there is stronger cooperation between three carbonyl
oxygen atoms in longer oligopeptides [23]. In the work
presented here, we will focus on this possibility in more
detail. Because this cooperation between oxygen atoms
requires higher flexibility of the peptide chain, we will
also examine how side chains influence the proton transfer
mechanism.

In theory, a particularly long peptide chain should be
used as a model to appropriately describe the proton
transfer (Fig. 1). However, the flexibility of such a chain
would lead to a very complicated potential energy surface
and, of course, highly involved calculations. Therefore, we
decided to use N-acetylglycyl-N1-methylglycinamide
(AGA) as the reference model for the peptide and all

possible stereoisomers of N-acetylalanyl-N1-methylalanyla-
mide (ALA) (Fig. 2). We assume that the chemical and
structural properties of the middle amide group and the
internal parts of the terminal amide groups are very similar
to the properties of the peptide groups in the corresponding
polypeptide. Therefore, we assume that our results are
transferable to longer peptides.

The results we have obtained show two different proton
pathways along the peptide chain. The basic ideas of these
two mechanisms were reported in a short communication
[23]. In this paper, we will discuss them in more detail and,
in particular, we will show how different configurations of
Cα can influence them. As we were interested in the fastest
proton transfer pathway, all possible stereoisomers were
considered, not only the natural one (which is the (S,S)-
configuration).

Computational details

All stationary points on the potential energy surface (PES)
presented here were localized at the density functional
theory (DFT) level using the hybrid B3LYP functional
(with Becke’s three-parameter exchange functional [25] and
the correlation functional [26, 27] from Lee, Yang, and
Par). The 6 31++G** basis set [28–30] with polarization
and diffuse functions on both heavy and hydrogen atoms
was used with this method. DFT calculations were
performed with the Gaussian 98 (G98) molecular modeling
package [31]. Minima and first-order transition states were
found using the standard optimization technique imple-
mented in G98. The optimization of the first-order
transition states was initiated by explicitly calculating the
Hessian at the HF/6-31++G** level of theory. The nature of
each stationary point was determined by vibrational
analysis using the same method and basis set. All of the
minima presented in this study have all-real vibrational
frequencies, and the first-order transition states have only
one imaginary vibrational frequency (the values of the
imaginary frequencies of the transition structures are
summarized in Table S1 in the “Electronic supplementary
information,” ESM).

Thermodynamic functions such as the enthalpy and
Gibbs energy were calculated for 298.15 K and 101325 Pa.
Zero point vibrational energies that were used in the
calculations were not scaled. Although the studied system

Fig. 1 Proton transfer in a
peptide chain
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contains methyl groups, the calculated thermochemical
energies were not corrected to these possible low energy
barrier internal rotors [32], as we do not expect them to
make a key contribution to the final results. The relative
energies are differences between the energies of individual
structures and a reference structure that has all energy
quantities equal to zero.

Structures of the reference model AGA that were used for
final calculations were found with the B3LYP functional using
a smaller basis set: starting from 6-31G* to 6-31+G**.
Employing a smaller basis set enabled the use of thinner
integration grids for integral evaluation. This led to a
significant increase in the speed of potential energy scan
calculations, as described below. Trial structures for this level
of calculation were found in all cases by proton coordinate
driving. The driving was performed by a relaxed potential
energy surface scan, as implemented in G98. This technique is
based on incremental changes in the proton’s internal
coordinate along with the optimization of the remaining
degrees of freedom. The distance between the proton and the
oxygen atom, or the dihedral angle—which defines position
around a carbonyl double bond—were usually chosen as the
driven internal coordinate, with the step size ranging from 0.1
to 0.15Å for distance and from 10 to 15° for dihedral angle.
The structure with maximum energy was then considered to
be the trial transition state and submitted to the full transition-
state optimization, as described above. The structures with the
minimum energy were considered to be trial minima and were
fully optimized.

Structures of the model ALA that were used for final
calculations were constructed from structures of the
reference AGA model. Two hydrogen atoms on two Cα

atoms were replaced with methyl groups. At first, only the
methyl groups were optimized when creating structures, but
then the relaxation of the whole structure was performed at
the finest level of theory described above.

From here on, S1 and S2 are the initial and final
structures, respectively. Ix and Tx refer to the intermediate
and transition-state structures, respectively, where x is an
integer that distinguishes between the different structures.
Common numbering is used for all mechanisms. Therefore,
it is easy to identify the same intermediates on the various
pathways found.

Results and discussion

In our previous study, we reported two possible mech-
anisms of proton transfer in the AGA peptide model. In
the first one, the rate-determining step is proton isomer-
ization around a carbonyl C=O double bond. This
mechanism will henceforth be denoted as mechanism A.
The second mechanism avoids the isomerization step and
will henceforth be denoted mechanism B. Based the
stationary points found on the potential energy surface,
we will show the nature of each mechanism. We will
also discuss how they are influenced by the presence of
methyl groups attached to the Cα atoms of the peptide
backbone (the ALA model).

Boundary structures

Intramolecular proton transfer between the two structures
S1 and S2 has been studied for the AGA and ALA models.
These structures are shown in Fig. 3 for the (S,S)-ALA
model. In the initial state S1, the proton is bound to the first
carbonyl oxygen atom by a regular covalent bond with an
average bond length of 1.092Å (calculated from all of the
models studied here). For comparison, the O–H bond
length in water and methanol molecules calculated to the
same level of theory is 0.965Å. This increase in bond
length by about 0.13Å is due to proton stabilization by the
second carbonyl oxygen. The associated interaction can be

Fig. 2 Reference models for calculations

Fig. 3 Initial (S1) and final (S2)
structures for proton transfer in
the (S,S)-ALA model
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considered to be a very strong hydrogen bond because of
the very short distance between the interacting partners and
the good orientation with the second carbonyl oxygen lone
pair. On average, it is only about 1.349Å long, whereas a
regular hydrogen bond [33] is usually at least 2.2Å in
length. A similar interaction pattern was also observed for
the final structure S2, where the proton is bound to the
second carbonyl oxygen and stabilized by the third one.
Various energetic and geometric parameters describing the
structures S1 and S2 are summarized in Table 1. It is worth
noting that S1 and S2 are not the most stable structures;
there is probably a more energetically stable structure than
S1. In this structure, the oxygen atom O3 would interact
with the hydrogen atoms of the second amide. A similar
situation applies to S2. In this case, the O1 oxygen would
interact with the second amide’s hydrogen atom. These
other (probably more stable) structures were not considered
in our study because the oxygen atoms are not pre-
organized in an orientation that is suitable for vectorial
proton transfer.

Before we proceed any further with our description of
the proton transfer pathways, let us first discuss the
thermodynamics of the whole process. In a long peptide
chain, the initial and final states should have almost the
same energy, as the environment around the unit that binds
the proton in similar in both states. However, this is not the
case in the models that we are studying.

The calculated reaction free energies are not even close
to zero (Table 1); they vary from −3.81 to 1.87 kcal mol−1.
The main reason for this is the stabilizing effect of the
remaining carbonyl oxygen. In structure S1, this carbonyl
oxygen is located on the third carbonyl group. It interacts
with the carbon of the second carbonyl group, whose
oxygen only stabilizes the proton. The opposite situation
exists in structure S2. The first carbonyl oxygen interacts
with the carbon of the second carbonyl group, whose
oxygen is directly bound to the transferred proton. This
observed imperfection in our models could be improved by

using longer models with extended and more uniform
stabilization of the unit bearing the proton. However, the
structures presented in our work can serve as the basis for
such prospective studies.

Due to symmetry constraints, the reaction energies for
proton transfer in the (R,R)-ALA and (S,S)-ALA models
have to be the same. The same condition applies to the (R,
S)-ALA and (S,R)-ALA models. However, the calculated
reaction energies (Table 1) contradict this constraint, which
means that the initial and final structures for the (R,R)/(S,S)
pair and the (R,S)/(S,R) pair presented here are terminal
structures for different proton transfer pathways.

Mechanism A

In this section, proton transfer will be described in the S1→
S2 direction. At the beginning, the proton is situated
between the O1 (for numbering, see Fig. 2) and O2 oxygen
atoms (structure S1). The proton transfer starts with the
proton jumping between these two oxygen atoms (S1→
T1→I1). The situation in structure I1 is very similar to that
in S1, but here the proton is bonded to the second oxygen
and stabilized by the first oxygen. The difference in
geometry between S1 and S2 is small, and the energy
barrier for the proton jump is smaller than 0.2 kcal mol−1

(Table 2). We only found this step for the reference AGA
model and the (R,R) and (R,S) configurations of the ALA
model. For the (S,R) and (S,S) configurations, our attempts
to localize either I1 or T1 were not successful. Therefore, it
appears that the proton can occupy a broad space in this
region, which consists of either two shallow minima
separated by very small barrier or one very flat minimum.
Thus, minima S1 and I1 should be considered the initial
states of proton transfer, because the error associated with
the computational method used is far larger than the
barriers found. This is also reflected in the calculated free
energies, which show that the free energy minimum
actually corresponds to the transition structure T1.

Table 1 Comparison of the reaction electronic (ΔEr) and free (ΔGr) energies of proton transfer and selected geometrical parameters of the initial
(S1) and final (S2) proton transfer states

ΔEr ΔGr S1 S2

d1 d2 d3 d4 d5 d6

AGA 0.63 0.94 1.092 1.352 3.035 1.080 1.360 2.850

(R,R)-ALA 0.01 0.36 1.102 1.335 3.033 1.103 1.330 3.008

(R,S)-ALA −2.91 −3.81 1.089 1.359 2.870 1.086 1.355 3.030

(S,R)-ALA 1.72 1.87 1.092 1.345 3.055 1.135 1.282 2.789

(S,S)-ALA −1.11 −1.08 1.086 1.356 2.884 1.099 1.331 2.813

All energies are in kcal mol−1 ; distances are in Å.

d1 distance O
1 –H; d2 distance between O1 –H and O2 ; d3 distance between C(=O2 ) and O3 ; d4 distance O

2 –H; d5 distance between O2 –H and
O3 ; d6 distance between O1 and C(=O2 )
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The proton transfer proceeds with the rotation of the
proton around the second carbonyl double bond, yielding
structure S2 (I1→T2→S2). In transition state T2, the
proton is located almost perpendicular to the plane of the
corresponding amide group (Fig. 4). Thus, the proton is
transferred along one amide unit of the triamide chain in
two steps (S1→T1→I1 and I1→T2→S2). Proton transfer
via this mechanism in a similar system has already been
reported in the literature [5].

The rate-determining step of mechanism A is clearly the
second step, which includes proton isomerization, and has an
activation energy of 17–19 kcal mol−1 (Table 2). In the
transition state T2, the transferred proton is stabilized by two
hydrogen bonds, whereas it is stabilized by only one in the
initial structure I2. From this point of view, we would expect
the barrier to be lower than that for a simpler system without
such extra stabilization. However, the energy barrier to
proton isomerization in protonated formamide [24] is only
10.5 kcal mol−1 (calculated at the B3LYP/6-31+G** level).
The explanation for this conflicting observation is likely the
different stabilizations of the proton in both states. The
stabilizing hydrogen bond in the initial state I2 is very short
(about 1.3Å; see Table 1 for the similar structure S1). In the
transition state, hydrogen bonds are much longer (Table 3).
The shift towards the initial state is about 0.7Å or even 1.2Å
for the second hydrogen bond. The angle between the donor,

proton, and acceptor in these hydrogen bonds is also sharper
(about 120 and 100°, respectively).

The barrier height is also influenced by the presence of
methyl groups and their different stereoconfigurations. The
greatest increase in activation energy was observed for the
(R,R) configuration, which has a barrier that is about
0.95 kcal mol−1 higher than that for the AGA model. In
contrast, the greatest decrease in activation energy towards
the AGA model (about −0.84 kcal mol−1) was found for the
(S,S) configuration. In summary, increased energy barriers
were observed for the configurations (R,R) and (S,R),
whereas decreased energy barriers were observed for the
(R,S) and (S,S) configurations.

However, the pathways presented here represent only a
subset of all possible proton transfers that might occur in the
systems studied. Since the (R,R)/(S,S) configurations are
enantiomers, there must be two pathways—one for each
configuration—that have the same energy profile but
different pathway geometries; indeed, these pathway geom-
etries must be mirror images of each other. Thus, the
pathway found for (R,R) configuration might occur for the
(S,S) configuration with the same energy profile, but their
pathway geometries would be mirror images. This is why we
can conclude that the presence of methyl groups always
leads to a lower barrier to the isomerization step for any
stereoisomer than the barrier in the AGA model, even though

Table 2 Comparison of the relative electronic (ΔE) and free (ΔG) energies of mechanism A

ΔE ΔG

AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA

S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T1 0.20 0.07 0.13 a a −0.93 −1.29 −1.29
I1 0.19 −0.04 0.05 0.00 0.00 −0.38 −0.74 −0.49 0.00 0.00

T2 17.92 18.87 17.76 18.28 17.08 17.73 19.03 17.20 18.26 16.49

S2 0.63 0.01 −2.91 1.72 −1.11 0.94 0.36 −3.81 1.87 −1.08

All energies are in kcal mol−1

a Transition state was not found

Fig. 4 Proton transfer in the protonated (S,S)-ALA triamide (mechanism A). Black arrow indicates the transferred proton
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the pathways for the (S,R) and (R,R) stereoisomers shown in
Table 2 exhibit higher barriers.

Mechanism B

In the previous section, it was shown that the rate-determining
step of mechanism A is proton isomerization around the
carbonyl double bond. This indicates that every step in which
the proton must shift from the plane of amide group will be
disadvantaged. In the following section, an alternative scenario
for proton transfer is presented. The pathway found benefits
from cooperation among all of the oxygen atoms, which keeps
the transferred proton closer to the planes of the amide groups.

The proton transfer is initiated from structure S1 with the
rotation of the first amide group bearing the proton through
dihedral angle ϕ (Fig. 5, Table 4). As result of this step, the
proton is stabilized by the third oxygen atom instead of the
second (S1→T3→I2). In the next step, the proton jumps
from the first to the third oxygen (I2→T4→I3). The proton
transfer then proceeds with a similar reorganization to that in
the first step of this mechanism, but this time the change in
conformation is achieved with rotation through the dihedral
angle ψ2. During this step, the stabilization of the proton
with the first oxygen is replaced with its stabilization with
the second oxygen (I3→T5→I4). After this step, the proton
is situated on the opposite side of the second amide group. In
the last step, the proton jumps between the third and second
oxygen atoms (I4→T6→S2).

The second conformational change (I3→T5→I4) is the
rate-determining step of mechanism B. It has a barrier of 8–
10 kcal mol−1, which nearly 50% lower than that for
mechanism A (17–19 kcal mol−1). A similar barrier was
found for the first conformational change (S1→T3→I2),
which is in the range 6–8 kcal mol−1. During these two
conformational changes, the proton stays very close to the
amide plane; the out-of-plane deviation does not exceed 20°
(Table 5). Thus, it is likely that the observed barrier is due to
weaker stabilization of the proton with the adjacent oxygen
in the transition states T5 and T3 than in the corresponding
minima. Indeed, the average elongations of this stabilizing
hydrogen bond are 0.51 and 0.45Å for the steps I3→T5 and

S1→T3, respectively, which correlate with the observed
energy barriers.

Exceptional deviation of the proton from the amide plane
was only observed for the transition state T4 (Table 5). The
average deviation is about 34°, which is half of the deviation
required by mechanism A (90°). The barrier to this proton
jump step is in the range 0.4–3.0 kcal mol−1, depending on
the direction. This is significantly lower than that for the
isomerization step from mechanism A (17–19 kcal mol−1)
and those for the previously discussed conformational
changes I3→T5→I4 and S1→T3→I2. On the other hand,
this barrier is higher than the barriers to proton jumps
between adjacent oxygen atoms such as those that occur in
mechanism A (S1→T1→I1) and mechanism B (I4→T6→
S2). The final structure of the step including the transition
state T4 is the intermediate I3, which is the most stable
structure along the proton transfer pathway. However, if the
free energy is taken into account, the structure corresponding
to the global minimum along the proton path shifts to T4.
The proton pathway then consists of the two main steps I3→
T5→T4 and T4→T5→S2. However, it is important to note
that such a conclusion is dependent on the reliability of the
method used for the free-energy calculation. This may not be
precise enough to provide very accurate results. According to
a deeper analysis, the most significant differences between
the electronic and free energies are due to zero point energy
(ZPE) corrections. In minima I2 and I3, the vibrations of the
proton–oxygen bond and the corresponding stabilizing
hydrogen bond (e.g., d1 and d2 in Table 6) are included in
the ZPE, whereas these vibrations become part of the proton
jump in transition state T4 (corresponding to a single
imaginary vibration). Thus, they are excluded from the ZPE
for structure T4. This causes a dramatic drop in the ZPE of
T4 towards the minima I2 and I3. Since the harmonic
approximation is used in the evaluation of vibration modes,
this effect may be overestimated. A similar conclusion applies
to the proton jump S1→T1→I1 found in mechanism A.

As discussed before, the proton transfer is mostly
influenced by two conformational changes, so introducing
methyl substituents onto the Cα atoms in ALA model may
have a greater impact on the proton transfer than observed
in mechanism A. This hypothesis is actually confirmed by
the root-mean-square deviations of the rate-determining
barriers of all possible stereoisomers of ALA towards the
AGA model, which are 0.73 and 0.98 kcal mol−1 for
mechanisms A and B, respectively. Moreover, methyl
groups always increase the barrier in mechanism B.

Conclusions

We have presented a theoretical study of proton transfer
among carbonyl oxygen atoms in tripeptide models. Two

Table 3 Selected geometrical parameters of the transition structure
T2

AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA

d1 0.982 0.984 0.984 0.983 0.983

d2 2.126 2.063 2.038 2.073 2.052

d3 2.544 2.546 2.463 2.614 2.542

τ 88.4 89.3 85.3 87.0 82.8

d1 distance O2 –H; d2 distance between O2 –H and O1 ; d3 distance
between O2 –H and O3 ; τ dihedral angle C–C=O2 –H. All distances
are in Å. All angles are in degrees

876 J Mol Model (2012) 18:871–879



principal proton transfer pathways were found. The first
involves isomerization of the proton around the double

bond of the carbonyl group. This is the rate-determining
step, with a barrier ranging from 17 to 19 kcal mol−1.

Table 4 Comparison of the relative electronic (ΔE) and free (ΔG) energies for mechanism B

ΔE ΔG

AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA

S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T3 6.08 7.69 6.99 6.64 5.95 8.34 9.65 7.92 8.47 6.79

I2 −0.21 1.72 1.16 −0.32 −0.87 1.59 3.42 2.17 1.33 0.00

T4 0.19 1.98 1.28 −0.11 −0.71 −0.28 3.58 2.36 1.46 0.39

I3 −2.44 −3.23 −4.39 −2.46 −3.62 −0.01 −1.22 −2.31 0.39 −1.47
T5 5.88 6.06 5.19 6.53 5.63 8.46 8.79 6.69 9.59 7.38

I4 0.34 0.00 a a a −0.65 0.47 a a a

T6 0.39 0.09 b b b −0.69 −0.39 b b b

S2 0.63 0.01 −2.91 1.72 −1.11 0.94 0.36 −3.81 1.87 −1.08

All energies are in kcal mol−1

a Same as S2
b Does not exist

Fig. 5 Proton transfer in protonated (S,S)-ALA triamide (mechanism B). Black arrow indicates the transferred proton. (Structures I4 and T6 are
not shown because they were not found for the (S,S)-ALA model)
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This barrier is about 8 kcal mol−1 higher than that in
protonated formamide, which is likely due to more
efficient proton stabilization in the local minima than that
in the transition state. The barrier is also affected by the
presence of methyl groups attached to the Cα atoms. These
decrease the barrier by about 0.16 and 0.84 kcal mol−1 for
the enantiomeric couples (R,S)/(S,R) and (S,S)/(R,R),
respectively.

An alternative pathway to the mechanism including an
isomerization step was also found. This pathway eliminates
the isomerization step using a series of conformational
changes where all three oxygen atoms cooperate. The
barrier to the rate-determining step of this second mecha-

nism is in the range of only 8–10 kcal mol−1, which is
nearly half of the corresponding barrier in the previous
case. The rate-determining step and another step with a
similar barrier mostly depend on the flexibility of the
peptide chain. It was shown that introducing methyl
substituents into the ALA model, regardless of the stereo-
configuration, increases the barrier of the rate-determining
step. The increases are about 0.67 and 0.93 kcal mol−1 for
the enantiomeric pairs (R,S)/(S,R) and (S,S)/(R,R), respec-
tively. Thus, we can conclude that, even with the
introduction of methyl groups, the second mechanism is
still the most favorable, and that differences between the
stereoisomers are small.

Table 5 Deviation of the proton from the amide plane during mechanism B

ω δ

AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA

S1 160.6 158.9 159.0 163.1 163.2 19.4 21.1 21.0 16.9 16.8

T3 −157.7 −159.7 −159.2 −158.3 −158.4 22.4 20.3 20.9 21.7 21.6

I2 −164.8 −165.4 −163.5 −164.1 −163.1 15.2 14.7 16.5 16.0 16.9

T4 −134.8 −148.8 −150.7 −146.7 −150.4 45.2 31.2 29.3 33.3 29.6

I3 −11.8 −14.7 −15.6 −16.1 −17.1 11.8 14.7 15.6 16.1 17.1

T5 0.9 4.1 −1.1 5.0 0.3 0.9 4.1 1.1 5.0 0.3

I4 7.8 10.1 a a a 7.8 10.1 a a a

T6 158.3 157.5 b b b 21.7 22.5 b b b

S2 164.7 160.8 165.4 162.5 167.0 15.3 19.2 14.6 17.5 13.0

ω Dihedral angle C–C=Ox –H; δ deviation of the proton out of the amide group plane. All angles are in degrees
a Same as S2
b Does not exist

Table 6 Selected geometric parameters of the protonated models in mechanism B

d1 d2

AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA AGA (R,R)-ALA (R,S)-ALA (S,R)-ALA (S,S)-ALA

S1 1.092 1.102 1.089 1.092 1.086 1.352 1.335 1.359 1.345 1.356

T3 0.991 0.994 0.995 0.995 0.998 1.871 1.798 1.786 1.790 1.750

I2 1.035 1.038 1.040 1.035 1.036 1.501 1.483 1.475 1.494 1.488

T4 1.150 1.092 1.089 1.087 1.077 1.262 1.352 1.355 1.364 1.382

I3 1.523 1.522 1.529 1.513 1.522 1.026 1.026 1.024 1.026 1.024

T5 2.049 2.081 2.004 2.060 1.986 0.985 0.984 0.986 0.985 0.987

I4 1.340 1.346 a a a 1.100 1.096 a a a

T6 1.214 1.206 b b b 1.191 1.199 b b b

S2 1.080 1.103 1.086 1.130 1.099 1.360 1.330 1.355 1.282 1.331

d1 distance of the proton from the closest carbonyl oxygen; d2 length of the stabilizing hydrogen bond. All distances are in Å
a Same as S2
b Does not exist
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Abstract The structural properties, NMR and NQR param-
eters in the pristine and silicon carbide (SiC) doped boron
phosphide nanotubes (BPNTs) were calculated using DFT
methods (BLYP, B3LYP/6-31G*) in order to evaluate the
influence of SiC-doped on the (4,4) armchair BPNTs.
Nuclear magnetic resonance (NMR) parameters including
isotropic (CSI) and anisotropic (CSA) chemical shielding
parameters for the sites of various 13C, 29Si, 11B, and 31P
atoms and quadrupole coupling constant (CQ), and asym-
metry parameter (ηQ) at the sites of various

11B nuclei were
calculated in pristine and SiC- doped (4,4) armchair boron
phosphide nanotubes models. The calculations indicated
that doping of 11B and 31P atoms by C and Si atoms had a
more significant influence on the calculated NMR and
NQR parameters than did doping of the B and P atoms by
Si and C atoms. In comparison with the pristine model, the
SiC- doping in SiPCB model of the (4,4) armchair BPNTs
reduces the energy gaps of the nanotubes and increases
their electrical conductance. The NMR results showed that
the B and P atoms which are directly bonded to the C atoms
in the SiC-doped BPNTs have significant changes in the

NMR parameters with respect to the B and P atoms which
are directly bonded to the Si atoms in the SiC-doped
BPNTs. The NQR results showed that in BPNTs, the B
atoms at the edges of nanotubes play dominant roles in
determining the electronic behaviors of BPNTs. Also, the
NMR and NQR results detect that the Fig. 1b (SiPCB)
model is a more reactive material than the pristine and the
Fig. 1a (SiBCp) models of the (4,4) armchair BPNTs.

Keywords Boron phosphide nanotubes . NMR .NQR .

Silicon carbide

Introduction

Since the synthesis of carbon nanotubes (CNTs) by Ijima in
1991 [1], single-walled carbon nanotubes (SWCNTs) have
attracted great interest owing to their physical and chemical
properties [1–3] and applications as novel materials [4, 5].
The electronic properties of CNTs depend on their tubular
diameter and chirality. Many investigations have been
undertaken to investigate non-carbon based nanotubes,
which exhibit electronic properties independent of these
features. Among these, boron nitride nanotubes (BNNTs)
and boron phosphide nanotubes (BPNTs), which are made
from the group III and V elements neighboring C in the
Periodic Table, are an interesting subject of many studies
[6–10]. Boron phosphide nanotubes (BPNTs) are inorganic
proportion of carbon nanotubes (CNTs) and have good
physical properties for a broad variety of applications [11].
However, the properties of BNNTs have been studied more
often than those of BPNTs [12, 13], further study of the
electronic properties of BPNTs remains interesting.

Nuclear magnetic resonance (NMR) [13, 14] and nuclear
quadrupole resonance (NQR) [15] spectroscopy are the best
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techniques to study the electronic structure properties of
matters. There is the known similarity between the
properties of the electronic structures of BP and silicon
carbide (SiC) nanotubes [16]. Moreover, doping of BPNTs
by Si and C atoms may be able to yield changes in the
interactions between the nanotube and foreign atoms or
molecules. Therefore, the objective of the present work is to
study the properties of the electronic structure of SiC-doped
BPNTs by performing density functional theory (DFT)
calculations of the NMR and NQR parameters of represen-
tative (4,4) armchair BPNT models (Fig. 1). The electronic
structure properties, including bond lengths, bond angles,
tip diameters, dipole moments (μ), energies, band gaps,
NMR, and NQR parameters in both pristine and the SiC-
doped BPNT structures, are investigated by calculations of
the chemical shielding (CS) tensors including isotropic and
anisotropic chemical shielding parameters at the sites of
various 13C, 29Si, 11B, and 31P atoms and NQR calculations
in sites of 11B atom.

Computational methods

In the present work, the electronic structure properties of
BPNTs were studied by using representative models of
(4,4) armchair BPNTs in which the ends of nanotubes were
saturated by hydrogen atoms. Each of the representative
models has three forms (Fig. 1), namely the pristine model
(Fig. 1c) and models where B and P atoms are doped by Si
and C atoms, respectively (SiBCP,, Fig. 1a), or B and P
atoms are doped by C and Si atoms, respectively (SiPCB,
Fig. 1b). We investigated the influence of the SiC-doping
on the properties of the (4,4) armchair single-walled BPNT.
The hydrogenated models of (4,4) armchair single-walled
BPNTs and the SiC-doped of BPNT have 72 atom with
formulas of B28P28H16 and SiCB27P27H16, respectively. In
the first step, the structures were allowed to relax by all
atomic geometrical parameters in the optimization at the
DFT levels of B3LYP and BLYP exchange-functional and
6-31G* standard basis set. Then, the CS tensors were
calculated in the optimized structures by using B3LYP and
BLYP/6-31G* for the sites of various 13C, 29Si, 11B, and
31P atoms and NQR parameters of 11B. It is noted that, in
DFT methods, B3LYP is more popular due to its more
reliable results in comparison with experiments [17, 18] and
in a previous study, it has been found that the NMR
parameters calculated by B3LYP and B3PW91 levels are in
good agreement [17]. Also, in DFT methods, the compu-
tations based on the BLYP functional could yield reliable
results for the properties of the electronic structure of
nanotubes [6]. Therefore, all of the calculations were
studied in both of B3LYP and BLYP levels. The calculated
CS tensors in the principal axis system (PAS) with the order

of σ33>σ22>σ11 [19] were converted into measurable NMR
parameters [isotropic chemical shielding CS (CSI) and
anisotropic chemical shielding CS (CSA) parameters] using
Eqs. 1 and 2 [20] and the NMR parameters of 13C, 29Si,
11B, and 31P atoms for the investigated models of the (4,4)
armchair single-walled BPNTs are summarized in Table 2.

CSI ppmð Þ ¼ 1=3 s11 þ s22 þ s33ð Þ ð1Þ

CSA ppmð Þ ¼ s33 � 1=2 s11 þ s22ð Þ ð2Þ
For NQR parameters, Computational calculations do not

directly detect experimentally measurable NQR parameters,
nuclear quadrupole coupling constant (CQ), and asymmetry
parameter (ηQ). Therefore, Eqs. 3 and 4 are used to
calculated EFG tensors to their proportional experimental
measurable parameters; CQ is the interaction energy of
nuclear electric quadrupole moment (eQ) with the electric
field gradient (EFG) tensors at the sites of quadrupole
nuclei but asymmetry parameter (ηQ) is a quantity of the
EFG tensors, deviation from tubular symmetry at the sites
of quadrupole nuclei. The nuclei that have I >1/2 (I=nuclear
spin angular momentum) are active in NQR spectroscopy.
The calculated EFG tensor eigenvalues in the principal axis
system (PAS) with the order of qzzj j > qyy

�� �� > qxxj j were
converted into measurable NQR parameters (nuclear quad-
rupole coupling constant (CQ), and asymmetry parameter
(ηQ)) using Eqs. 3 and 4. The standard Q values (Q (11B)=
40.59 mb) reported by Pyykkö [21] are used in Eq. 3. The
NQR parameters of 11B nuclei for the investigated models
of the (4,4) armchair single-walled BPNTs are summarized
in Table 3. All calculations were carried out by using the
Gaussian 03 suite of programs [22].

CQ MHzð Þ ¼ e2Q qzzh
�1 ð3Þ

hQ ¼ qxx � qyy

� �
=qzz

��� ��� 0 < hQ < 1 ð4Þ

Results and discussion

Structures of the (4,4) armchair BPNTs

The structural properties consisting of the B–P bond
lengths, bond angles, tip diameters, dipole moments (μ),
energies and band gaps for the investigated models of the
(4,4) armchair BPNTs are summarized in Table 1. There
are two forms of triple SiC-doped BPNTs for the (4,4)
armchair model, where the B and P atoms are doped by Si
and C atoms (Fig. 1a, SiBCP) or the B and P atoms are
doped by C and Si atoms ( Fig. 1b, SiPCB). There are B–P,
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Fig. 1 (a), (b) Two-dimensional (2D) views of triple SiBCP and SiPCB doped (4,4) armchair BPNTs, (c) 2D views of pristine (4,4) armchair
single-walled BPNTs
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Table 1 Structural properties of representative (4,4) armchair BPNT models with BLYP and B3LYP/6-31G* methods

Property SiBCP (Fig. 1a) SiPCB (Fig. 1b) Pristine (4,4) BPNT

Bond length (Å) BLYP B3LYP | BLYP-B3LYP| BLYP B3LYP | BLYP-B3LYP| BLYP B3LYP | BLYP-B3LYP|

B-H 1.198 1.191 0.007 1.197 1.191 0.006 1.197 1.190 0.007

P-H 1.425 1.413 0.012 1.425 1.414 0.011 1.425 1.412 0.013

B1-P12 1.884 1.874 0.010 1.892 1.885 0.007 1.892 1.881 0.011

B1-P2 1.910 1.900 0.010 1.876 1.866 0.010 1.887 1.879 0.008

B12-P22 1.886 1.876 0.010 1.888 1.876 0.012 1.887 1.879 0.008

B2-P1 1.906 1.896 0.010 1.915 1.905 0.010 1.911 1.889 0.022

B2-P2 1.928 1.915 0.013 1.900 1.888 0.012 1.901 1.891 0.010

B2-P3 1.907 1.896 0.011 1.912 1.904 0.008 1.908 1.897 0.011

B22-P12 1.937 1.927 0.010 1.887 1.876 0.011 1.911 1.889 0.022

B22-P22 1.948 1.936 0.012 1.883 1.869 0.014 1.901 1.891 0.010

B22-P32 – – – – – – 1.908 1.897 0.011

B3-P2 – – – – – – 1.911 1.901 0.010

B3-P4 – – – – – – 1.905 1.894 0.011

B3-P32 – – – – – – 1.895 1.882 0.013

B32-P22 1.910 1.899 0.011 1.912 1.903 0.009 1.911 1.901 0.010

B32-P42 1.926 1.915 0.011 1.906 1.896 0.010 1.905 1.894 0.011

B4-P3 1.956 1.945 0.011 1.887 1.865 0.022 1.902 1.892 0.010

B4-P4 – – – – – – 1.897 1.885 0.012

B42-P42 – – – – – – 1.897 1.885 0.012

B42-P32 – – – – – – 1.902 1.892 0.010

P2-Si1 2.217 2.199 0.018 – – – – – –

P42-Si2 2.225 2.206 0.019 – – – – – –

B22-C1 1.539 1.532 0.007 – – – – – –

B4-C2 1.516 1.508 0.008 – – – – – –

Si1-C1 1.801 1.784 0.017 1.810 1.793 0.017 – – –

Si1-C2 1.801 1.785 0.016 1.814 1.795 0.019 – – –

Si2-C1 1.811 1.794 0.017 1.815 1.794 0.021 – – –

P2-C1 – – – 1.821 1.809 0.012 – – –

P42-C2 – – – 1.832 1.825 0.007 – – –

B22-Si1 – – – 1.979 1.977 0.002 – – –

B4-Si2 – – – 1.964 1.961 0.003 – – –

Average B-P 1.918 1.907 0.011 1.896 1.885 0.011 1.902 1.890 0.012

Average Si-C 1.804 1.788 0.016 1.813 1.794 0.019 – – –

Bond angles (°)

P1-B2-P2 122.301 122.157 0.144 126.064 126.034 0.030 124.511 124.264 0.247

P2-B1-P12 121.149 121.188 0.039 124.866 125.230 0.364 123.069 123.356 0.287

P12-B22-P22 116.872 116.687 0.185 129.236 129.233 0.003 124.511 124.264 0.247

P3-B2-P2 120.925 120.875 0.050 120.389 120.349 0.040 121.134 121.261 0.127

P2-Si1-C1 121.206 121.314 0.108 – – – – – –

P2- C1-Si1 – – – 119.808 120.098 0.290 – – –

Si1-C1-B22 120.328 120.300 0.028 – – – – – –

C1-Si1-B22 – – – 119.191 118.748 0.443 – – –

B4- C2-Si1 120.167 119.980 0.187 – – – – – –

B4-Si2-C1 – – – 114.504 114.857 0.353 – – –

C2-Si1-C1 121.926 121.932 0.006 – – – – – –

Si1-C1-Si2 113.305 113.406 0.101 119.756 118.649 1.102 – – –

C1-Si2-C1 124.200 124.124 0.076 118.556 119.345 0.789 – – –
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B–C, Si–P, and Si-C bonds in the Fig. 1a (SiBCP) and
there are B–P, B–Si, C–P, and Si-C bonds in the Fig. 1b
(SiPCB). We have optimized investigated models of the
(4,4) armchair BPNTs employing the BLYP and B3LYP/
6-31G* computational levels. We have also compared the
BLYP results with the results of B3LYP study on the
BPNT models. The average B-P bond length in pristine
the (4,4) BPNT (Fig. 1c) were 1.902 and 1.890 Å in BLYP
and B3LYP levels, but this value was changed in the triple
SiC-doped BPNTs models in Fig. 1a and b, due to the
influence of the triple SiC-doped on the BPNTs. In the
models, the average B-P bond length for the Fig. 1a
(SiBCP) were 1.918 and 1.907 Å and for the Fig. 1b
(SiPCB) were 1.896 and 1.885 Å in BLYP and B3LYP
levels. In Fig. 1, the atoms of the BPNTs are numbered in
order to describe the relevant structural parameters. In
Table 1, bond lengths distances and bond angles and
properties of the electronic structure are listed for the
BPNTs. The calculated results showed that values of the
B-P bond lengths have slightly different in the investigated
models of the (4,4) armchair BPNTs. In the Fig. 1a, the value
of bond length of the P42-Si2 is the largest whereas that of
the B22-C2 one is the smallest among different types of the
bonds in the investigated models. The value of the Si–C
bond lengths are almost same in the investigated models
of the (4,4) armchair BPNTs. The bond angles showed
slightly difference in comparison to the pristine model,
The bond angle of P12-B22-P22 undergo changes from
124° for the pristine model to 116° and 129° for the
Fig. 1a (SiBCP) and the Fig. 1b (SiPCB) yielding some
structural deformations.

Furthermore, in the Fig. 1a (SiBCP) model, it should be
noted that B and P atoms slightly relax inwardly while in
the Fig. 1b (SiPCB) model, B and P atoms relax outwardly
of the nanotube surface yielding different diameters of
7.817 and 7.755 Å for the Fig. 1a (SiBCP) mouth and 7.974
and 7.916 Å for the Fig. 1b (SiPCB) mouth, whereas in the
pristine model, the diameters are 7.905 and 7.833 Å in
BLYP and B3LYP levels, respectively. It must be noted that
the significant changes of geometries are just for those

atoms placed in the nearest neighborhood of the triple SiC-
doped BPNTs and those of other atoms remained almost
unchanged. The calculated energies and the values are
almost the same for the two forms a and b of the SiC-doped
BPNTs. However, the band gaps showed differences
between the two forms (Fig. 1a and b). In comparison with
the pristine model, the band gap of the Fig. 1a is closer to
the pristine model, whereas Fig. 1b is significantly reduced
in the (4,4) armchair BPNTs and increases their electrical
conductance. These results showed that the doping of B and
P atoms by C and Si atoms (Fig. 1b, SiPCB) has more
influence on the band gap of the BPNTs than does doping
of the B and P atoms by Si and C atoms (Fig. 1a,SiBCP).
The values of dipole moments (μ) of the SiC-doped BPNTs
structures (Fig. 1a and b) detect notable changes with
respect to the pristine model. Also, the values of dipole
moments (μ), for Fig. 1a are more than Fig. 1b. It is
important to note that the point charges are balanced in the
pristine (4,4) armchair BPNTs but these conditions are
corrupted in the SiC-doped BPNTs structures. We have also
compared the BLYP results with the results of B3LYP on
the pristine and the SiC-doped models of BPNTs (see
Table 1). The calculated results showed that the changes of
the B-P bond lengths and tip diameters were almost
negligible, whereas there are slight changes in bond angles
and dipole moments (μ) in the two levels. The comparison
of the optimized energies showed that the calculated
energies values with B3LYP method are more than the
BLYP method. Also there are the most significant changes
between the B3LYP and BLYP levels in band gaps. The
values of band gap energies for (Fig. 1a, SiBCP) and
(Fig. 1b, SiPCB) in B3LYP were increased about 1.16 eV
and 1.02 eV with respect to BLYP level. Mirzaei
investigated the electronic structure properties of the (4,4)
armchair BPNT just in BLYP level [16]. Our calculations
results are very close to theirs. To our knowledge, B3LYP
study on the electronic structure properties of BPNT
surfaces has not been reported. Therefore, all of the
calculations were studied in both of B3LYP and BLYP
levels. An interesting conclusion that can be drawn from

Table 1 (continued)

Property SiBCP (Fig.1a) SiPCB (Fig.1b) Pristine (4,4) BPNT

Bond length (Å) BLYP B3LYP | BLYP-B3LYP| BLYP B3LYP | BLYP-B3LYP| BLYP B3LYP | BLYP-B3LYP|

Si1-C2-Si1 115.449 115.584 0.135 119.645 118.800 0.845 – – –

Diameter tip (Å) 7.817 7.755 0.062 7.974 7.916 0.058 7.905 7.833 0.072

μ (Debye) 1.341 1.465 0.124 0.542 0.611 0.069 0.000 0.000 0.000

Energy (keV) −276.118 −276.146 0.028 −276.116 −276.143 0.027 −279.272 −279.300 0.028

Band gaps (eV) 1.83 2.99 1.160 1.29 2.31 1.02 1.75 2.95 1.200
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these pathways is that the obtained calculated results of the
B3LYP in BPNTs have significantly different band gap
energies with respect to the BLYP level, unlike BNNTs, the
results of the BLYP are very similar to those of the B3LYP
[13, 23].

NMR parameters of the (4,4) armchair BPNTs

The NMR parameters for the investigated models of
the (4,4) armchair BPNTs are summarized in Table 2. In
the pristine model of the (4,4) armchair BPNTs, there are
28 B and 28 P atoms in the considered model and the
NMR parameters are separated into four layers (Table 2
and Fig. 1c). In the model, the values of NMR parameters
in each of the groups were the same, however, results of
the Table 2 shows that the calculated NMR parameters
are not similar for different groups which means that the
CS parameters for the atoms of each layer have
equivalent chemical environment and electrostatic prop-
erties. In the first layer, B1 to B14 have almost the
smallest values of the CSI parameters but the largest
values of the CSA parameters among the B atoms in the
pristine model of the (4,4) armchair BPNTs. In second
layer, B2 to B24, values of the CSI parameters of the
layer almost are equal to the first layer but values of the
CSA parameters of the layer are smaller than the first
layer. In third and fourth layers, B3 to B34 and B4 to
B44, values of the CSI parameters of the layers are larger
than two previous B groups but values of the CSA

parameters of the layers are decreased.
The P atom has a lone pair of electrons in the valance

shell, therefore there are differences between the properties
of the electronic structures of B and P atoms. In first layer,
P1 to P14 have largest values of the CSI parameters but the
smallest values of the CSA parameters among the P atoms
in the pristine model of the (4,4) armchair BPNTs, unlike
the NMR parameters of B atoms. In second layer, P2 to
P24, values of the CSI parameters of the layer are smaller
than the first layer but values of the CSA parameters of the
layer are significantly increased. In third and fourth layers,
P3 to P34 and P4 to P44, values of the CSI and CSA

parameters of the layers are smaller than two previous P
groups. The changes of the values of CSI and CSA

parameters for P atoms are important just from the first
group to the second one. In Fig. 1a (SiBCp), the B3 and B42
atoms are doped by Si atoms and P32 and P4 are doped by
C atoms, which results in B–C, Si–P, and Si–C bonds. The
calculated results in Table 2 show that among the B atoms
of Fig. 1a (SiBCp), B4 and B22 are directly bonded to C
atoms; hence, both CSI and CSA parameters show important
changes due to the SiC-doping. However CSI parameters for
B1, B2, and B32 atoms that indirectly bonded to C atoms
and for other B atoms show some changes due to the SiC-

doping, but changes of the CSA values of the B atoms are
almost negligible except for B2 that CSA value for the atom
show some changes due to the SiC-doping. Among the P
atoms of Fig. 1a (SiBCp) in comparison with the pristine
model, P2 and P42 are directly bonded to Si atoms, the
greatest changes in the NMR parameters are observed for
P2 and P42 atoms, and both the CSI and CSA parameters
show significant changes because of the contribution to
the chemical bonding with the Si atoms. Except for the
change in the CSI parameters for the P22 and P3 atoms,
the changes in the CSI and CSA parameters are not very
important for the other P atoms, which are indirectly
bonded to the SiC-doped (4,4) armchair BPNTs in Fig. 1a
(SiBCp).

In Fig. 1b (SiPCB), the P4 and P32 atoms are doped by
Si atoms and the B3 and B42 atoms are doped by C atoms
on the (4,4) armchair BPNTs, which yield B–Si, C–P, and
Si–C bonds. Among the B atoms, the most important
changes in both NMR parameters (CSI and CSA) are
observed for the B4 and B22 atoms, which are directly
bonded to Si atoms and the atoms show some changes due
to the SiC-doping. The CSI and CSA parameters of other B
atoms which are indirectly bonded to the SiC-doped (4,4)
armchair BPNTs in Fig. 1b (SiPCB) do not exhibit any
significant changes due to the SiC-doping. In Fig. 1b
(SiPCB), the P2 and P42 atoms are directly bonded to C
atoms; hence, both CSI and CSA parameters of the atoms
show significant changes due to the SiC-doping. However,
NMR parameters for P12, P22, and P3 atoms, which
indirectly bonded to Si and C atoms, exhibit some
significant changes due to the SiC-doping.

The values of the NMR parameters (CSI and CSA) of the
13C and 29Si atoms in the SiC-doped (4,4) armchair BPNTs
are summarized in Table 2. The results in Table 2 show that
the values of the CSI and CSA parameters of the 13C and
29Si atoms in Fig. 1b (SiPCB) are larger than those in
Fig. 1a (SiBCp) in the (4,4) armchair BPNTs except that the
CSI parameter of atom C1 and the CSA parameter of atom
Si1 in Fig. 1a (SiBCp) are larger than in Fig. 1b (SiPCB).
Comparison of the calculated NMR parameters in Fig. 1a
and b shows that the properties of the electronic structure of
the Fig. 1b (SiPCB) of the SiC-doped (4,4) armchair BPNT,
where the B atoms are doped by C atoms and the P atoms
are doped by Si atoms (SiPCB) are more influenced than
those of Fig. 1a (SiBCp), where the B atoms are doped by Si
atoms and the P atoms are doped by C atoms (SiBCP). This
trend is in agreement with the change in the band gap of
Fig. 1b (SiPCB) in comparison with the pristine model of
the (4,4) armchair. The band gaps of Fig. 1a (SiBCp) and the
pristine model are almost the same, but the band gaps of
Fig. 1b (SiPCB) are smaller than those of the pristine model
(Table 1). Also, the results of Table 2 show that there are
some significant differences in NMR parameters between
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the BLYP and B3LYP levels. An interesting conclusion that
can be drawn from these pathways is that the obtained
calculated results for B and P atoms which are directly
bonded to C atoms in the SiC-dopped BPNTs have
significant changes in the NMR parameters with respect
to B and P atoms which are directly bonded to Si atoms in
the SiC-doped BPNTs.

11B electric field gradient tensors of the (4,4) armchair
models

The NQR parameters at the sites of various 11B nuclei for
the optimized investigated models of the (4,4) armchair
BPNT are summarized in Table 3. There are 28 B atom in
the considered models of the (4,4) armchair and the NQR

Table 2 NMR parameters (ppm) of representative (4,4) armchair BPNT models in the sites of various 11B, 31P, 13C, and 29Si

nucleus SiBCP (Fig. 1a) SiPCB (Fig. 1b) Pristine (4,4) BPNT

BLYP B3LYP BLYP B3LYP BLYP B3LYP

CSI CSA CSI CSA CSI CSA CSI CSA CSI CSA CSI CSA

B1 33.6 128.2 33.8 138.0 40.9 128.2 41.5 132.3 36.5 128.1 36.3 136.1

B12 35.2 129.7 35.2 137.5 35.7 127.8 36.7 131.1 36.5 128.1 36.3 136.1

B13 36.0 129.1 35.8 137.3 38.3 129.6 37.1 136.4 36.5 128.1 36.3 136.1

B14 36.6 128.2 36.7 135.9 35.0 129.8 35.2 136.6 36.5 128.1 36.3 136.1

B2 30.0 118.6 30.0 130.0 36.1 111.1 36.1 121.0 35.5 111.5 35.6 121.5

B22 45.9 90.3 47.1 97.7 38.4 120.8 39.2 138.5 35.5 111.5 35.6 121.5

B23 35.9 113.8 35.5 123.7 35.5 112.6 34.3 121.2 35.5 111.5 35.6 121.5

B24 35.6 112.4 35.6 122.2 36.8 112.3 36.2 121.3 35.5 111.5 35.6 121.5

B3 – – – – – – – – 39.7 98.1 39.6 109.3

B32 31.2 100.4 31.8 112.7 36.7 100.3 37.8 101.6 39.7 98.1 39.6 109.3

B33 40.0 97.6 40.0 108.2 40.3 105.1 40.5 110.0 39.7 98.1 39.6 109.3

B34 37.0 97.8 37.2 108.5 40.2 105.2 40.5 110.6 39.7 98.1 39.6 109.3

B4 54.7 67.9 56.5 76.5 46.5 122.9 47.7 123.1 43.6 100.6 43.8 111.4

B42 – – – – – – – – 43.6 100.6 43.8 111.4

B43 42.7 94.7 42.6 106.0 42.5 108.6 42.3 112.2 43.6 100.6 43.8 111.4

B44 43.8 101.5 43.9 112.6 44.9 106.0 45.3 110.7 43.6 100.6 43.8 111.4

P1 383.0 156.4 410.7 146.7 387.0 146.4 411.4 138.4 387.2 150.0 414.8 141.7

P12 389.0 159.4 416.4 154.6 384.5 155.6 407.0 164.6 387.2 150.0 414.8 141.7

P13 385.3 158.8 413.6 148.8 389.1 150.0 415.3 143.0 387.2 150.0 414.8 141.7

P14 389.1 146.4 416.3 138.4 390.9 146.5 416.0 138.4 387.2 150.0 414.8 141.7

P2 398.3 215.1 436.4 204.3 320.8 140.6 339.7 142.3 329.6 260.0 362.5 247.1

P22 338.1 262.8 369.7 246.4 310.0 280.2 328.8 286.2 329.6 260.0 362.5 247.1

P23 333.5 256.6 364.5 244.3 345.3 248.2 360.3 242.6 329.6 260.0 362.5 247.1

P24 327.1 262.3 358.6 248.1 346.8 250.8 362.5 245.1 329.6 260.0 362.5 247.1

P3 334.8 249.6 366.3 239.8 320.8 363.8 339.2 367.5 324.4 256.3 355.4 243.1

P32 – – – – – – – – 324.4 256.3 355.4 243.1

P33 319.7 258.4 351.7 246.4 335.8 245.1 354.6 230.4 324.4 256.3 355.4 243.1

P34 322.8 260.7 354.9 245.3 332.8 255.1 352.7 246.3 324.4 256.3 355.4 243.1

P4 – – – – – – – – 325.7 257.1 358.9 245.0

P42 400.8 174.1 436.8 166.0 324.2 191.2 342.6 202.9 325.7 257.1 358.9 245.0

P43 328.1 252.9 360.2 241.3 325.2 235.4 356.2 245.9 325.7 257.1 358.9 245.0

P44 326.0 249.5 359.6 238.1 327.8 246.8 357.9 253.3 325.7 257.1 358.9 245.0

Si1 226.1 224.0 231.8 217.7 290.4 169.6 296.5 171.2 – – – –

Si2 248.0 133.4 249.4 140.5 285.4 170.7 290.7 169.6 – – – –

C1 77.9 134.6 88.7 140.5 75.2 168.6 72.1 163.9 – – – –

C2 72.8 119.4 84.7 124.4 80.5 162.0 91.3 160.9 – – – –
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parameters are separated into four layers based on the
likenesses of the calculated EFG tensors in each layer. The
results of Table 3 show that the calculated NQR parameters
are not similar for various nuclei, therefore, the electrostatic
environment of BPNT is not equivalent in length in both
the nanotube models. In Fig. 1, B12 atom shows the
position of the first layer, B2 shows the position t of the
second layer, B32 shows that of the third layer, and B4
shows the position t of the fourth layer in the considered
armchair models. The B12 -layer is placed at the end of the
tubes and includes both B and P atoms. In the (4,4)
armchair models, values of CQ(

11 B12) is the largest among
other 11 B nuclei (see Table 3) that shows more orientation
of EFG tensor eigenvalues along the z-axis of electronic
distribution at the sites of 11B12 nuclei and electrostatic
environment of B12 is stronger rather than the other layers
in the length of the tube. Other searches showed that the
nanotubes grow from their ends; therefore the properties of
the end nuclei in nanotubes are important in their growth
and synthesis [6, 24]. Therefore in the BPNTs the B atoms
placed at the edge of the (4,4) armchair nanotubes play
important roles in determining the electronic behavior of
the (4,4) armchair BPNTs, because the geometrical
properties of this layer are different from the other layers.
The B2-layer and B32-layer are placed at the second and
third layers in the considered models of the (4,4) armchair
BPNTs. The values of CQ (11B) significantly reduced (see
Table 3) in the models. In the first layer of atoms in the
nanotubes, the B-P bond distances are almost 1.88 Å, but in
the second and third layers the B-P bond distances are
larger than the first layer. Therefore, the significant different
between NQR parameters in the first layer and the other
layers due to the change of the geometrical parameters. The
B4-layer is placed at the fourth layer in the considered
models of the (4,4) armchair BPNTs and the values of CQ

(11B) significantly increased in the models. Comparison of
the calculated CQ (11B) and ηQ parameters in the considered
models of the (4,4) armchair BPNTs shows that the values
of CQ (11B) and ηQ of the first layer are almost the same
and have similar effects for the two SiC doping processes.

Also, in the second and third layers, B2 and B32 atoms, the
electronic sites of the B atoms of the layers (CQ (11B)), for both
of SiC-doped models shows similar effects, but ηQ of the
SiPCB-doped model shows stronger effects than for the SiBCp-
doped model. In the fourth layer, B4, the values of CQ (11B)
and ηQ of the B atoms of the SiPCB -doped model shows
greater changes than for the SiBCp model. Therefore, the
electronic sites of the B atoms in the SiPCB-doped model of
the (4,4) armchair BPNT shows more changes than for the
SiBCp-doped model. In agreement with the results of the
structural properties of the SiPCB-doped model. We have also
compared the BLYP results with the results of B3LYP, the
results of Table 3 show that there are some significantly
different in NQR parameters between the levels, values of
NQR parameters of B3LYP level are greater than BLYP level.

Conclusions

We studied the electronic structure properties including bond
lengths, bond angles, tip diameters, dipole moments (μ),
energies, band gaps, the NMR and NQR parameters of the
pristine and the silicon–carbide (SiC) doped boron phosphide
nanotubes (BPNTs) by mean of DFTcalculations. On the basis
of our calculations, the values of the B-P bond lengths and bond
angles were changed in the triple SiC-doped models due to the
influence of the triple SiC-doped on the BPNTs with respect to
the pristine model. The values of the Si–C bond lengths are
almost the same in the SiC-dopped models. The values of
dipole moments (μ) of the SiC-doped BPNTs structures
(Fig. 1a and b) detect notable changes with respect to the
pristine model. Also, the values of dipole moments (μ), for
Fig. 1a are more than Fig. 1b. In comparison with the pristine
model, the band gap of Fig. 1a is closer to the pristine model,
whereas the band gap Fig. 1b is significantly reduced with
respect to pristine in the (4,4) armchair BPNTs and increases
its electrical conductance. This results showed that the doping
of the B and P atoms by C and Si atoms (Fig. 1b, SiPCB) had
more significant influence on the band gap of the BPNT than
did doping of the B and P atoms by Si and C atoms (Fig. 1a,

Table 3 NQR parameters of representative (4,4) armchair BPNT models in the sites of various 11B

nucleus SiBCP (Fig. 1a) SiPCB (Fig. 1b) Pristine (4,4) BPNT

BLYP B3LYP BLYP B3LYP BLYP B3LYP

CQ (MHz) ηQ CQ (MHz) ηQ CQ (MHz) ηQ CQ (MHz) ηQ CQ (MHz) ηQ CQ (MHz) ηQ

B12 3.56 0.38 3.71 0.38 3.55 0.36 3.67 0.37 3.56 0.36 3.71 0.37

B2 3.19 0.41 3.41 0.36 3.15 0.11 3.41 0.14 3.21 0.33 3.41 0.28

B32 2.87 0.12 3.13 0.08 2.84 0.24 3.08 0.22 3.07 0.14 3.29 0.11

B4 2.92 0.02 3.14 0.05 3.43 0.19 3.79 0.23 3.24 0.13 3.45 0.10
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SiBCP). Also there are the most significant changes between
the B3LYP and BLYP levels in band gaps. The NMR
parameters for the pristine model are separated into four layers
and the NMR values for the 11B and 31P atoms, which are
directly bonded to Si and C atoms in the SiC-doped models,
are significantly changed. Comparison of the calculated NMR
parameters in Fig. 1a and b shows that the properties of the
electronic structure of Fig. 1b (SiPCB) of the SiC-doped (4,4)
armchair BPNT are more influenced than those of Fig. 1a
(SiBCp). The values of NQR of the first layers belonging to
those B atoms placed at the edges of the BPNT nanotubes
were stronger rather than the other layers in the length of the
tube, shows the dominant role of B atoms in determining the
electronic behavior of BPNT. The electronic sites of the B
atoms in the SiPCB-doped model of the (4,4) armchair BPNT
shows more changes than for the SiBCp-doped model. Finally,
the NMR and NQR results detect that the Fig. 1b (SiPCB)
model is a more reactive material than the pristine and the
Fig. 1a (SiBCp) models of the (4,4) armchair BPNTs. Also,
values of NQR parameters of B3LYP level are greater than
BLYP level.
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Abstract Most proteins do not aggregate while in their
native functional states. However, they may be disturbed
from their native conformation by certain change in the
environment, and form unwanted oligomeric or polymeric
aggregates. Recent experimental data demonstrate that
soluble oligomers of amyloidogenic proteins are responsi-
ble for amyloidosis and its cytotoxicity. Human islet
amyloid polypeptide (IAPP or amylin) is a 37-residue
hormone found as fibrillar deposits in pancreatic extracts of
nearly all type II diabetics. In this study we performed in
silico mutation analysis to examine the stability of the
double layer five strand aggregates formed by heptapeptide
NNFGAIL segment from amyline peptide. This segment is
one of the shortest fragments that can form amyloid fibrils
similar to those formed by the full length peptide. The
mutants obtained by single glycine replacement were also
studied to investigate the specificity of the dry self-
complementary interface between the neighboring β-sheet
layers. The molecular dynamics simulations of the aggre-
gates run for 20 ns at 330 K, the degree of the aggregate
disassembly was investigated using several geometry
analysis tools: the root mean square deviations of the Cα

atoms, root mean square fluctuations per residue, twist
angles, interstrand distances, fraction of the secondary
structure elements, and number of H-bonds. The analysis

shows that most mutations make the aggregates unstable,
and their stabilities were dependent to a large extent on
the position of replaced residues. Our mutational simu-
lations are in agreement with the pervious experimental
observations. We also used free binding energy calcu-
lations to determine the role of different components:
nonpolar effects, electrostatics and entropy in binding.
Nonpolar effects remained consistently more favorable in
wild type and mutants reinforcing the importance of
hydrophobic effects in protein-protein binding. While
entropy systematically opposed binding in all cases, there
was no clear trend in the entropy difference between
wildtype and glycine mutants. Free energy decomposi-
tion shows residues situated at the interface were found
to make favorable contributions to the peptide-peptide
association. The study of the wild type and mutants in an
explicit solvent could provide valuable insight into the
future computer guided design efforts for the amyloid
aggregation inhibitor.

Keywords Aggregation . Amylin . Amyloid fibril .β sheet .

Binding free energy . Cross-β structure . Hydrogen bond .

MM-PBSA .Molecular dynamic simulation . NNFGAIL .

Oligomer . Secondary structure

Introduction

A number of human diseases known as amyloidoses are
associated with the presence of amyloid plaques in organs
and tissues [1]. The main constituents of these plaques are
fibrillar aggregates arising from the pathological self-
assembly of normally soluble proteins. The etiology of
amyloidoses is poorly understood, and the causative agents
in cellular toxicity have been associated with soluble
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oligomers fibrils [2]. The fibrillar products of aggregation
share common structural features: they are enriched in β-sheet
structure and possess a common cross-β sheet motif, in which
the β-strands lay perpendicular to the main axis of the fibril
[12–16]. In most cases, the atomic structure of the fibrils is not
known, however, recent studies employing solid-state NMR
have provided details on inter- and intra-molecular interac-
tions within several specific fibrils, and have shed light on
mechanisms of aggregation [3].

Amylin, also called islet amyloid polypeptide or IAPP, is
a peptide that is co-secreted with insulin by pancreatic β-
cells. Amylin is the major peptide or protein component of
the islet amyloid found in the pancreas of approximately
90% of type 2 (or non-insulin-dependent) diabetes patients
[4, 5]. The amylin sequence contains 37 residues:
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY.
Of these residues two underlined ones are positively
charged at neutral or higher pH, and 14 are hydropho-
bic. Thus, the peptide has hydrogen bonding capacity
throughout the backbone and at 23 side chains. Al-
though the sequence of IAPP is strongly conserved over
a number of animal species, IAPP-derived amyloid is
only formed by humans, cats, and few non-human
primates [6]. Rodents do not form pancreatic amyloid,
although rat IAPP sequence differs from its human analog
by only six amino acid residues. Considering that five of
these six amino acid residues are located between
residues 20 and 29, amyloidogenicity of amylin has been
attributed to these residues. It has been shown that the
synthetic decapeptide amylin (20–29) is able to form
fibrils with morphology that is similar to the fibrils
formed by the complete amylin sequence [7]. The
aggregation-prone region of the peptide (residues 20–29)
has been identified through comparison of amylin
variants from different species with variable amylodo-
genic propensity. Similar to the full length amylin, several
fragments from human amylin form amyloid fibrils in
vitro [8–12]. These fragments include residues 8–20, 14–
20, 20–29, 22–27, 23–27, and 30–37. Among these
peptides, only residues 20–29 had been suggested to be
the cause of amyloidogenic propensity of full length
human amylin.

Recently Wiltzius et al. [13] have published the structure
of the heptapeptide NNFGAIL (residues 22–27 of the
human islet amyloid polypeptide) from X-ray diffraction
data. The structure of the NNFGAIL segment aggregate is
not a typical steric zipper (i.e., pairs of tightly packed,
highly complementary β-sheets with interdigitated side-
chains [9]). It contains a pronounced bend in the backbone
facilitated by a Gly in the fourth position. This bend allows
the side chain of Asn in the second position to turn inward
and form hydrogen bond to the backbone carbonyl of the
Gly residue (Fig. 1). The structure also lacks the

interdigitized side chains of the steric zipper motif. This
peptide instead has a tight main chain–main chain interface
formed by Phe, Gly, and Ala residues from opposing
sheets. This interface has a significant shape complemen-
tarity and large interface area, as established in the Ref.
[13]. The main-chain carbonyl of the Phe is tilted within the
backbone and is hydrogen bonding with a neighboring
main-chain amide across this dry interface [13]. The Phe
side chain adopts a rotamer that favors this mainchain
packing. The short NNFGAIL fragment is a good model
system because it is one of the shortest fragments that can
form amyloid fibrils similar to those formed by the full
length peptide and the fibrils are also toxic to the pancreatic
cell line [11, 14].

While atomistic characterization of the fibril form of this
amyloid peptide has been emerging [13], the structures of
the early aggregation species, including monomer and small
oligomers, remain poorly understood. To date, atomic
information for the aggregation of the amylin peptide in
explicit water is still limited [15]. Investigating the
structural fluctuations of the amylin fragment NNFGAIL
and computational mutation studies will provide knowl-
edge of the relative important of different regions of
NNFGAIL in stabilizing this short segment oligomer. The
mutational studies may help in identifying the residues
that stabilize the NNFGAIL oligomer and can be used
for designing drugs to inhibit amylin aggregation targeted
at the less flexible portion. Understanding the dynamic
behavior of the amyloidogenic peptides is expected to
provide insights into the possible mechanism of amyloid
formation. Amyloidogenic sequences tend to lack Pro and
Gly, presumably as they are destabilizing in β structure
[16]. Conservation of glycine and proline residues at

Fig. 1 The structure of NNFGAIL (21–27): it lacks of any side-chain
interlocking making this peptide an exception among other steric-
zipper amyloid structures reported by Eisenberg group. Instead, the
association is between the main chain–main chain interface formed by
Phe, Gly, and Ala residues from opposing sheets. Polar residues are
colored in green, and hydrophobic ones are colored in gray
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structurally strategic positions appears to serve the purpose
of aggregation prevention [17]. Experiments with de novo
peptides and proteins as well as with mutated forms of
naturally occurring proteins, have elucidated features of
polypeptide sequence which inhibit aggregation and fibril
formation [17].

A number of inhibitors of aggregation of the amyloid-β
(Aβ) peptide have been examined for their potential
application to the treatment of Alzheimer's disease [18].
By contrast, only a limited number of investigations have
been made into the similar design of compounds to inhibit
aggregation of amylin [19]. Mutagenesis has also been
used to probe secondary structure and inter-sheet side-
chain packing. Single proline substitutions within the
20–29 fragment of amylin revealed that substitution of
residues 22, 24 and 26–28 destabilizes fibrils and alters
the kinetics of fibril formation [20]. Abedini et al. [21]
designed a variant of the amyloidogenic 8–37 region of
human amylin with proline substitutions at positions 17,
19 and 30. Compared to the wild-type, the mutant had
dramatically greater solubility. Clearly, more detailed
structural descriptions of the human amylin is very
important for the molecular understanding of the
oligomerization process and for the development of
innovative therapeutic and diagnostic approaches in type
2 diabetics.

Computational studies have complemented experi-
ments to provide insights into amyloid formation.
Molecular dynamic simulation has given considerable
insights into the mechanisms of formation of amyloid
fibrils [4]. The advantage of molecular simulation is that
most if not all relevant structural, kinetic, and thermo-
dynamic observables of a chemical system can be
calculated at one time, in the context of a molecular
model [5]. MD simulations have provided insights into
(a) the intrinsic propensities of peptide fragments to
associate in amyloid-like states; (b) the energetic factors
stabilizing these aggregates; (c) the possible structural
states of either oligomeric precursors or larger assemblies
[22–25]; (d) the molecular level mechanisms of interac-
tions of inhibitor with amyloid polypeptide [26–28]; (e)
amyloid aggregation pathway and kinetics of amyloid
association [29, 30]; (f) mechanism of membrane disrup-
tion effect of amyloid [31].

Some pervious molecular dynamic simulation studies
have focused on the fibrillogenic properties of short human
amylin peptides of seven to ten residues, aiming to identify
regions likely to be responsible for the amyloidogenic
properties of full length amylin [25, 32, 33]. Wu et al. [25]
performed a series of molecular dynamic studies on the
formation of ordered aggregates of hexapeptide NFGAIL.
They observed that the main growth mode was elongation
along the β-sheet hydrogen bonds through primarily a two-

stage process. They found that the peptides initially
attached to the surface of the ordered oligomer, by
hydrophobic forces, then moved quickly to the β-sheet
edges, and formed stable β-sheet hydrogen bonds. Addition
of peptides to the existing oligomer notably improves the
order of the peptide aggregate in which labile outer layer β-
sheets were stabilized, and provides good templates for
further elongation.

In the present study we performed MD simulations to
explore the stability of smallest aggregation segment of
amylin (NNFGAIL) in solution and examine its depen-
dence on the position of residue mutation using the tiny β-
breaker amino acid glycine. We also estimated the binding
free energy for dimerization of the β-sheet into a double
layer. In addition we investigated the most promising,
potential structural target for further drug design based on
the structure-stability information of the wild type and
mutants.

Computational details

System setup

The microcrystal structure and coordinate of the NNFGAIL
assembly with a pair of β-sheets of five strands (SH2-ST5
model) has been determined by Wiltzius et al. [13] and was
kindly provided by Dr. M. Sawaya. The model does not
have the typical cross-β spine and lacks any side-chain
interlocking. The structure instead shows association
between the main chains interface formed by Phe, Gly,
and Ala residues from neighboring sheets with parallel β-
strands (Fig. 1).

Molecular dynamics simulation

The molecular dynamic (MD) simulation was performed
using AMBER11 package [34] with an all atom
amber99SB force field and explicit TIP3P water models.
Each of the NNFGAIL segment of amylin models and the
corresponding mutants were solvated by explicit water
molecules in octahedral box that extends 10 Å from the
protein atoms (Table 1). Counterions were added to the box
by randomly replacing water molecules to neutralize the
system. Each system was energy minimized to remove bad
contact by using conjugate gradient method with the
peptide constrained and then to relax the atoms without
position constrains. The system was then subjected to 50 ps
of heating procedure while constraining the backbone
atoms of the protein to allow relaxation of water and ions,
followed by 500 ps equilibration run without any con-
straints. The production times were 20 ns for different
simulations for the NNFGAIL heptapeptide amylin models
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and the corresponding mutants. Constant pressure (1 atm)
and temperature (330 K) on the system was maintained by
isotropic Langevin barostat and a Langevin thermostat.
This somewhat elevated temperature was chosen to accel-
erate convergence to the equilibrium without destroying the
fibrils (according to experimental data, the fibrils fully
dissociate above ~373 K, but are stable below ~330 K) [35,
36]. Electrostatic interactions were calculated by using the
particle mesh Ewald (PME) method [37]. Most PME
parameters, including the cutoff distance of 12 Å, were
kept at the values default in AMBER11 package [38]. The
SHAKE algorithm [39] was used for bond constraints and
the time step was 2 fs for all simulations. Each system
was simulated for 20 ns and the trajectories were saved
at 4.0 ps intervals for further analysis. VMD (visual
molecular dynamics) [40] program was used for the
visualization of trajectories. Hydrogen bond occupancies
and structure RMSDs was calculated using PTRAJ
module available within AMBER. A hydrogen bond was
assigned if the distance between donor D and acceptor A
is ≤3.5 Å and the angle D-H …A≥120o [41]. The MM-
PBSA single trajectory approach implemented as script
(MMPBSA.py) in AMBER11 [34], was used to calculate
the binding energy for non-covalent association between
the β-sheets within the double layer. In this approach
an assumption is made that no significant conforma-
tional changes occur upon binding, i.e., structural
adaptation is negligible and the snapshots for all three
species can be obtained from the single trajectory of
the complex by separating it into two components. To
calculate binding free energies in MM-PBSA method,
the explicit water simulations were used to generate the
trajectory followed by the implicit Poisson-Boltzmann/
surface area method to calculate solvation energy terms.

The gas phase and the solvation free energies were
calculated over the course of the 20 ns of the MD
production trajectories. This approach was previously
used to study the thermodynamics of amyloidogenic
peptides by Wu et al. [25].

Mutant studies

The NNFGAIL heptapeptide amylin model was mutated
to produce the corresponding glycine, proline and
tyrosine mutants (see Fig. 1 and Table 1) to examine the
stability of the NNFGAIL aggregate, understand the
driving force for aggregation and find ways to prevent
the fibril formation. The wildtype 5-stranded double layer
aggregate was used as the starting structure to generate the
single point glycine mutants of NNFGAIL. The coordi-
nates of all starting structures of the mutants were built
from the wild-type NNFGAIL by substituting the side-
chains of the targeted residues [42] using Sirius visualiza-
tion program [43]. The wild types were mutated to
examine the effect of the side-chain interactions of the
amino acids involved in stabilizing the sheet to sheet and
strand-to-strand association of the different amyloid
peptide fragments. The structure of the designed mutant
was first minimized for 500 steps using the steepest decent
algorithm with the backbone of the protein restrained
before being subjected to the simulation. While most of
the in silico mutations were done with glycine, two of the
mutants (NNYGAIL, F3Y and NNFGAPL, I6P) were
derived from the wild type sequence by replacement of the
phenylalanine side with tyrosine side chain, and the
isoleucine with proline. The resulting structures were
minimized for 500 steps using the steepest decent
algorithm before the simulation.

Table 1 Summary of the NNFGAIL oligomeric models and simulation system

Model Systems Sheet/strand organization Simulation box size (Å) Simulation time (ns) T(K)

Wilde type, WT Two sheet, five strands (NNFGAIL) Parallel /Antiparallel 61.28×61.28×61.28 20 330

Single point mutants

N1G Two sheet, five strands (GNFGAIL) Parallel /Antiparallel 59.78×59.78×59.78 20 330

N2G Two sheet, five strands (NGFGAIL) Parallel /Antiparallel 61.11×61.11×61.11 20 330

F3G Two sheet, five strands (NNGGAIL) Parallel /Antiparallel 62.02×62.02×62.02 20 330

A5G Two sheet, five strands (NNFGGIL) Parallel /Antiparallel 61.43×61.43×61.43 20 330

I6G Two sheet, five strands (NNFGAGL) Parallel /Antiparallel 61.43×61.43×61.43 20 330

F3Y Two sheet, five strands (NNPGAIL) Parallel /Antiparallel 61.45×61.45×61.45 20 330

I6P Two sheet, five strands (NNFGAPL) Parallel /Antiparallel 61.54×61.54×61.54 20 330

L7G Two sheet, five strands (NNFGAIG) Parallel /Antiparallel 59.98×59.98×59.98 20 330

Double point mutants

N2GF3G Two sheet, five strands (NGGGAIL) Parallel /Antiparallel 62.67×62.67×62.67 20 330

F3GI6G Two sheet, five strands (NNGGAGL) Parallel /Antiparallel 61.42×61.42×61.42 20 330
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Results and discussion

Relative structure stability of amylin oligomers

The conformational change and the conservation of the
oligomers were monitored by the time evolution of the
backbone root mean square (RMSD) and root mean square
fluctuation (RMSF) through the simulation relative to their
initial energy minimized structure as shown in Fig. 2a and
b. The RMSDs provide useful information on relative
stability of the oligomers, and were previously used in
stability analyses of amyloid oligomers with β-sheet
structure [44–46].

RMSD

The conformation change and oligomers stability of the
NNFGAIL and its mutants was monitored by the time
evolution of the RMSD. The RMSD of the wildtype (WT)
and its mutants are shown in Fig. 2. The results indicate
that the mutants F3G and I6G have RMSD of about 5.0 Å,
more than double the value of the wildtype. This reflects

significant instability of the aggregates assembled from
these mutants. Two other mutants (N1G and N2G) have
RMSD value of about 4 Å that also corresponds to the
reduced stability of their aggregates. The other single point
mutants A5G, I6P and L7G have an RMSD of about 2.5 to
3.50 Å. These results indicate the important role of the
Asn2, Phen3 and Ile6 in stabilizing the oligomers. While
replacement of Phen3 with Gly has dramatic effect on
aggregate stability, its replacement with Tyr has virtually no
effect, and the F3Y mutant is as stable as the WT with
similar RMSD ~2 Å. These results reveal stabilizing role of
the π-π interaction between the aromatic side chains on the
aggregate stability, in agreement with previous experimen-
tal observations [47].

The result of double point glycine mutation shows the
RMSD for non-adjacent amino acid mutant F3GI6G is
significantly higher (RMSD ~12 Å) than for the mutant
N2GF3G with adjacent amino acid (RMSD ~6 Å). One can
rationalize this result as follows. When a replacement is done
on the non-adjacent amino acids at positions 3 and 6 this
disrupts the main chain-main chain interactions to a larger
degree, than does the replacement of the adjacent amino acids
at positions 2 and 3. Thus one can expect the effect on the
overall structural organization to be affected more by

Fig. 2 Time evolution of the backbone RMSD of the 5 β-strands
double-sheet wildtype amylin NNFGAIL sequence and its mutants

Fig. 3 Average RMSF values for 5 β-strands double-sheet wildtype
(NNFGAIL) and its mutants
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substitution of amino acids at non-adjacent positions. It is
clear from the RMSD results that the mutations are indeed
drastically reducing the aggregate stability in most cases,
except for the mutation of Phe with Tyr.

RMSF

The residue-based root mean square fluctuation (RMSF) of
the backbones was used to assess the local dynamics and
flexibility of each residue using PTRAJ tool in AMBER.
Figure 3 shows the RMSF values of atomic positions by
each residue, computed throughout the simulation for
wildtype and its mutants. Among the single point mutants
the RMSF values for F3G, N2G and N1G are much larger
and this followed by A5G, I6P and L7G. The wildtype
(WT) and mutated sequences (Phe → Tyr) have the
smallest RMSF values. In the case of double glycine
mutants N3GI6G with non-adjacent amino acid shows an
enhanced flexibility in both the terminal and central region
compared to the other double point mutant N2GF3G, with
adjacent amino acid mutants.

The RMSF results for the wildtype and the mutants
indicates that all chains have common characteristics of
small variation for the three central residues whereas
large variations for the two terminal residues, suggesting
that the central residues are more rigid than the residues
in the termini regions. This is in agreement with the
trend reported by Zheng et al. [48]. The lowest fluctua-
tions in all cases were observed by residue 3 suggesting a
low inter-chain mobility and a great compactness in this
portion. This is a promising target for further drug design
based on the structure stability information. One can
suggest new “amyloid inhibitors” capable of interacting
specifically with this portion of the aggregates. Single
point alanine (Phe23→Ala), and proline substitution
(Asn22→Pro), (Ile26→Pro), (Lys27→Pro) were found
to inhibit the aggregation of amylin [20, 49, 50]. Porat et
al. [47, 51] showed that no amyloid formation could be
observed under the experimental conditions when the
phenylalanine was replaced with alanine. On the other
hand modification of the phenylalanine to tryptophan (that

Fig. 4 Average numbers of hydrogen bonds for individual residues
from the simulations of the wild-type models of amylin (NNFGAIL)
and its mutants

Fig. 5 Time evolution of the total number of hydrogen bonds
between peptides (backbone and side chain) obtained from the wild
type and mutants. The wildtype preserved the number of hydrogen
bond while the mutants loss hydrogen bonds
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is less hydrophobic than phenylalanine) allows the
formation of amyloid-like structure. Our simulation is in
agreement with the above experimental observation in that
the single point glycine substitution of Asn22, Phe23,
Ile26 and Lys27 increase the structural disorder of the
mutant while (Phe23→Tyr) substitution retains the struc-
tural stability of the wild type. The result of the simulation
indicates that in silico mutation in combination with MD
simulation is useful in identifying the critical amino acid
that stabilize the amyloid peptide and may be useful in
designing peptidomimetics amyloid aggregation inhibitors
[52, 53].

Hydrogen bond analysis

The analysis of the number of hydrogen bonds of
individual residues, averaged from 20 ns simulations
for the wild type and mutants are shown in Fig. 4. One
can see that the average number of hydrogen bonds for the
central residues is larger than those for the two terminal
residues for all cases, consistent with the RMSF results.

The larger flexibility of these residues is due their
exposure to the water and formation hydrogen bonds with
the water molecules rather than peptides. The hydrogen
bonds between the two terminal residues and water
molecules are weak and easily break for both wild type
and mutant aggregates. Because glycine and proline
cannot make hydrogen bonds, total counts of hydrogen
bonds in all the mutants are smaller than the wild-type
(Fig. 4).

In general, the average number of hydrogen bond per
residue for the wild type and the F3Y mutant is the
largest. Mutants with a larger RMSD and RMSF have
smaller hydrogen bonds per residue (Fig. 4). The small-
est average hydrogen bond per residue for a single
mutant were found for N2G, I6G, and I6G, suggesting
that N2 and I6 are key residues for NNFGAIL
aggregation. The replacement of either N2 or I6 with
the beta breaker amino acid Gly or Pro resulted in a
significant reduction of hydrogen bond in the central
residues of the peptide making these mutants structurally
unstable. The Asn in the second position in the wildtype

Fig. 6 Time evolution of inter-strand distances of the wild-type and its mutant models of NNFGAIL (a–b) and sheet-to-sheet distances for the
wild-type of NNFGAIL and its mutants models (c–d) between central residues (3-4-5) Phe-Gly-Ala of the wildtype and its mutants
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turn inward and forms a hydrogen bond to the backbone
carbonyl of the Gly residue at position four. The
replacement of Asn2 with Gly significantly decreases
the hydrogen bonds in the central region making this
mutant the most unstable. This is also evident in the
RMSD, RMSF (see above), inter-sheet and inter-strand
distances (see below). The two main forces stabilizing
proteins are the hydrophobic effect and hydrogen
bonding [54]. The intra-sheet hydrogen bonds were
previously found to be necessary to stabilize the main
conformational pattern of amyloid fibrils, β-sheets [33].

To monitor the stability of the oligomers in this study,
we also analyzed the change in the number of the total
(backbone and side chain) peptide-peptide hydrogen
bonds. The hydrogen bonding was found to be stable
during the simulation for the wildtype and F3Y. The
mutants N2GF3G and F3GI6G are the least stable and
the hydrogen bonding interaction in their aggregates
disappear rapidly (Fig. 4). The result of the analysis of
the total hydrogen bond indicates that the wild type and
N1G, F3Y, A5G, L7G mutants preserved about 80% of
the original hydrogen bonding with respect to the
wildtype. The mutants I6G and I6P, F3G and N2G
preserved ~70%, 60% and 40% of the original hydrogen
bonding respectively (Fig. 5). In the case of the double
mutants, N2GF3G lost more than 60% of the original
hydrogen bonds while F3GI6G lost only about 30% of the
hydrogen bonding with respect to the minimized structure
of the wildtype (Fig. 5). The effect of mutation on the
preservation of the hydrogen bonding compared to the
wildtype is due to the fact that the mutation reduces the
side chain hydrogen bonds especially in N2G (Asn in the
second position to the backbone carbonyl of the Gly
residue at position four).

Inter-strand (dstrand) and inter-sheet (dsheet) distances

To examine the structural stability of the wildtype and
the corresponding mutant oligomers we also analyzed
the inter-strand and inter-sheet distances. The dstrand is
calculated by averaging the distance between each
residue in one strand and its corresponding residue in
adjacent strand in the same sheet, whereas dsheet is
calculated by averaging the mass center distance between
each strand center of mass in one sheet and its
corresponding strand in the adjacent sheet [48]. The
inter-sheet and inter-strand distances for wild type and
mutants are shown in Fig. 6.

The inter-sheet distance for both the wildtype and the
mutants N1G, A5G, F3Y, I6P and L7G were found to be
within the 5.5 to 6.0 Å which is very close to initial the
inter-sheet distance of ~5.0 Å for the central region
consisting the residues 3 to 5 in the double layer oligomer.

This suggests the structure remains stable during the 20 ns
simulation for the above mutant. The result of the inter-
sheet distance for the mutants was found to be large for the
mutants N2G, F3G, I6G and N2GF3G with a value of 6–
7.5 Å. In the case of the mutant F3GI6G the inter-sheet
distance were within the range of 5.5–11.0 Å indicating the
tendency of the sheets to come apart making these
particular mutants structurally unstable. The result suggests
the wild type and the F3Y form the most stable aggregates
(Fig. 6). The N2GF3G and F3GI6G have larger variation of
about 6.0 Å in its inter-strand distance (between 5.0 to
13.0 Å). The N2GF3G and F3GI6G are unstable and this
structural modification will disaggregate the mutant
oligomers. The inter-strand distances for remaining mutants
were found within the range of 5.0 to 7.5 Å.

Secondary structure contents

We analyzed the secondary structure of the oligomers using
the DSSP algorithm written by Kabsch and Sander [55].
This algorithm is based on identification of hydrogen-
bonding (H-bonding) patterns and recognizes seven types

Fig. 7 Time evolution of β-strand contents of the wildtype amylin
NNFGAIL sequence and mutants
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of secondary structures which can be grouped into three
classes: helix (α-helix, 310-helix, π-helix), β-strand (isolat-
ed β-bridge, extended β-sheet) and loop (turn, bend). The
secondary structure of the wildtype NNFGAIL segment of
amylin oligiomer and its mutants as calculated by the
Kabsch and Sander algorithm of AMBER during the 20 ns
simulations are shown in Fig. 7.

The result of the secondary structure analysis of the
wildtype oligomer and the F3Y mutant shows greatest
stability at 330 K for the 20 ns simulation, which is
confirmed by the conservation of the β-sheet content
throughout the whole simulation time (as shown in
Fig. 7). The glycine and proline mutants were found to
be unstable with lack of preserving the β-sheet content
during the simulation. The single point mutants (N2G,
F3G, I6G and I6P) and both double mutants were found
to preserve the β-sheet content to lesser extent indicating the
reduced stability of these mutants. The results of β sheet
content are in agreement with the RMSD and RMSF result in
that those structures with highest RMSD and RMSF fluctu-
ation were also found to be lacking the ability to preserve
secondary structure and conformational stability.

Sheet-to-sheet binding energy

To further quantify the driving force underlying the β-sheet
association of the studied wildtype amylin models and
mutants, we calculated the interaction energy between β-
sheets. The trajectories were first extracted from explicit MD
trajectories by excluding water molecules. The solvation
energies of double-layer sheets and each single-layered sheet
were calculated using the MM-PBSA (Molecular Mechanics-
Poisson-Boltzmann/Surface Area) module [56, 57] in the
AMBER package. The determination of the binding free

energy following the MM-PBSA approach has been de-
scribed in the past and has been shown to be a good method
for comparing binding energies between similar peptides
[58]. In the MM-PBSA calculation, the dielectric constant of
water is set to 80 and no distance cutoff is used. The binding
energy between two β-sheets was calculated by

< $Gbinding >¼ h$GCi � h$GAi � h$GBi ð1Þ
Where C, A and B stands for complex (the double-layer

sheet), sheet1 and sheet2. The free energy of each system X =
A, B, or C was computed as a sum of the three terms [57, 59]:

h$GXi ¼ hEMMi þ h$Gsolvi � ThSi ð2Þ

where EMM is the molecular mechanics energy of the
molecule expressed as the sum of the internal energy (bonds,
angles and dihedrals) (Eint), electrostatic energy (Eele) and
van der waals term (Evdw):

EMM ¼ Eint þ Eele þ Evdw ð3Þ

ΔGsolv accounts for the solvation energy which can be
divided into the polar and nonpolar part:

$Gsolv ¼ $GPB þ $GSA ð4Þ

The polar part ΔGPB accounts for the electrostatic contri-
bution to solvation and is obtained by solving the linear
Poisson-Boltzmann equation in a continuum model of the
solvent.

The second term ΔGSA is nonpolar contribution to
solvation free energy that is linearly dependent on the
solvent accessible surface area (SASA):

$GSA ¼ gSASAþ b ð5Þ

Table 2 Binding free energy components (kcal mol−1) and standard
deviations calculated with MM-PBSA for wild type and mutants of
the amylin (NNFGAIL) oligomer double-layers (SH2-ST5 models):
ΔEele, nonsolvent electrostatic potential energy; ΔGPB, electrostatic
contributions to the solvation free energy calculated with Poisson-

Boltzmann equation; GSA, nonpolar contributions to solvation free
energy; ΔEvdw, van der Waals potential energy; TΔS, the entropic
contribution calculated to the free energy of binding; ΔGbinding,
calculated binding free energy

Type <ΔEele> <ΔEvdw> <ΔGPB> <Δ GSA> <ΔGsubtotal> <TΔS> 〈ΔGbinding〉

WT −299.5±24.4 −81.9±5.6 305.8±26.4 −6.7±0.5 −82.3±5.3 −31.6±3.9 −50.7(−10.1)a

N1G −170.8±36.1 −82.1±7.4 190.2±33.6 −6.6±0.9 −69.4±6.0 −32.9±3.0 −36.5(−7.3)
N2G −179.5±27.7 −81.3±6.0 188.7±26.8 −7.1±0.5 −79.2±7.2 −30.3±5.3 −48.9(−9.8)
F3G −457.8±82.8 −70.5±7.9 466.2±86.8 −6.8±1.1 −68.8±9.3 −29.5±3.8 −39.3(−7.9)
A5G −287.7±28.9 −88.6±6.3 305.9±30.3 −7.5±0.6 −78.0±5.7 −36.6±4.2 −44.4(−8.9)
I6G −183.0±32.2 −74.2±7.5 197.5±32.9 −6.4±0.8 −66.2±7.9 −23.9±5.5 −42.3(−8.5)
F3Y −286.5±35.4 −82.9±7.5 300.1±36.2 −6.8±0.7 −76.3±6.5 −28.6±3.9 −47.7(−9.5)
I6P −208.2±46.2 −81.7±7.2 232.2±45.6 −6.9±0.9 −64.6±7.4 −34.2±3.9 −30.4(−6.1)
L7G −229.9±47.9 −71.4±6.5 244.2±47.6 −5.62±0.6 −62.7±7.3 −27.2±3.1 −35.5(−7.1)

a The averaged binding free energy per strand between two beta sheets is in brackets.
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The ΔGSA were calculated using AMBER11 default
parameter for γ and b (5). Finally, the entropic term in
Eq. 2 was calculated with the normal mode analysis [56].
Since this calculation is computationally expensive, -TΔS
was averaged over 100 frames of the MD trajectory (1
frame taken at an interval of 50 frames from the total of
5000 frames). We have used a single molecular dynamics
trajectory protocol, which can qualitatively estimate the free
energy consequences of many mutations [56, 60].

Detailed characterization of individual energy terms of
the calculated binding free energy are shown in Table 2. An
inspection of the free energy components for the wild types
and mutants investigated in this study reveals that the
electrostatic component of the solvation free energy ΔGPB

is destabilizing (positive), while the nonpolar component
GSA is stabilizing (negative). This is expected, since the
complex formation desolvates the monomers, and reduces
solvent-accessible surface area. Entropy component was
found to contribute unfavorably to binding, since complex-
ation reduces freedom of motion for the monomers. The
electrostatic interaction between sheets is stabilizing. These
observations are consistent with previous calculations of the
components of the free energy of solvation [57, 61].
However, the less favorable electrostatics in each case is
compensated by highly favorable nonpolar component of
the free energy. In each case, favorable nature of the
nonpolar interaction mostly originates from the van der
Waals interaction energy ΔGvdW, as opposed to the
nonpolar component of solvation ΔGSA. There did not
appear to be a clear trend for the entropy change upon
binding (TΔS).

The values of the total binding free energy in all cases are
negative. They are reported in the Table 2. These results
indicate that the structurally stable models have the lowest
binding free energy, while the models which are structurally
unstable were found to have higher binding free energy.
Despite the fact that N2G mutation does not lower the
binding free energy significantly compared to the WT
(1.8 kcal mol−1), the mutation of N2 to G (as in N2G) leads
to the loss of the conformation in mutant N2G indicating the
important role of N2 in maintaining the stability of the
oligomer aggregate. Even though this residue is not found at
the protein-protein interface (it is located near to the N
terminal region) and thus do not contribute much to the
association energy, it forms side chain hydrogen bonds to the
backbone carbonyl of the G4 residues at position four. The
side chain hydrogen bonds appear to be important in
stabilizing the initial conformation. The comparison of the
geometry analysis for the wildtype and the N2G mutant as
shown in Figs. 2a, 3a, 4a, 5a, 6a and 7a indicates the role of
this specific residue in the stabilizing the system. The trend
in the calculated binding free energy is in agreement with the
observed instability based on RMSD, RMSF, interstrand,

and inter-sheet distances. Those aggregate oligomer models
which show structural instability were found to have
unfavorable binding energy compare to the stable ones.

Fig. 8 MM-PBSA per residue decomposition of the binding free
energy of the wildtype NNFGAIL and mutants. The energy term
corresponds to the sum of backbone and side chain contribution (a),
side chain (b) and backbone (c) for the wildtype and single point
gylcine mutants. A negative value indicates residue makes favorable
contribution
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In order to identify the residues that contribute the most
to the calculated overall binding energy, we used a residue-
by-residue decomposition protocol. Binding free energy
decomposition at the atomic level allows to evaluate the
contribution of each residue to the total binding free energy,
as well as the contributions of its side-chain and backbone.
In the past, MM-PBSA approach has been applied to
estimate the binding energy for protein–protein [61, 62] and
protein–ligand systems [60, 63, 64]. It has also been used to
predict the effect of residue mutations on the binding
energy of protein–protein systems with the “computational
alanine scanning” [57, 65]. An alternative approach is MM-
GBSA, where the electrostatic contribution to the solvation
energy is determined using a generalized Born (GB) model
[56]. Despite its generally lower accuracy [66], the GB
model has two advantages. First, the GB method is much
faster than the PB method. Second, GB allows one to
decompose easily and rapidly the electrostatic solvation
energy, and thus the binding free energy, into atomic
contributions from only one calculation [67].

A decomposition of the binding free energy in the
context of PB calculations is also possible [66, 68–70]
but requires separate, time-consuming calculations. The
MMPBSA.py script in AMBER11 implements per-residue
decomposition with both PB and GB implicit solvent
models [34]. The PB non-polar solvation component is
currently not decomposable. However, the non-polar
solvation remains constant in both the wild type and
mutants (see Table 2) and is much smaller than the other
energy terms. Thus, we used the MM-PBSA decomposi-
tion to plot Fig. 8a–c. As one can see, the residues making
the most favorable contributions to the binding free energy
between the two sheets are residues Phe3, Gly4, and Ala5
(Fig. 8a–c). Their contribution to the binding free energy
ranges from −0.5 to −3.0 kcal mol−1. These residues are

situated at the interface between the two sheets and form
stable hydrogen bonds between their backbone atoms and
van der Waals interactions between their side-chains. The
contribution of the side-chains to the association of the
five stranded double layer oligomers is larger than that of
the backbone atoms, underlining their importance. Muta-
tion of the side chains at the interface to the smallest
amino acid glycine resulted in the reduced side chain
continuation of the targeted amino acid and this leads to
reduced total binding free energy of the sheet to sheet
association.

These results are in agreement with the RMSD, RMSF
and secondary structure analysis in that the wildtype and
the Phe → Tyr mutants are more stable whereas the Phe →
Gly and Ile → Pro mutants are less stable. The analysis of
the MD simulation indicates that the asparagine, phenylal-
anine and isoleucine residues are important in the formation
and stabilization of the oligomers. The result thus can be
used in the rational design of peptiomimetic aggregation
inhibitors.

Twisting

Amyloid fibrils typically exhibit twisted β-sheets, as
observed by electron microscopy and solid state NMR.
Since twisted β-sheets optimize the hydrogen bonds, side-
chain stacking, and electrostatic interactions, it is common-
ly accepted that twisted sheets are more stable than flat
ones. While twisting, the β-sheets pairs remain to be
complimentary via the steric zippers [44, 71, 72]. The
twisting in SH2-ST5 aggregate of NNFGAIL heptapeptide
was evaluated by considering pairs of dihedral angles, one
per each sheet of the pair. Each dihedral angle is
calculated from the coordinates of the Cα(Asn2) and the
Cα(Ile6) atom of the second and the fourth strand of the

Model Simulation systems Average overall
twist angle (0)

Average interstrand
twist angle (0)

Wilde type, WT Two sheet, five strands (NNFGAIL) 13.3±4.7 4.4±1.6

Single point mutants

N1G Two sheet, five strands (GNFGAIL) 7.1±7.7 2.4±2.5

N2G Two sheet, five strands (NGFGAIL) 37.3±9.7 12.4±3.2

F3G Two sheet, five strands (NNGGAIL) 28.7±15.9 9.5±5.3

A5G Two sheet, five strands (NNFGGIL) 8.9±5.7 3.0±1.9

I6G Two sheet, five strands (NNFGAGL) 9.0±8.1 5.4±2.7

F3Y Two sheet, five strands (NNPGAIL) 1.9±10.0 0.6±3.3

I6P Two sheet, five strands (NNFGAPL) 0.1±8.0 0.05±2.7

L7G Two sheet, five strands (NNFGAIG) 9.7±8.2 3.2±2.7

Double point mutants

N2GF3G Two sheet, five strands (NGGGAIL) 68.3±44.7 22.8±14.9

F3GI6G Two sheet, five strands (NNGGAGL) 6.6±49.3 2.2±16.4

Table 3 Comparison of the
average twist angles in the SH2-
ST5 aggregate of NNFGAIL
and its mutants

J Mol Model (2012) 18:891–903 901



sheet. Twisting angles have been computed by using the
three inner strands [72]. As shown in Table 3, for the wildtype
NNFGAIL model, the average twist of ~13.3° is observed
with an estimated twist of 4.4° (13.3°÷ 3) between consec-
utive strands. This value is much smaller than the previous
analyses that estimated a twist of 10–11° between consecutive
strands of the GNNQQNY model [23]. The smaller twist
angle observed for the NNFGAIL and its mutant compared to
GNNQQNY model (SH2-ST5) could be due to the lack of the
steric zipper in the NNFGAIL and its mutant.

Several groups have shown that peptides or peptidomimet-
ics can inhibit Aβ aggregation [33]. Our simulation indicates
the peptides N2G, N3F, N2GF3G, I6G and I6P could be a
starting point for designing peptidomimetic inhibitor of
amylin. The synthetic peptides suffer from a disadvantage of
being able to undergo self-amyloidosis, which limits their
application in therapeutics development. The strategy of N-
methylation of peptide amide bonds has been a well-known
protein-design approach to suppress H-bonding ability of an
NH group and to restrict the conformation of the backbone.
The identification of amino acid important in stabilizing the
amyloid aggregate using MD simulation based on a single
point mutation with beta breaker amino acid and combining
this with N-methylation of the peptide amide could be a
variable option. The designed molecule can prevent fibrils
from forming and break down already formed fibrils [73, 74].

Conclusions

In this work we report the effect of single point mutations on
amyloidogenic propensity of the NNFGAIL peptide (the
shortest aggregation prone region of amylin) with all-atom
explicit solvent molecular dynamics simulation. The results
suggest that the aggregates formed by the wildtype and F3Y
mutant are more stable than by other mutant peptides. The free
energy calculations indicate that hydrophobic interactions
play key role in the stability of amyloid oligomers. In silico
mutations confirmed that Asn2, Phe3 and Ile6 are key residues
that stabilize the aggregation for the NNFGAIL segment.
Single and double mutation of these specific amino acids with
beta breaker amino acids indicate the dramatic stability loss
for the double-layer oligomer. These results are helpful to
understand the factors important for the early peptides
aggregation into amyloid fibril-like assemblies. Results from
this work indicate that the most important forces that are
responsible for the stability of the peptide-peptide complexes
are hydrophobic and Van der Waals ones, while electrostatic
component of the solvation energy destabilizes the com-
plexes. Based on per residue decomposition of the binding
free energy, mutation of the residues from the interface region
decreases their contributions, while for the terminal residues
the contributions remain the same. The study of the wild type

and mutants in explicit solvent may provide valuable insight
to guided future amyloid aggregation inhibitor design efforts.
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Abstract The molecular geometries, vibrational properties,
and thermodynamic properties of the clusters (Br2GaN3)n(n=
1–4) were studied at the B3LYP/6-311+G* level. The
optimized clusters (Br2GaN3)n(n=2–4) were all found to
possess a cyclic structure consisting of Ga atoms
bridged by the α-nitrogen of the azide groups. A
discussion of the relationships between the geometrical
parameters and the degree of oligomerization n is
provided. Features in the IR spectra were assigned by
vibrational analysis. Trends in thermodynamic properties
with temperature and degree of oligomerization n are
discussed. Thermodynamic analysis of the gas-phase
reaction showed that the formation of the clusters
(Br2GaN3)n(n=2–4) is thermodynamically favorable con-
sidering the enthalpies at 298.2 K. The calculated results
for the Gibbs free energies were negative, which indicates
that the oligomerizations can occur spontaneously at
298.2 K.

Keywords (Br2GaN3)n (n=1–4) clusters . Density
functional theory (DFT) . Structural feature . IR spectra .

Thermodynamic properties

Introduction

The chemical vapor deposition (CVD) of gallium nitride
(GaN) has attracted extensive interest because of its
applications in high-power, high-efficiency optoelectronic
devices [1]. The most successful method of producing GaN
is to react trimethylgallium or triethylgallium with ammonia
at a temperature in excess of 900 °C [2]. Such elevated
growth temperatures, however, result in thermal stresses in
the cooling films as well as a loss of stoichiometry due to
nitrogen deficiency. Alternative synthetic routes to stoi-
chiometric gallium nitride materials involve the use of
single-source precursors containing strong Ga–N bonds.
Particularly promising are precursors that contain the azide
(N3) ligand as the nitrogen source. Organometallic gallium
azides such as (R2GaN3)3 (R = CH3, C2H5), [(CH3)
ClGaN3]4 and [(CH3)BrGaN3]3 have been used to deposit
stoichiometric GaN of reasonable crystal quality and
chemical purity [3–5]. To eliminate the possibility of
carbon inclusion, McMurran et al. investigated several
related routes for GaN synthesis that utilize a new class of
inorganic azide compounds which incorporate hydrogen
and halide ligands [6–11] instead of organic groups. For
example, GaN films were prepared at temperatures as low
as 200 °C using (H2GaN3)n (n=2–3) as the precursor in
chemical vapor deposition processes [7, 8]. Moreover, they
also used ab initio methods and normal-mode analysis to
calculate the vibrational properties of the trimeric
(H2GaN3)3 C3V and dimeric (H2GaN3)2 D2h forms of the
compound. The vapor IR and mass spectra were consistent
with the trimeric model of C3V symmetry [8].
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Despite these extensive experimental investigations,
the reliable structures, IR spectra and thermodynamic
properties of many gas-phase precursors are unknown.
One of the reasons for this is the difficulty associated
with experimental detection. A good alternative route to
investigating a wide variety of potential precursors is
offered by theoretical computation. Thus, motivated by
and based on our previous studies on the clusters
( H 2G aN 3 ) n ( n = 1 – 4 ) , [ ( CH 3 ) 2 G aN 3 ] n , a n d
[(CH3CH2)2GaN3]n (n=1–3) [12–14], we performed den-
sity functional theory (DFT) investigations on (Br2GaN3)n
(n=1–4) clusters. We hope that the calculated vibrational
spectra prove to be useful reference data for experimen-
talists. The thermodynamic properties of (Br2GaN3)n (n=
1–4) clusters are expected to provide useful information
for the molecular design of novel gallium azides. In
addition, the results shed some light on the emergence of
bulk-like behavior with increasing cluster size.

Computational methods

All of the clusters in Fig. 1 were generated using the
ChemBats3D software and fully optimized by the Berny
method at the DFT-B3LYP level with the 6-311+G* basis
set [15, 16]. To characterize the nature of the stationary
points and to determine the zero-point vibrational energy
corrections, harmonic vibrational analyses were performed
subsequently on each optimized structure at the same level
with the Gaussian 03 program [17]. Since the DFT-
calculated harmonic vibrational frequencies are usually
larger than those observed experimentally, they were
scaled by a factor of 0.96 [18]. On the basis of the
principle of statistical thermodynamics [19], the standard
molar heat capacity (Cp,m

0), standard molar entropy (Sm
0),

and standard molar enthalpy (Hm
0 ) from 200 to 800 K

were derived from the scaled frequencies using a program
written in-house.

Results and discussion

Geometric structure

All of the optimized structures were characterized by the
harmonic vibrational analyses as true local energy
minima on the potential energy surfaces without any
imaginary frequency. The monomer Br2GaN3 is a planar
molecule with Cs symmetry (Fig. 1, 1A), which is studied
only as a starting point for the oligomerizations. The dimer
(Br2GaN3)2 with D2h symmetry is produced by the head-
to-tail dimerization of the Br2GaN3 monomers (Fig. 1,
2A). The dimer (Br2GaN3)2 with C2v symmetry has been

reported experimentally previously [6]. Two types of
trimer (Br2GaN3)3 were obtained in the present study: a
boat-like conformation 3A (symmetric Cs) and a chair-like
conformation 3B (symmetric C3v); the N2 portion of the
N3 group is omitted from these figures to improve clarity.
The trimer (Br2GaN3)3 has not been reported theoretically
or experimentally previously. However, trimeric structures
of other group 13 azides have been observed, such as
(H2GaN3)3 [7, 8, 12] (Cl2GaN3)3 [11], [(CH3)BrGaN3]3
[5], (H2AlN3)3 [20], and [(CH3)2AlN3]3 [21]. Four
optimized tetramers (Br2GaN3)4 possessing Cs, S4, Ci

and C2 symmetry with Ga4N4 core structures are presented
in Fig. 1 (4A–4D; the N2 portion of the N3 group is again
omitted to improve clarity). Among them, a structure with
S4 symmetry that has the N3 alternatively up and down has

Fig. 1 Structures of the clusters. Br2GaN3 monomer of Cs symmetry
(1A); (Br2GaN3)2 dimer of D2h symmetry (2A); (Br2GaN3)3 trimers of
Cs (3A) and C3v (3B) symmetry; (Br2GaN3)4 tetramers of Cs (4A), S4
(4B), Ci (4C), and C2 (4D) symmetry. The N2 portion of the N3

groups of the trimers and tetramers is omitted to improve clarity

906 J Mol Model (2012) 18:905–911



been suggested for the tetramers [(CH3)ClGaN3]4 [5] and
[HClGaN3]4 [9] among the gallium azides, and as far as
we are aware, the other three structures have not been
reported previously [12].

The ranges of the optimized bond lengths and angles
are presented in Table 1. Obviously, the Nα−Nβ lengths
are longer than the Nβ−Nγ distances for the investigated
clusters (Br2GaN3)n (n=1–4). This can be interpreted as a
higher bond order for the terminal N−N bond, showing
pre-formation of the N2 molecule. Moreover, we also find
that the degree of oligomerization n is an important
influence on the geometry. As n increases, the average
Nβ−Nγ bond length decreases, while the average Nα−Nβ,
Ga−Br and Ga−Nα bond lengths increase. These trends in
average Nα−Nβ, Ga−Nα, and Nβ−Nγ bond lengths with n
appear to be similar to those reported for the clusters
( H 2G aN 3 ) n ( n = 1 – 4 ) , [ ( CH 3 ) 2 G aN 3 ] n , a n d
[(CH3CH2)2GaN3]n (n=1–3) [12–14]. The fact that the
Nα−Nβ and Ga−Br bond lengths increase shows it it
would be relatively easy to eliminate N2 (Nβ−Nγ) and Br−

groups to yield GaN material. For the monomer, the azide
group is slightly bent, with Nα−Nβ−Nγ angles of 174.4°.
For (Br2GaN3)n (n=2–4), the azide groups are nearly
linear, with Nα−Nβ−Nγ angles in the range of 179.4
−180.0°. The bond angles for Nα−Ga−Nα and Ga−Nα−Ga
increase as the cyclic clusters enlarge, while the
Nβ−Nα−Ga bond angle decreases. The Ga−Nα−Ga bond
angles in the cyclic clusters are consistently larger than the
Nα−Ga−Nα bond angles, with the difference increasing
with the size of the cluster.

Table 1 also reports the total energies (E) and zero point
energies (ZPE) obtained at the B3LYP/6-311+G* level. The
energies show that the order of stability is as follows:
3A>3B and 4B>4C>4A>4D. The most attractive trimer,
which possesses Cs symmetry, is about 13.56 kJ mol−1

lower in energy than that of the trimer possessing C3v

symmetry. For the tetramer, the difference in energy is
about 8.30∼34.61 kJ mol−1.

IR spectrum

As is well known, IR spectra are not only basic
features of compounds, but they also provide an
effective way to analyze or identify substances. The
IR spectrum of a compound is also directly related to
its thermodynamic properties. However, to the best of
our knowledge, there are no experimental IR data for
the title compounds. Therefore, it is important to
predict IR spectra for both theoretical and practical
reasons. Figure 2 provides the calculated IR spectra of
(Br2GaN3)n (n=1–4) clusters at the B3LYP/6-311+G*
level. Due to the complexity of vibrational modes, it is
difficult to assign all of the bands in each spectrum. T
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Therefore, only some of the typical vibrational modes
were analyzed and are discussed below.

It is clear from Fig. 2 that there are three main
characteristic regions for the title compounds: those associ-
ated with N3 asymmetric and symmetric stretching and the
fingerprint region. The modes at 2152.3∼2202.5 cm−1 with
the strongest absorption intensities are associated with
characteristic N3 asymmetric stretching vibrations, and in
this region, the number of vibrations equals the number of
azido groups. For example, 3A has three bands at 2186.3,
2194.7, and 2202.5 cm−1. The characteristic N3 symmetric
stretching modes are located in the frequency range of
1190.8∼1306.5 cm−1 with strong intensities. In this region,
the number of vibrations again equals the number of azido
groups. For example, 4B has four bands at 1204.4, 1206.7,
1206.7, and 1214.0 cm−1. The weak peak below
1150.0 cm−1 is the fingerprint region, which is associated
with ring stretching, the asymmetric and symmetric stretch-
ing of Ga−Br, the wagging and scissoring of Br−Ga−Br, and
N3 deformation vibrations. This region can be used to
identify isomers.

The clusters (Br2GaN3)n (n=1–4) have similar vibra-
tional modes associated with the characteristic ν(N3),
νas(N3) and fingerprint regions, but the degree of oligomer-
ization n has an effect on the vibrational frequencies and
intensities. The vibrations due to N3 asymmetric stretching
move to higher frequencies (the hypsochromic phenome-
non) as the cluster becomes larger, but the vibrations due to
N3 symmetric stretching move to lower frequencies (bath-
ochromic phenomenon).

Thermodynamic properties

Using the calculated IR spectra, the thermodynamic
properties (Cp,m

0, Sm
0 and Hm

0) ranging from 200 to
800 K were also obtained based on the principle of statistic
thermodynamics (see Table 2). Since there are no
corresponding experimental values, no comparison can be
made with them. The calculated thermodynamic functions
and the established dependence of each on the temperature
and the degree of oligomerization n would be helpful for
further studies on other physical, chemical, and energetic
properties of the gallium azides.

From these data, it was found that all of the
thermodynamic functions clearly increase as the temper-

T 200 298.2 400 500 600 700 800

1A C P,m
0 92.30 102.90 109.55 114.02 117.37 119.97 122.04

S m
0 365.69 404.71 435.95 460.90 482.00 500.29 516.45

H m
0 13.78 23.41 34.25 45.44 57.02 68.89 81.00

2A C P,m
0 196.14 219.82 234.06 243.45 250.38 255.74 259.99

S m
0 553.02 636.23 702.98 756.27 801.30 840.31 874.75

H m
0 27.54 48.07 71.24 95.14 119.85 145.16 170.96

3A C P,m
0 292.72 329.02 351.05 365.47 376.00 384.08 390.43

S m
0 683.40 807.77 907.78 987.76 1055.36 1113.96 1165.67

H m
0 39.76 70.45 105.17 141.04 178.13 216.16 254.89

3B C P,m
0 301.55 337.77 359.70 374.04 384.52 392.56 398.88

S m
0 716.33 844.20 946.78 1028.67 1097.84 1157.74 1210.59

H m
0 41.46 73.01 108.62 145.35 183.30 222.17 261.75

4A C P,m
0 407.86 456.25 485.55 504.67 518.62 529.29 537.68

S m
0 886.47 1059.31 1197.81 1308.34 1401.64 1482.42 1553.67

H m
0 55.66 98.31 146.38 195.95 247.15 299.57 352.93

4B C P,m
0 406.83 455.46 484.95 504.19 518.22 528.95 537.38

S m
0 868.79 1041.26 1179.56 1289.97 1383.19 1463.91 1535.12

H m
0 55.39 97.95 145.96 195.47 246.62 299.01 352.34

4C C P,m
0 407.16 455.65 485.07 504.31 518.33 529.06 537.50

S m
0 880.19 1052.76 1191.10 1301.53 1394.78 1475.52 1546.74

H m
0 55.62 98.20 146.22 195.75 246.91 299.30 352.65

4D C P,m
0 407.96 456.28 485.60 504.75 518.70 529.39 537.78

S m
0 891.17 1064.03 1202.55 1313.08 1406.40 1487.20 1558.45

H m
0 55.92 98.57 146.65 196.22 247.43 299.86 353.23

Table 2 Thermodynamic prop-
erties of the title clusters at
different temperaturesa

a Units: T (K); C P,m
0

(J mol−1 K−1 ); S m
0

(J mol−1 K−1 ); H m
0 (kJ mol−1 )

Fig. 2 The calculated IR spectra of (Br2GaN3)n (n=1–4) clusters at
the B3LYP/6-311+G* level

R
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ature increases. This is because the main contributions
to the thermodynamic functions come from the trans-
lations and rotations of molecules at lower temperatures,
whereas the vibrational motion is intensified at higher
temperatures and contributes more to the thermodynamic
functions. Using monomer 1A as an example, the
relationships between the thermodynamic functions and
the temperature (T) in the range 200–800 K can be
expressed as follows:

C0
p;m ¼ 71:5500þ 0:1242T � 7:7444� 10�5T 2

S0m ¼ 82:8199þ 0:4679T � 2:2214� 10�4T2

H0
m ¼ �5:3920þ 0:0907T þ 2:1806� 10�5T 2

and the correlation coefficients R2 are 0.9933, 0.9991, and
1.0000, respectively.

Meanwhile,

dC0
p;m=dT ¼ 0:1242 � 1:5489� 10�4T

dS0m=dT ¼ 0:4679� 4:4428� 10�4T
dH0

m=dT ¼ 0:0907þ 4:3612� 10�5T

It is obvious that the gradients of Cp,m
0 and Sm

0 decrease
as the temperature increases, while that of H0

m constantly
increases. Isomers have similar thermodynamic function
values at the same temperature due to the fact that they
have similar geometric and electronic structures.

In addition, all of the thermodynamic functions increase
as the degree of oligomerization n increases. The n-
dependent relations for Cp, m

0, Sm
0, and Hm

0 at 298.2 K
can be expressed as follows (where the correlation
coefficients are all more than 0.99):

C0
p;m ¼ �14:92þ 116:69n

S0m ¼ 202:20þ 208:12n
H0

m ¼ �1:53þ 24:60n

On average, C p,m
0 , S m

0 and H m
0 increase by

116.69 J mol−1 K−1, 208.12 J mol−1 K−1, and
24.60 kJ mol−1, respectively, when another Br2GaN3 is added.

Based on the calculated thermodynamic functions, the
theoretical entropies (ΔS0), enthalpies (ΔH0), and Gibbs
free energies (ΔG0) of various oligomerizations in the

Br2GaN3+ Br2GaN3 system at 298.2 K were evaluated and
are compiled in Table 3. The values show that the order of
stability is 3A>3B and 4B>4C>4A>4D, which is consis-
tent with the results for the energies. All oligomerizations
are disfavored by the entropy at 298.2 K, as shown in
Table 3. The oligomerization enthalpies are negative at
298.2 K, which reveals that the oligomerizations are
thermodynamically favorable. The Gibbs free energy
(ΔG0) at a given temperature was evaluated using the
standard values for the enthalpy and entropy according to
the equation ΔG0 = ΔH0 − TΔS0. The values of ΔG0 are
negative at 298.2 K, which indicates that all of the
oligomerizations can occur spontaneously.

Conclusions

Based on our theoretical studies on (Br2GaN3)n (n=1–4)
clusters, the following conclusions can be drawn:

(1) The DFT/B3LYP method with the 6-311+G* basis set
that was used to calculate Br2GaN3 clusters consisting
of up to four molecules predicts that Br2GaN3

oligomerizes via the α-N atoms to form cyclic-like
clusters (Br2GaN3)n (n=2–4). The Nα−Nβ, Ga−Br,
and Ga−Nα bond lengths and the Ga−Nα−Ga and
Nα−Ga−Nα bond angles all increase with the size of
the cluster, while the Nβ−Nγ bond length and the
Nα−Nβ−Ga bond angle decrease.

(2) The calculated IR spectra have three main character-
istic regions: the N3 asymmetric stretching, the N3

symmetric stretching, and the complicated fingerprint
regions.

(3) Thermodynamic properties all increase quantitatively
with increasing temperature and degree of oligomer-
ization n. The gradients of Cp,m

0 and Sm
0 with

temperature decrease, but that for H0
m increases.

(4) The oligomerizations are thermodynamically favorable
in the gas phase as judged by the enthalpies at
298.2 K, and all of the oligomerizations can occur
spontaneously.

ΔS 298.2
0 (J mol−1 K−1) ΔH 298.2

0 (kJ mol−1) ΔG 298.2
0 (kJ mol−1)

1A→(1/2)2A –86.60 –70.76 –44.93

1A→(1/3)3A –135.45 –78.41 –38.01

1A→(1/3)3B –123.31 –73.16 –36.39

1A→(1/4)4A –139.88 –72.03 –30.32

1A→(1/4)4B –144.40 –76.91 –33.85

1A→(1/4)4C –141.52 –74.77 –32.57

1A→(1/4)4D –138.70 –68.47 –27.11

Table 3 Oligomerization entro-
pies, enthalpies and Gibbs free
energies at 298.2 K
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Abstract A theoretical study on the series of compounds
“PhSeX”, where Ph=phenyl, Se=selenium and X=Cl, Br,
I, CN or SCN, is reported and compared with previously
reported experimental data. The molecular geometry for
these PhSeX compounds was studied at the DFT/B3LYP
level of calculation by means of the 6-311G(d,p) basis set.
The equilibrium structures of the molecules were dependent
on the method employed to compare the known solid
structures. A topological study of the calculated PhSeX
species, based on the AIM theory, was carried out to gain a
deeper insight into the bonding nature and to find an
explanation for the structural diversity exhibited by these
PhSeX compounds. The results reported herein illustrate
the subtle differences in the solid-state structures of PhSeX
compounds.

Keywords Topological study . DFT. Pseudohalogen .

Selenium . PhSeX

Introduction

Pseudohalogens are compounds that resemble the halogen
elements, X2, in their chemistry, e.g., (CN)2, cyanogen.
Certain ions that have sufficient resemblance to halide ions
are sometimes referred to as pseudohalide ions, e.g., N3

–,
SCN–, CN–, SeCN–[1]. The pseudohalide concept [2] has
been used extensively in nonmetal chemistry in both
experimental and theoretical research [3].

Phenylselenenyl halides and pseudohalides (such as
PhSeCN) are versatile electrophilic reagents used in a
variety of organic transformations [4, 5]. Due to this
behavior, a considerable body of recent work has docu-
mented the structural delineation of the nature of various
phenylselenenyl compounds.

Crystallographic studies on phenylselenenyl halides,
PhSeX (X=Cl, Br, I) have revealed a number of structural
motifs. For example, PhSeI exists as a centrosymmetric
dimer, (Ph2Se2I2)2, in the solid state [6]. Two diphenyldi-
selane molecules are coupled with two I2 molecules in such
a way that a slightly puckered eight-membered ring
containing two Se-groups, and two I2-groups are formed.
Since the angles in this ring are alternately approximately
90° and 180°, an almost square geometry results. Diphe-
nyldiselane coordinates a diiodine molecule, with one
selenium atom acting as donor towards an iodine atom.
One selenium atom acts as a donor towards iodine (Se–I:
2.992 Å), whilst the other behaves as a weak acceptor (Se–
I: 3.588 Å). This charge transfer system differs from the
analogous PhSeCl and PhSeBr (see Scheme 1). Both these
latter compounds consist of a tetrameric “square” structure,
Ph4Se4Cl4 and Ph4Se4Br4. The solid-state structures of
PhSeCl [7] and PhSeBr [8] adopt a “square” motif where
four PhSeX units are held together by weak selenium–
selenium bonds to form Se4. The Se–Se–Se angles are,
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however, close to the anticipated 90° for a square (motif)
structure, forming an essentially planar ring. The confor-
mation of the Se4 square is such that the Se–X bonds lie in
the Se4 plane with two phenyl rings lying above (the plane),
and two below the plane. The selenium atom therefore lies
in a pseudo-trigonal bipyramidal “see-saw”. The structure is
further linked through long X–X contacts to form planar
sheets of selenium and bromine or chlorine atoms.

In contrast, the pseudohalogen derivatives PhSeCN and
PhSeSCN consist of essentially monomeric units. In the
former, the two independent molecules in the unit cell are
loosely linked by Se⋯N contacts (see Fig. 2a) with Se⋯NC
contact angles close to linearity. Both Se⋯N interactions are
slightly shorter than the sum of the van der Waals radii for
selenium and nitrogen. The Se–C bonds to the cyanide
groups are considerably shorter than the Se–C bonds to the
phenyl rings, reflecting the increased double bond character
in the Se–C bond to the cyanide groups. In PhSeSCN, the
thiocyanato group is coordinated to the selenium through the
sulfur atom, and it would appear that the soft selenium center
prefers to bind with sulfur, rather than with the harder
nitrogen atom. The thiocyanate coordination mode was
confirmed in solution by 13C[1H] NMR studies [9]. The
Se–S bond length (2.221 Å) is close to the reported mean for
covalent Se–S bonds (2.193 Å) [10] and the geometry of the
SCN group is near linear, with S–C and C≡N bond lengths
similar to those observed for the free SCN− ion in KSCN
[11]. The bent geometry at both the selenium and sulfur
atoms reflects the presence of lone pairs on both atoms, with
angles S–Se–C close to 100° (see Fig. 1e). In the extended
structure of PhSeSCN, individual molecules stack such that a
weak interaction, Se⋯N of 3.348 Å is set up, between a Se
atom of one molecule interacting with the N atom of another.

The shortest Se⋯N interaction between adjacent stacks
(3.567 Å) is slightly longer than the sum of the van der
Waals radii for selenium and nitrogen (3.45 Å). The Se⋯N
contacts appear to be the dominant packing force in
PhSeCN and PhSeSCN compounds, and are strong enough
to preclude any formation of the weak lattice of Se4 squares
favored by Ph4Se4Cl4 and Ph4Se4Br4.

We previously reported a detailed theoretical and topological
study of some pseudohalogen compounds [12, 13]. As part of a
more general study on pseudohalide compounds, we report
here a topological analysis of the phenyl series of compounds,
PhSeX (X=halides and pseudohalides) in an attempt to find
an explanation for the structural diversity exhibited by these
PhSeX compounds.

Due to the fact that spectroscopic studies suggest that all
these compounds exist as monomers in solution, in this
paper we presented theoretical calculations in the gas phase
in order to compare the results with experimental data.
Different conformers of some of these compounds can be
analyzed, although herein we report results from the study
performed only on the lowest energy conformers.

A notable point in the present study is the use of density
charge analysis based on the atoms-in-molecules ((AIM)
theory to better explain chemical bonding character, since
this procedure has proven extremely useful for this purpose.

Methods of calculation and computational details

Molecular geometries were optimized within the density
functional theory (DFT) approach [14–16] at the B3LYP/6-
311G(d,p) level. The B3LYP is a hybrid functional method
based on the Becke’s three-parameter nonlocal exchange
functional [17], with nonlocal correlation according to Lee
et al. [18]. X-ray geometry was used as the starting input
file. X-ray crystallographic data, with files in CIF format,
for structures 1 and 2 were retrieved of the Cambridge
Crystallographic Data Centre (CCDC 268776 and 268777)
[19]. Densities used for topological analysis were obtained
through single-point calculations on the above optimized
geometries at the B3LYP/6-311++G(d,p) level. For iodine,
we used the 6-311G(d) [20, 21] basis set, due to the fact
that neither the 6-311G(d,p) nor 6-311++G(d,p) basis set
are available for this atom. Frequency calculations were
performed with the aim of assessing the nature of the
stationary points. All calculations were carried out with the
Gaussian 2003 package [22]. The analysis of the charge

Scheme 1 Different structural
motifs observed in phenylsele-
nenyl halides (PhSeX)
compounds
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electron density was performed using the PROAIM
package [23].

Finally, in order to get the best possible agreement
between calculated and observed structures, the root mean
square deviation (RMSD) between the coordinates were
calculated using the Qmol program [24]. With the results
obtained, we think that some of the patterns followed in the
analysis and interpretation of charge density of PhSeX
compounds could be useful for the theoretical study of
other derivatives.

AIM analysis

AIM theory [25], which is based on the critical points (CP)
of the electronic density, ρ(r), reveals insights into the
nature of bonds. CPs are points where the gradient of the
electronic density, ∇ρ(r), vanishes and are characterized by
the three eigenvalues (λ1, λ2, λ3) of the Hessian matrix of
ρ(r). The CPs are labeled as (r,s) according to their rank, r
(number of nonzero eigenvalues), and signature, s (the
algebraic sum of the signs of the eigenvalues).

Four types of CP are of interest in molecules: (3, −3), (3,
−1), (3, +1), and (3, +3). A (3, −3) point corresponds to a
maximum in ρ(r) and appears generally at nuclear
positions. A (3, +3) point indicates electronic charge
depletion and is known as a cage CP. (3, +1) points, or
ring CPs, are merely saddle points. Finally, a (3, −1) point,
or bond critical point (BCP), is generally found between
two neighboring nuclei indicating the existence of a bond
between them.

Several properties that can be evaluated at the BCP
constitute very powerful tools to classify the interactions
between two fragments.

The two negative eigenvalues of the Hessian matrix (λ1
and λ2) at the BCP measure the degree of contraction of
ρ(r) perpendicular to the bond towards the CP, while the
positive eigenvalue (λ3) measures the degree of contraction
parallel to the bond and from the BCP towards each of the
neighboring nuclei. Different values of λ1 and λ2 at (3,−1)
BCPs denote an anisotropic spread of electrons quantified
through the concept of ellipticity: ε = λ1/λ2 – 1, (with λ1 >
λ2) where values of ε >>1 can be indicative of π bonding.
Calculated properties of electronic density at the BCP are
labeled with the subscript ‘b’ throughout this work.

In AIM theory, atomic interactions are classified accord-
ing to two limiting behaviors, namely, shared interactions
and closed-shell interactions. Shared interactions are char-
acteristic of covalent and polarized bonds and their main
features are large values of ρb, ∇2ρb<0 and Eb<0, Eb being
the local electronic energy density of the system calculated
at the BCP and defined as the sum of the local kinetic
energy density and the local potential energy density, both
computed at the BCP. In contrast, closed-shell interactions,

useful to describe ionic bonds, hydrogen bonds, and van
der Waals interactions, are characterized by small values of
ρb, ∇2ρb>0 and Eb>0.

Results and discussion

Geometric analysis

The optimized structures of single molecules of PhSeX (X=
Cl, Br, I, CN and SCN) compounds in gas phase are shown in
Fig. 1. Figure 2a shows the calculated structure of the two
independent molecules in the unit cell of PhSeCN. The
optimized structure of the square motif adopted by
Ph4Se4Cl4 in the solid-state structure is displayed in
Fig. 2b. Selected bond lengths and bond angles are shown
in both figures.

Although the lowest energy conformers of the calculated
structures are highly symmetric, small differences between the
crystal data and theoretical values are observed. These
differences can be assigned to the fact that the X-ray structures
were measured in a compacted crystalline form, whereas the
calculations were performed for free isolated molecules.

A common measure of conformational similarity in
structural bioinformatics is the minimum RMSD between
the coordinates of two macromolecules. Using this idea, we
think that the close structural relationship between the
calculated and crystallographic observed structures is best
illustrated with the RMSD overlay error than by comparing
the paired lengths bonds, bond angles and torsion angles.

In this paper, we shall consider a general framework for
feature comparison based on the following:

1. In the isolated molecules, alignment is considered good
if (a) the molecules have a similar shape, and (b) their
aromatic atoms and Se atoms overlap.

2. In the dimeric structure observed for PhSeCN, and in
the tetrameric structure of Ph4Se4Cl4, an alignment is
good if (a) the molecules have a similar shape, and (b)
their Se atoms and the groups attached to Se atoms
overlap.

These statements can be justified as follows: in the first
case the solid state interactions are rather different because
of the possibility of rotation of the side chain. So, benzene
ring superposition becomes more important. On the
contrary, in dimeric and tetrameric structures the interaction
between Se atoms and the groups attached to Se atoms are
more important that the benzene rings.

The calculated halogenated structures agree satisfactorily
with the corresponding experimental structures. For exam-
ple, RMS is 0.05 in PhSeCl while it is only 0.025 for
PhSeBr and 0.020 for PhSeI. A good alignment is also
observed for other calculated isolated structures. RMS
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overlay error is 0.025 for PhSeCN and only 0.017 for
PhSeSCN. The optimized structures of the isolated mole-
cules are superimposed on the crystallographic structures in

Fig. 3. It can be seen that the molecules have a similar
shape and the benzene rings and Se atoms overlap
completely.

Fig. 2 Optimized structures of
a the two independent mole-
cules in the unit cell of PhSeCN,
and b the square motif
adopted by Ph4Se4Cl4 in the
solid-state structure, calculated
at B3LYP/6-311++G(d,p).
The atomic labeling scheme and
bond lengths are indicated

Fig. 1 Optimized structures of a PhSeCl, b PhSeBr, c PhSeI, d PhSeCN and e PhSeSCN calculated at the B3LYP/6-311++G(d,p) level. For
iodine, we used the 6-311G(d) the B3LYP/6-311++G* level. The atomic labeling scheme and selected geometric parameters are indicated
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The Se⋯N bonds between the two molecules of PhSeCN
optimized as a dimer are somewhat longer (3.477 Å and
3.479 Å) than that in the crystal (3.329.or 3.444 Å). A RMSD
value of 0.119 is obtained in the alignment of the dimeric
structures. This low RMSD value reveals a good alignment
due to the similar shape of the molecules and the fact that the
Se, C and N atoms overlap (Fig. 4, left).

The increased RMS overlay error of the tetrameric
structure of Ph4Se4Cl4 (0.414) is most probably due to the
increased number of atoms that must overlap; many of them
belong to non-rigid structures but have four benzene rings
with side chains with free rotation. According to the
conventions adopted for comparison, in this case, Se atoms
and the groups attached to Se atoms overlap each other but
do not overlap benzene rings because preference was given
to overlap of the side chains rather than rings, as illustrated
in Fig. 4 (right). However, the RMSD value is acceptable
for the alignment of both structures.

In summary, the results of these quantum chemical
calculations overall correctly describe, to a good approxi-
mation, the experimentally observed peculiarities in molec-
ular structures of the different species studied.

Topological analysis of electron density

Table 1 presents characteristics of the BCPs obtained from
topological analysis of the electron density distributions of

the PhSeX (X=Cl, Br, I, CN and SCN) species studied. As
mentioned in the section above on Methods of calculation
and computational details, the basis set employed for iodine
[6-311G(d)] is different from that used for the rest of the
atoms [6-311G(d,p)]. In order to check the sensibility of
AIM results to the different basis set employed for iodine,
for bromine compound, we performed AIM calculations
with both basis sets, with similar results (Table 1). We
consider, therefore, that we can safely analyze the trend of
AIM results along the series, even when using a slightly
different basis set for the iodine atom.

Topological analysis of BCPs in ρ of PhSeX (X=Cl, Br,
I, CN, SCN) reveals that all bonds forming the phenyl ring
correspond to covalent interactions, namely, a relatively
large value for ρb and a negative value for ∇2ρb. The
ellipticities of bonds forming the ring have relatively large
numerical values, revealing their partial double bond
character due electronic charge delocalization over the ring
surface. The Eb values are negative as expected for covalent
bonds. The topologic properties computed on C–C BCPs of
the benzene ring are only slightly affected by the halogen
atom, CN group or SCN group attached to selenium atom
(at the same level of calculation in a C–C bond of benzene,
they are: ρb=0.3092 a.u., ∇2ρb= −0.8640 a.u., ε=0.1999
and Eb=−0.3162 a.u.).

Details of the electron density topology at the CP can
provide more insight into the nature of a particular bond.

Fig. 3 Overlayed structures of
the calculated (grey) and solid
state (red) structures of PhSeCN
(left) and PhSeSCN (right)

Fig. 4 Overlayed structures of
the calculated (grey) and solid
state (red) structures of dimmer
(PhSeCN)2 (left) and tetramer
Ph4Se4Cl4 (right)
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Large positive values of ρb and large negative values of
the Laplacian are indicators of strong covalent bonds (see,
for example, values for the C–C and C–N single bonds in
Table 1). In case of a pure ionic bond (close shell
interaction) one would expect a small value of ρb,
indicating depletion of the electron density and positive
values of the Laplacian. In our case we have considerable
ρb values and positive Laplacian values for the Se–Cl
(0.0981 a.u. and 0.0490 a.u.), Se–Br (0.0887 a.u. and
0.0119 a.u.) and Se–S (0.099 a.u. and 0.0090 a.u.), but (is)
Eb<0 in all cases. Clearly, here we have a superposition of
two extreme cases that allows us to conclude that these
bonds should be classified as strong, highly polarized
covalent bonds.

When the C–X bonds are compared, a decrease in the
electron density (0.0981 a.u., 0.0887 a.u. and 0.0744 a.u.)
and a corresponding decrease of the electronic energy
density (0.0350 a.u., 0.0310 a.u. and 0.0240 a.u.) can be
seen. These findings can be interpreted as a decrease in
covalent character of the bonds when going from Se–Cl to
Se–I. Moreover, the features of the C–N bond are not
affected by inclusion of the S atom in the group attached to
selenium atom, those being strong covalent bonds (see
Table 1). The electron density of the Se–C bond to the
cyanide group (0.1591 a.u.) is slightly higher than the

electron density of the Se–C bonds to the phenyl rings
(0.1445 a.u.). Accordingly, the ellipticity is 0.1919 against
0.0572, respectively, reflecting the double bond character in
the Se–C bond to the sp hybridized cyanide carbon,
compared with the sp2 hybridized ring carbon.

Table 1 Topological properties of charge densitya,b calculated at some bond critical points (BCPs) of phenylselenenyl halides (PhSeX; X=Cl, Br,
I, CN, SCN)

Compound Bondc ρb ∇2ρb ε Eb

PhSeCl C1-C2 0.3061 −0.8422 0.1943 −0.3094
C1-Se 0.1527 −0.1061 0.0696 −0.0871
Se-Cl 0.0981 0.0490 0.1408 −0.0350

PhSeBr C1-C2 0.3061 (0.3063) −0.8415 (−0.8427) 0.1952 (0.1950) −0.3092 (−0.3096)
C1-Se 0.1511 (0.1513) −0.1020 (−0.1023) 0.0620 (0.0618) −0.0854 (−0.0857)
Se-Br 0.0887 (0.0876) 0.0119 (0.0120) 0.1326 (0.1328) −0.0315 (−0.0314)

PhSeI C1-C2 0.3062 −0.8419 0.1970 −0.3096
C1-Se 0.1495 −0.0976 0.0501 −0.0837
Se-I 0.0744 −0.0040 0.1143 −0.0240

PhSeCN C1-C2 0.3082 −0.8511 0.2097 −0.3145
C1-Se 0.1448 −0.1071 0.0572 −0.0782
Se-C7 0.1595 −0.0265 0.1919 −0.1035
C7-N 0.4724 −0.2263 0.0116 −0.8536

PhSeSCN C1-C2 0.3063 −0.8419 0.1988 −0.3101
C1-Se 0.1499 −0.1032 0.0456 −0.0840
Se-S 0.0999 0.0090 0.0649 −0.0369
S-C7 0.2090 −0.3845 0.3608 −0.2396
C7-N 0.4715 −0.2848 0.0085 −0.8492

a ρb, ∇2 ρb y Eb in au
b Calculated at the B3LYP/6-311G(d,p) level. Values in parentheses were obtained using the 6-311G(d) basis sets for the halogen atom
c For atom labels, see Fig. 1

Table 2 Topological properties of charge densitya,b calculated at
selected BCPs of the PhSeCN dimer and Ph4Se4CN4

Compound Bondc ρb ∇2ρb ε Eb

(PhSeCN)2 C1-C2 0.3070 −0.8410 0.2116 −0.3130
C1-Se 0.1454 −0.1077 0.1715 −0,0790
Se-C7 0.1618 −0.0263 0.1964 −0.1066
C7-N 0.4725 −0.2550 0.0105 −0.8532
Se´-N 0.0051 0.0169 0.1654 0.0008

C7´-C7 0.0051 0.0157 1.6579 0.0008

Se-N´ 0.0051 0.0169 0.1663 0.0008

Ph4Se4Cl4 C1-C2 0.3065 −0.8416 0.2030 −0.3107
Cl-Se 0.1500 −0.1145 0.0402 −0.0835
Se-Cl 0.0888 0.0574 0.1102 −0.0285
Se-Se 0.0244 0.0401 0.1279 −0.0010

a ρb, ∇2 ρb y Eb in au
b Calculated at the B3LYP/6-311G(d,p) level
c For atom labels, see Fig. 2
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The atom bonding network that connects both PhSeCN
units is an important feature of the dimeric structure of this
compound, which seems to be aiding the crystallization.
The dimeric structure shows three intermolecular interac-
tions. The Se⋯N distances are 3.48 Å and the C⋯C
distance is 3.42 Å, which are almost equal to the sum of the
van der Waals radii of the selenium and nitrogen atoms
(3.45 Å) and of the carbon atoms (3.40 Å). However, the
experimental distances are shorter than the sum of the van
der Waals radii, suggesting that there is appreciable
interaction at the long Se⋯N contact distance (3.33 Å
and 3.44 Å, respectively).

Within the tetramer, the solid-state structures of
Ph4Se4Cl4, four PhSeCl units are held together by weak
Se⋯Se bonds forming an essentially planar ring of Se4 and
the Se–Cl bonds lie in the Se4 plane, with two phenyl rings
lying above the plane, and two below it.

The calculated Se⋯Se distance (3.13 Å) is significantly
smaller than the sum of van der Waals radii of the selenium
atoms (3.80 Å) but longer than the covalent radii (3.80 Å),
revealing the existence of the non-covalent interactions.

No significant changes in the topological properties of the
bonds are observed when the dimeric structure of (PhSeCN)2
is formed (Table 2). Indeed, when the corresponding bonds
are compared, similar characteristics appear. For example, in
the Se-C7 bond, the electronic density is 0.1595 a.u. and
0.1618 a.u. in the monomer and dimer, respectively. In the
same direction, the Laplacian of the density is −0.0265 a.u.
and −0.0263 a.u., respectively, in this bond. It is interesting
to note that the three bonds that hold the two molecules
together have similar topological properties. The low value
of the electron density (0.0051 a.u.) and positive and low
values of the Laplacian of the density (between 0.0157 a.u.
and 0.0169 a.u.) at the CPs of the Se⋯N and C⋯C bonds
indicates a weak interaction between the two molecules. The
high value of the ellipticity at the BCP in the C–C bond
linking the two molecules can be explained by the strong π
character of this bond.

The topological properties of the bonds in the monomer
were similar in the corresponding tetrameric structure. A
topological analysis of BCPs in ρ of Ph4Se4CN4 revealed
that all bonds forming the phenyl ring correspond to
covalent interactions (ρb=0.3070 a.u., ∇2ρb= −0.8410 a.u.
and Eb = −0.3130 a.u.), and the ellipticities values (ε =
0.2116) reveal the partial double bond character, as in the
PhSeCN monomeric structure.

As seen previously, weak interactions are observed
taking into account the calculated and experimental Se⋯Se
distances. Accordingly, topological properties at the BCPs
in ρ of Se–Se bonds correspond to weak interactions: low
values of electron densities (ρb=0.0244 a.u.), positive and
low values of the Laplacian of the density (∇2ρb=0.0401 a.
u.) and Eb values near to zero (−0.010 a.u.).

Conclusions

This paper reports a theoretical study of a “PhSeX” series
of compounds, where Ph=phenyl, Se=selenium and X=Cl,
Br, I, CN or SCN. The molecular geometry was calculated
at DFT/B3LYP level of calculation by means of the 6-
311 G(d,p) basis sets. The equilibrium structures of the
molecules were found to depend on the method employed
for comparison with previously reported experimental data.
A topological study of the calculated PhSeX species, based
on the AIM theory, illustrates the subtle differences in the
solid-state structures of PhSeX compounds.

A decrease in the electron density and a corresponding
decrease in the electronic energy density was observed
when going from PhSeCl to PhSeI, which can be
interpreted as a decrease in the covalent character of the
C–X bonds. In PhSeCN, the ellipticity of the Se–C attached
to the cyanide group is slightly higher than the ellipticity of
the Se–C bonds to the phenyl rings, reflecting the double
bond character of the former bond in the cyanide group. In
PhSeSCN, the features of the C–N bond are not affected by
the inclusion of the S atom in the group attached to the
selenium atom.

The atom bonding network connecting two units seems
to aid the crystallization process in the dimeric structure of
(PhSeCN)2, showing three intermolecular interactions.

In the structure of Ph4Se4Cl4, four PhSeCl units are held
together by weak Se⋯Se bonds forming an essentially
planar ring of Se4 with non-covalent Se⋯Se interactions.
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Abstract The interaction processes of trace amounts of
N-methyl-2-pyrrolidinone (NMP), CS2/NMP (1:1 by
volume) and pure NMP solvent with the hydrogen bond
of OH⋯N in coal were constructed and simulated by
density functional theory methods. The distances and
bond orders between the main related atoms, and the
hydrogen bond energy of OH⋯N were calculated. The
calculated results show that pure NMP solvent does not
weaken the hydrogen bond of OH⋯N in coal. However,
trace amounts of NMP and CS2/NMP (1:1 by volume)
have a strong capacity to weaken the hydrogen bond of
OH⋯N in coal. The H2–N3 distances are elongated
from 1.87 Å to 3.80 Å and 3.44 Å, the bond orders of
H2–N3 all disappear, and the corresponding hydrogen
bond energies of OH⋯N in coal decrease from
45.72 kJ mol−1 to 7.06 and 11.24 kJ mol−1, respectively.
These results show that CS2 added to pure NMP solvent
plays an important role in releasing the original capacity
of NMP to weaken the hydrogen bond of OH⋯N in coal,
in agreement with experimental observations.

Keywords N-methyl-2-pyrrolidinone . CS2 . Coal .

Hydrogen bond . Density functional theory

Introduction

Hydrogen bonds [1, 2] play a key role in the chemical
properties and structures existing in coal [3, 4], with one of
the main types of hydrogen bonds found in coal being
OH⋯N [5, 6]. Solvent extraction is an effective method
with which to investigate the composition and structure
of coal. By weakening the hydrogen bonds in coal,
solvents increase its solubility, allowing extraction to be
achieved [7, 8]. It is well known that CS2/N-methyl-2-
pyrrolidinone (NMP) (1:1 v:v) is an excellent mixed
solvent for extraction of many coals at room temperature
[9], as NMP (see Fig. 1) has a strong association with CS2
[10], and the complex of NMP and CS2 may be the main
reason why CS2/NMP (1:1 by volume) has a high
extraction yield for many coals.

Zong et al. [11] found that N-methylpyrrolidine-2-thione
(NMPT) and CSO were produced by the reaction of NMP
with CS2 in their experiments. Subsequently, Wang et al.
[12] and Fu et al. [13] studied the reaction mechanism of
NMP with CS2, obtaining possible reaction pathways,
transition state (TS) and intermediates (IM) using quantum
chemistry calculation methods. Comparing the structure
parameters, activation energies and other related data, the
work by Fu et al. proved to be more reasonable. Further, we
consider that the IM obtained by Fu et al. may be a
complex of CS2 and NMP, which we think represents CS2/
NMP (1:1, v:v). Liu et al. [14] extracted three types of coal
by CS2/NMP(1:1, v:v), and showed that when all CS2 and
most of the NMP were removed, trace amounts of NMP
still remained in strong interaction with coal, which means
that NMP itself has extracting capacity. However, as NMP

B. Wang (*) : L. Wang : R. Zhang : L. Ling
Key Laboratory of Coal Science
and Technology of Ministry of Education and Shanxi Province,
Taiyuan University of Technology,
Taiyuan 030024 Shanxi, China
e-mail: quantumtyut@126.com
e-mail: wangbaojun@tyut.edu.cn

J Mol Model (2012) 18:921–927
DOI 10.1007/s00894-011-1128-y



molecules self-aggregate [15, 16], pure NMP is not an
effective solvent for extraction of coal. In other words,
aggregation between NMP molecules can inhibit the
extraction capacity of pure NMP for coal. However, for a
detailed understanding of the extraction process of different
solvents, experimental information is not always sufficient
and accompanying theoretical calculations can be helpful to
clarify some essential questions.

Recently, density functional theory (DFT) has provided
qualitative and quantitative insights into hydrogen bonds
[17–19]. For example, Ireta et al. [17] used DFT method
with Perdew-Burke-Ernzerh (PBE) functional to investigate
a set of representative hydrogen bonded dimers in diverse
geometric environments; the calculated results show that

DFT-PBE is reliable for the description of hydrogen bond
strengths and geometry parameters. Meanwhile, Korth et al.
[18] studied the intra-molecular hydrogen bonding in 2-
substituted phenols by DFT method; the results, such as
conformations and enthalpies, are in agreement with
experimental findings.

In this study, three solvent models of trace amounts of
NMP solvent, CS2/NMP (1:1, v:v) mixed solvent and pure
NMP solvent, as well as the hydrogen bond of OH⋯N in
coal were constructed to simulate the extraction processes
of three different solvents for the hydrogen bond of OH⋯N
in coal using DFT method. Based on changes in the
hydrogen bond of OH⋯N, we examined the role of CS2 in
the CS2/NMP (1:1, v:v) mixed solvent for the extraction
process.

Model construction and computational method

In this study, single NMP (S-NMP) and double NMP (D-
NMP) molecules were chosen to simulate trace amounts of
NMP solvent and pure NMP solvent, respectively. IM
obtained in previous studies by Fu et al. [13] were used to
simulate CS2/NMP (1:1, v:v) mixed solvent. The simplified
model of the OH⋯N hydrogen bond in coal (Coal–OHN)
reported in studies by Miura et al. [20], was applied to
simulate the real bond in coal. Coal-OHN is sufficient to
represent the functional group of OH⋯N in real coal,

Fig. 2 The constructed models
of single NMP (S-NMP), double
NMP (D-NMP), intermediates
(IM) and the simplified model of
the OH⋯N hydrogen bond in
coal (Coal-OHN)

Fig. 1 The structure of N-methyl-2-pyrrolidinone (NMP)
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although it does not recreate the integrated structure of real
coal. Models of S-NMP, D-NMP, IM and Coal-OHN are
shown in Fig. 2.

A DFT method was adopted and calculations were
performed using the Dmol3 program mounted on the
Materials studio 4.4 package (http://accelrys.com). All
models were optimized at the level of generalized gradient
approximation (GGA) [21] using the PBE functional [22]
together with the DND basis set [23]. Unrestricted spin was
chosen. Total self-consistent field (SCF) tolerance criteria,
integration accuracy criteria and orbital cutoff quality
criteria were set at medium. The converge criterion judged
by the energy, force and displacement are 2×10−5 Ha, 4×
10−3 Ha/Å and 5×10−3 Å, respectively. Multipolar expan-
sion is set at octupole.

Considering that solvent molecules may interact with
the hydrogen bonds in coal from different directions as

a result of the complexity of the actual extraction
processes, it is impossible to calculate all possible
situations. Thus, we adopted the method of “Multi-point
calculation, Overall average” [24], which means that the
solvent models (S-NMP, D-NMP and IM) were placed in
different spatial locations relative to the hydrogen bond in
Coal-OHN, and the new composite models were then
optimized to obtain their corresponding stable structures;
thereafter, we averaged these related data. Using this
method, the average data obtained were more convincing
and reasonable.

Results and discussion

After many attempts, four typical and effective spatial
locations were found for the extraction processes of
three different solvents in Coal-OHN. With the purpose

Table 1 O1–H2 and H2–N3 distances in the simplified model of the
OH⋯N hydrogen bond in coal (Coal-OHN). S-NMP Single N-
methyl-2-pyrrolidinone

Coal-OHN with S-NMP Coal-OHN
without
S-NMPI II III IV Avga

O1–H2 (Å) 1.00 1.00 1.00 1.00 1.00 1.00

H2–N3 (Å) 3.53 3.59 4.97 3.11 3.80 1.87

a Average of I, II, III and IV

Table 2 Mayer bond orders of O1–H2 and H2–N3 in Coal-OHN

Coal-OHN with S-NMP Coal-OHN
without S-NMP

I II III IV Avga

O1-H2 0.62 0.60 0.60 0.62 0.61 0.64

H2-N3 –b – – – – 0.17

a Average of I, II, III and IV
b Bond order does not exist

Fig. 3 Stable structures of S-NMP and Coal-OHN at different spatial locations
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of examining the capacities of different solvent models
(S-NMP, D-NMP and IM) to weaken the hydrogen bond
of OH⋯N in Coal-OHN, the atoms of O1, H2 and N3,
which compose the OH⋯N hydrogen bond in Coal-
OHN, were identified as the main research focus.

Composite structures of S-NMP and Coal-OHN

The four composite structures of S-NMP and Coal-OHN
at different spatial locations were optimized, and the

Fig. 4 Stable structures of D-
NMP with Coal-OHN at differ-
ent spatial locations

Table 3 Energies of the relative parts of Coal-OHN

Coal-OHN with S-NMP Coal-OHN without S-NMP

I II III IV Avga

Ecoal (Ha) −747.9988 −747.9993 −747.9985 −747.9999 −747.9991 −747.9828
EOH (Ha) −307.1858 −307.1854 −307.1854 −307.1858 −307.1856 −307.1730
EN (Ha) −440.8107 −440.8107 −440.8110 −440.8109 −440.8108 −440.7923
EHBE (kJ mol−1) 6.01 8.36 5.49 8.36 7.06 45.72

a Average of I, II, III and IV

Table 4 O1–H2 and H2–N3 distances in Coal-OHN. D-NMP Double
NMP

Coal-OHN with D-NMP Coal-OHN
without
D-NMPI II III IV Avga

O1-H2 (Å) 1.00 1.00 1.00 1.00 1.00 1.00

H2-N3 (Å) 1.79 1.84 1.81 1.83 1.82 1.87

a Average of I, II, III and IV

924 J Mol Model (2012) 18:921–927



corresponding stable structures (with no imaginary
frequency) are shown in Fig. 3.

In order to investigate the capacity of S-NMP to weaken
the hydrogen bond of OH⋯N in Coal-OHN, we analyzed
the distances and Mayer bond orders of O1–H2 and H2–
N3, as listed in Tables 1 and 2.

As shown in Tables 1 and 2, the distance and bond
order between O1 and H2 were almost the same;
however, we observed a large change between H2 and
N3. The H2–N3 distance is stretched from 1.87 Å
initially to 3.80 Å in Coal-OHN, which suggests that
the hydrogen bond of OH⋯N in Coal-OHN with S-
NMP is very weak. Moreover, the bond order also
confirms that no bond order exists between H2 and N3
after S-NMP is added. Furthermore, we investigated the
hydrogen bond energy (EHBE) of OH⋯N in Coal-OHN.
EHBE is defined as:

EHBE ¼ EOH þ EN � Ecoal ð1Þ

Where EHBE is the hydrogen bond energy, EOH is the
energy of the part containing OH in Coal-OHN, EN is the
energy of the part containing N in Coal-OHN, Ecoal is the
total energy of Coal-OHN. The energies of the related parts
are shown in Table 3; we can see that EHBE obviously
decreases from 45.72 kJ mol−1 to 7.06 kJ mol−1 after
adding S-NMP into Coal-OHN.

From Tables 1–3, we can see that the distances
between H2 and N3 are stretched; the corresponding
bond orders do not exist, and EHBE decreases dramati-
cally due to the addition of S-NMP into Coal-OHN, which

means that S-NMP can seriously damage the OH⋯N
hydrogen bond in Coal-OHN.

Composite structures of D-NMP and Coal-OHN

The composite structures of D-NMP (which replaces the
location of the S-NMP) and Coal-OHN were optimized,
and the corresponding stable structures (with no imaginary
frequency) are shown in Fig. 4.

Similarly, we analyzed the distances, Mayer bond orders
of O1–H2 and H2–N3, and the energies of the related parts
of Coal-OHN, as shown in Tables 4, 5, and 6.

The results reveal that there are few changes to the
distances and bond orders of O1–-H2 and H2–N3 and the
EHEB. In other words, D-NMP has no ability to weaken the
hydrogen bond of OH⋯N in Coal-OHN.

Composite structures of IM and Coal-OHN

The composite structures of the IM (which replaces the
location of S-NMP) and Coal-OHN were optimized and
the corresponding stable structures (with no imaginary
frequency) are shown in Fig. 5. The distances, Mayer
bond orders of O1–H2 and H2–N3, and the energies of the
related parts of Coal-OHN were calculated, as shown in
Tables 7, 8, 9. The calculated results show that the
addition of IM leads to the distances between H2 and N3
increasing significantly from 1.87 Å to 3.44 Å, see Table 7.
The corresponding bond orders do not exist (see Table 8).
Moreover, EHBE decreases to 11.24 kJ mol−1 from
45.72 kJ mol−1, as shown in Table 9. The above results
also suggest that the OH⋯N hydrogen bond in Coal-OHN
is seriously damaged. Therefore, IM has a strong capacity
to weaken the hydrogen bond of OH⋯N in coal-OHN.

Finally, all the data were summarized and compared as
presented in Table 10. It can be seen that the values
obtained for Coal-OHN are very similar to those obtained
with Coal-OHN with D-NMP, which suggests that the
hydrogen bond of OH⋯N in Coal-OHN cannot be
weakened even if D-NMP is added. Interestingly, in Coal-
OHN with S-NMP and Coal-OHN with IM, the data are

Table 5 Mayer bond orders of O1–H2 and H2–N3 in Coal-OHN

Coal-OHN with D-NMP Coal-OHN
without
D-NMPI II III IV Avga

O1-H2 (Å) 0.59 0.61 0.60 0.61 0.60 0.64

H2-N3 (Å) 0.18 0.17 0.17 0.16 0.17 0.17

a Average of I, II, III and IV

Table 6 Energies of relative parts of Coal-OHN

Coal-OHN with D-NMP Coal-OHN without D-NMP

I II III IV Avga

Ecoal (Ha) −748.0143 −748.0125 −748.0148 −748.0137 −748.0138 −747.9828
EOH (Ha) −307.1851 −307.1849 −307.1854 −307.1852 −307.1852 −307.1730
EN (Ha) −440.8104 −440.8105 −440.8106 −440.8107 −440.8106 −440.7923
EHBE (kJ mol−1) 49.11 44.67 49.11 46.50 47.35 45.72

a Average of I, II, III and IV
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also comparable. The distances between H2 and N3 are
elongated from 1.87 Å to 3.80 Å and 3.44 Å, respectively.
The bond orders all disappear; the corresponding EHBE

decreases from 45.72 kJ mol−1 to 7.06 and 11.24 kJ mol−1,
respectively, which means that addition of both S-NMP and
IM can seriously damage the hydrogen bond of OH⋯N in
Coal-OHN.

Recently, Politzer et al. [25–27] found that a σ-hole (a
region of positive charge) resulting from a deficiency of
electron density exists on the outermost portions of some
covalently bonded halogen atoms. Meanwhile, Wang et al.
[28] thought that the lone electron pairs of halogen atom
produce a region of negative electrostatic potential around
the central part of halogen atom, which leaves the

possibility for the atom to act as an electron donor. Later,
Wang et al. [29] studied the corresponding properties of
chalcogen atoms (O, S, Se, Te, Po), suggesting that
chalcogen atoms share similar characteristics with halogen
atoms. On the basis of previous experimental facts and
theoretical calculations, we think that the O in S-NMP and
the S of C=S in IM also share these corresponding
characters. Considering that it is sensitive to direction,
occupies a small specific gravity, and is surrounded by
negative electrostatic potential, the σ-hole cannot interact
easily with negative sites (such as ring N) in our research
system, although the σ-hole has a positive electrical
property. The main reason why S-NMP and IM could
weaken the OH⋯N in Coal-OHN may be that the lone

Fig. 5 Stable structures of IM
and Coal-OHN at different spa-
tial locations

Table 7 O1–H2 and H2–N3 distances in Coal-OHN. IM Intermediates

Coal-OHN with IM Coal-OHN
without IM

I II III IV Avga

O1-H2 (Å) 1.00 1.00 1.00 1.00 1.00 1.00

H2-N3 (Å) 3.83 3.18 3.14 3.59 3.44 1.87

a Average of I, II, III and IV

Table 8 Mayer bond orders of O1-H2 and H2-N3 in Coal-OHN

Coal-OHN with IM Coal-OHN
without IM

I II III IV Avga

O1-H2 0.63 0.61 0.62 0.61 0.62 0.64

H2-N3 –b – – – – 0.17

a Average of I, II, III and IV
b Bond order does not exist
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electron pairs of O in S-NMP and S of C=S in IM lead to
negative charge of the two atoms as electron donors, which
could interact with positive H of OH⋯N and compete with
the negative N. As a result, the model hydrogen bond of
OH⋯N in Coal-OHN is weakened.

Considering that IM in our study comes from the
addition of CS2 into NMP, we hypothesize that CS2 can
destroy the aggregation in D-NMP and release the capacity
of D-NMP to weaken the hydrogen bond of OH⋯N in
Coal-OHN, almost reaching the level of S-NMP.

Conclusions

Three different extraction processes were simulated suc-
cessfully by performing DFT methods. The calculated
results show that although D-NMP barely weakens the
hydrogen bond of OH⋯N in coal;, S-NMP and IM do so,
seriously and similarly. Thus, we conclude that NMP has an
intrinsically high capacity to weaken the hydrogen bond of
OH⋯N in coal, but that this capacity is masked due to
aggregation between NMP molecules. The addition of CS2
to NMP destroys the aggregation of NMP and released the
capacity of weakening the hydrogen bond of OH⋯N. That
is, CS2 added into pure NMP solvent plays the role of
releasing the original capacity of NMP to weaken the
OH⋯N hydrogen bond in coal.
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EN (Ha) −440.7921 −440.7922 −440.7791 −440.7925 −440.7890 −440.7923
EHBE (kJ mol−1) 5.49 14.63 14.11 10.71 11.24 45.72
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Table 10 Related data of the different mixing processes

Models Distance Bond order Hydrogen bond
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H2-N3 (Å) H2-N3 EHBE (kJ·mol−1)
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with S-NMP

3.80 –b 7.06

Coal-OHN with
D-NMP
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Abstract DFT computations were carried out to charac-
terize the 17Oand 2H electric field gradient, EFG, in
various bisphosphonate derivatives. The computations
were performed at the B3LYP level with 6-311++G (d,P)
standard basis set. Calculated EFG tensors were used to
determine the 17O and 2H nuclear quadrupole coupling
constant, χ and asymmetry parameter, η. For better
understanding of the bonding and electronic structure of
bisphosphonates, isotropic and anisotropic NMR chemical
shieldings were calculated for the 13C, 17O and 31P nuclei
using GIAO method for the optimized structure of
intermediate bisphosphonates at B3LYP level of theory
using 6-311++G (d, p) basis set. The results showed that
various substituents have a strong effect on the nuclear
quadrupole resonance (NQR) parameters (χ, η) of 17O in
contrast with 2H NQR parameters. The NMR and NQR
parameters were studied in order to find the correlation
between electronic structure and the activity of the desired
bisphosphonates. In addition, the effect of substitutions on

the bisphosphonates polarity was investigated. Molecular
polarity was determined via the DFT calculated dipole
moment vectors and the results showed that substitution of
bromine atom on the ring would increase the activity of
bisphosphonates.

Keywords Bisphosphonate . DFT calculations . Electrical
field gradient . NMR . NQR

Introduction

Derivatives of bisphosphonates are a novel class of drugs
that have been registered for various clinical applications
worldwide [1]. Clinical data confirm the role of bisphosph-
onate in treatment of bone metastatic cancer and multiple
myeloma, breast, prostate and lung cancer. Recent reports
suggest bisphosphonates treatment may have a direct effect
on the tumor cells [2–6]. These compounds are also potent
activators of human γδ T cell [7, 8]. γδ T cells have an
important role in defense against many infectious organ-
isms and are also involved in killing of tumor cell. γδT
cells expressing the Vγ2Vδ2 (also known as Vγ9Vδ2) T
cell receptor (TCR) play an important role in immune
system surveillances [9–12].

Recently, various derivatives of these bisphosphonates
have been investigated by Hartree-Fock theory with a 6-
31G (p) basis set, e.g., atomic charges are calculated
using the Merz-Sinhg-Kollman (MSK) method [9, 10] in
the Gaussian 98 program. It is reported that the activity of
bisphosphonate compound increases with polarity for
example, activity of 3, 4-Br2Ph is greater than 3, 4-Cl2Ph
[13]. In addition, the nuclear magnetic resonance chemical
shift and nuclear quadrupole resonance parameters are the
most powerful properties available for structure determi-
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nation at the molecular level [14–16]. Zhang and Oldfield
have carried out an experimental and theoretical investi-
gation of the 31P shielding tensors in phosphonates and
bisphosphonates [17]. In their work, calculations and
experiment both indicate a large change in tensor
orientation between neutral and negatively charged phos-
phonates. In addition, the isotropic and anisotropic
shielding tensors calculations in phosphonates and
bisphosphonates have opened a way to the determination
of their protonation states when bound to proteins. These
information which is not accessible from crystallographic
studies, are used to facilitate the drug design [17]. In this
research, NMR, NQR and polarity of some derivatives of
bisphosphonates as anticancer drug are investigated by
using the density functional theory (DFT) calculations
with the Gaussian 98 suite of programs in B3LYP/6-31G
(d, p) level.

Computational details

The calculations of NMR shieldings and chemical shifts are
widely used. These calculations are important tool for
determining of new structures at the molecular level [18,
19]. It is important that the gauge is determined for
calculating of magnetic properties [20]. This problem is
solved in principle by the gauge including atomic orbital
(GIAO) method. This method is used both in Hartree-Fock
and DFT methods [21]. The GIAO method is a good
method because it is less sensitive to basis set quality. The
calculated chemical shifts at the Hartree-Fock level are
often reasonably accurate, particularly for organic mole-
cules. However, for higher accuracy or in strongly
correlated systems, it is necessary to take electron correla-
tion into account [22, 23]. Therefore, DFT method must be
used for determining of chemical shifts.

The density functional theory (DFT) studies are
carried out using the Gaussian 98 suite of programs
[24] and the geometry optimization is performed at the
B3LYP/6-31G(d, p) level. To evaluate and ensure the
optimized structures of the molecules, frequency calcu-
lations were carried out using analytical second deriva-
tives. In all cases, only real frequencies were obtained for
the optimized structures.

To calculate the 2H and 17O EFG tensors in the principal
axis system, DFT method including B3LYP [25, 26] with
the basis set of 6-311++G (d, p) is employed. To investigate
the influence of the substitution on the EFG tensors, all
calculations are performed for derivatives of non-nitrogen
bisphosphonates.

In this work, gauge-included atomic orbital (GIAO)
approach in DFT/B3LYP method is used in the chemical
shielding tensor calculations the principal eigenvalues of

chemical shielding tensors σ11, σ22 and σ33 are found to
have the following relationship [27]:

s33 > s22 > s11 ð1Þ

Chemical shielding anisotropy (Δσ) is obtained by
Δσ = σ33- (σ22+σ11)/2, and chemical shielding isotropy
(σiso) is obtained by σiso=(σ11+σ22+σ33)/3 [28].

For EFG tensors qxx, qyy and qzz have the following
relationship:

qzzj j � qyy
�� �� � qxxj j ð2Þ

The nuclear quadrupole coupling constant (χ) was
obtained by

# MHzð Þ ¼ e2Qqzz h= ð3Þ
where “e” is the charge of electron, Q is the nuclear electric
quadrupole moment, and “h” is the Planck’s constant [29].
Q value for 17O and 2H nuclei used in the calculation of χ
values has been reported to be 25.78 and 2.86 mb (1 mb=
1×10-31 m2), respectively [30].

Another important parameter which refers to the devia-
tion of charge distribution from cylindrical symmetry is the
asymmetry parameter (η) obtained by [31].

h ¼ qyy � qxx
qzz

����
���� ð4Þ

The DFT calculated dipole moment vectors showρ1, ρ3
and ρ6 components.

The molecular polarity was obtained by ρ=(ρ1+ ρ3+ρ6)/3
[32].

Results

2H and 17O EFG tensors, the nuclear quadrupole coupling
constants (χ), asymmetry parameters (η) and 13C, 17O and
31P chemical shielding are investigated for desired
bisphosphonates and their derivatives (substituted dihalo,
ortho, meta and para). The B3LYP/6- 311++G (d, p)
optimized geometries for desired bisphosphonate and its
derivatives are shown in Fig. 1.

Electric field gradients

In this part, the DFT calculations at the B3LYP level of
theory with the 6-311++G (d,p) basis set are carried out
to study the substitution effect on the 2H and 17O EFG
tensors of bisphosphonates. In addition, NQR parameters
are used for investigating of the substitution effect on
acidic properties of bisphosphonates. The calculated
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nuclear quadrupole coupling constants, χ, and asymmetry
parameters, η, by EFG tensor principal components, qii,
for these atoms are summarized in Tables 1 and 2.

Tables 1 and 2 indicate the influences of different
substitutions on the calculated 2H and 17O EFG tensors.
In addition, the effect of the substitutions on χ and η is
studied. The results show that χ relate to charge density of
the atom and its symmetry. χ increases with increase of the
charge density and decreases with decrease of the atom
symmetry. According to the results in Table 1, the
decrease in the EFG tensor elements of oxygen atoms in
P = O bond can be a result of delocalized electrons. Two
factors control the value of qzz for a quadrupolar nucleus:
the charge density at the nucleus and the symmetry of the
EFG around the nucleus. The double bond in P = O
increases the charge density at both oxygen atoms (Fig. 1).
Since the contribution of nonbonding electrons (lone pairs
of p and d electrons) to the nonspherical charge distribu-
tion is greater than that of bonding electrons, the EFG is
more asymmetric in atoms with nonbonding electron pairs
due to the increased charge density. On the other hand, if
the asymmetry of EFG increases, then qzz and conse-
quently χ would decrease. As a result, the competing

effects of charge density and EFG asymmetry on χ offset
each other, leading to only a small increase in the χ values
of the acidic 17O at phosphonate groups and a decrease in
the χ values of 17O in P = O bonds. Thus, we conclude
that the χ values of 17O are a good marker for distinguish-
ing between the acidic and nonacidic forms of oxygen
atoms in phosphonate groups. In addition, Table 1 indi-
cates that the χ values of 17O can be used as a good
marker for investigating the effect of substitutions on the
acidic properties of bisphophonates.

Tables 1 and 2 indicate that the NQR parameters of the
acidic hydrogen atom (28H) on the 14P in bisphosph-
onate change considerably with respect to other acidic
hydrogens on the bisphosphonate. χ (28H) decreases by
55 KHz and η (28H) increases by 0.03 through position
of this hydrogen atom with respect to benzene ring.
Furthermore, the change of substitution affects the NQR
parameters of the acidic hydrogen atom (28H) on the
14P in bisphosphonate and their derivative. The decrease
of χ (28H) and increase of the O–H length in
bisphosphonate and their derivatives lead to increasing
acidity of the hydrogen atom on the 21O–28H bond
(Fig. 1a).

0.9696

1.4806

1.6171

0.9829

1.4942

1.6108

0.9692

0.9709

(a)

(b)

Fig. 1 The optimized geometry
using B3LYP/6-31G (d,p) for bis-
posphonate (a) and its derivatives
(X = Cl, Br, F and OMe) (b)
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Investigation of NMR parameters (chemical shielding
tensors) in bisphosphonates and their derivatives

In this part, the focus is on the effect of the structure of
molecule on the 13C, 31P and 17O NMR chemical shielding.
To achieve this aim, DFT calculation is carried out at the
B3LYP level of theory with 6-311++G (d, p) basis set for
desired bisphosphonate acids and there derivatives (substi-
tuted dihalo, ortho, meta and para). The calculated
chemical shielding tensors are reported as chemical shield-
ing principal components (σij), chemical shielding isotropy
(σiso), and chemical shielding anisotropy (Δσ) in Table 3.

Phosphorous atom is in the second row of the periodic
table and has empty d orbital which overlaps with filled p
orbital of oxygen atom. Thus, the following resonance
structures may be considered

R OHð Þ2 Pþ�O� $ R OHð Þ2 P ¼ O

2ð Þ 3ð Þ
The P = O double bond in (2) is expected to be quite

different from a normal pπ-pπ double bond of, for example,
a carbonyl group. The 3d orbitals are diffuse and more
directional than 3p orbitals and most of the electron density
in a pπ-dπ bond is expected to lie in the vicinity of the
oxygen atom [33]. The obtained chemical shielding for 31P
and 17O in Table 3 confirm the above discussion. The 31P
(15) chemical shielding of bisphosphonate is deshielded by
25.88 ppm from 31P (14). If the 31P NMR shielding tensors
are considered in more detail, NMR spectra of phosphorus

may be interpreted by two types of phosphorus site in the
studied phosphonates here: one is neutral with two
hydroxyl groups, PO (OH) 2, while the other has one
formal negative charge with one of the two hydroxyl
groups which is deprotonated, PO (OH) O−. The results
show that in bisphosphonates, the O = P-O− group does not
contain two almost equal P-O bond lengths (Table 4).

The difference in chemical shielding of two types of
phosphorus site is consistent with an expected smaller
contribution of resonance structure (2) for the 31P (15). In
addition, the bond length and bond order of 15P-22O and
14P-19O were given in Table 4. These results show that as
the chemical shielding decreases, the bond length P-O
decreases and its bond order increases. According to the
Ramsey theory of nuclear magnetic shielding, the shielding
of a nucleus can be separated into two main contributions,
the diamagnetic shielding (σd) and the paramagnetic
shielding (σp) [31, 32]. The diamagnetic shielding contri-
bution describes the shielding of the nucleus from the
external magnetic field by the surrounding electrons that
induce a magnetic field opposite to the external one. The
paramagnetic shielding contribution is a perturbation of the
electron density currents that generally causes a decrease in
the absolute shielding. In other words, the paramagnetic
contribution is typically responsible for observed changes
in chemical shifts for a given nucleus. Therefore, the 31P
NMR chemical shielding is dominated by paramagnetic
shielding term, while the changes in the diamagnetic term
are comparatively small. The results show that chemical
shielding of 31P (14) is more than that of 31P (15), since 31P

Table 4 The calculated bond lengths of between 17O and 31P (Fig. 1) atoms and polarity by using B3LYP/6-311++G (d, p) in bisphosphonate and
its derivatives

Compounds Acid Di Bromo
acid

Di Chloro
acid

Di Fluoro
acid

Chloro and Bromo
acid

Orto-Br
acid

Orto-Cl
acid

Orto-F
acidn1

14P-
nO

19 1.4806 1.4811 1.4813 1.4981 1.4806 1.4813 1.4813 1.4816

20 1.6171 1.6123 1.6082 1.5996 1.6148 1.6086 1.6064 1.6061

21 1.6185 1.6228 1.6215 1.6117 1.6192 1.6252 1.6261 1.6232

15P-
nO

16 1.4942 1.4944 1.4949 1.4980 1.4806 1.4958 1.4962 1.4962

17 1.6108 1.6124 1.6104 1.6014 1.6148 1.6088 1.6088 1.6100

18 1.6210 1.6229 1.6209 1.6137 1.6192 1.6222 1.6219 1.6226

Polarity 130.4 169.7 155.0 131.6 148.8 147.5 140.7 130.5

Compounds Meta –Br
acid

Meta-Cl acid Meta-F acid P-Br acid P-Cl acid P-F acid P-OMe
acidn

14P-
nO

19 1.4813 1.4813 1.4816 1.4809 1.4812 1.4808 1.4807
20 1.6115 1.6099 1.6148 1.6079 1.6099 1.6138 1.6164

21 1.6208 1.6132 1.6194 1.6241 1.6205 1.6197 1.6190

15P-
nO

16 1.4946 1.4949 1.4943 1.4948 1.4948 1.4946 1.4947

17 1.6102 1.6101 1.6103 1.5996 1.6105 1.6105 1.6111

18 1.6213 1.6215 1.6207 1.6113 1.6220 1.6210 1.6216

Polarity 149.6 142.3 131.0 148.8 143.5 131.0 149.8

1 n is the number of oxygen atoms in Fig. 1
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(15) is vertical on benzene ring. Therefore, phosphorus atom
should result in an increased polarization of the charge
distribution of 31P leading to an increased paramagnetic
shielding. Table 3 shows that the magnitude of chemical shift
is directly related to the energy gap between the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO). Furthermore, the magnitude of
σp is inversely related to the energy gap between the relevant
occupied and virtual orbitals, with a smaller energy gap
leading to a larger chemical shielding. The required mixing
may be visualized as rotations of an occupied orbital about
one of the three Cartesian axes to produce constructive
overlap with an appropriate virtual molecular orbital.

The polarity of the bisphosphonates

The polarity of the bisphosphonate and its derivatives is
presented in Table 4. Zhang and et al. showed that if
bisphosphonates polarity increases then their IC50 decreases
but their activity increases [34]. The results in Table 4 show
the type and position of substitution affect on polarity of
bisphosphonates. The bromine substitution and its position
on the ring affect more than other substitutions. In addition,
the polarity of bisphosphonate is increased using O-Me
substitution. On the other hand, electron donating groups
such as O-Me increase the polarity of bisphosphonates.
Since bromine atom electronegativity is less than chlorine
and fluorine atoms, the bromine atom increases the polarity
of bisphosphonates.

Summary and conclusions

Based on DFT calculations, it is concluded that the EFG
tensors of oxygen atoms are good indicators to characterize
the acidic property of hydrogen atoms in phosphate groups.
The NQR parameters of oxygen atom in P = O bond change
significantly through delocalized electron. The results show
that the electronic environments of oxygen atoms are
affected by benzene ring and its substitutions. The position
of 19O and 28H causes notable changes in the EFG tensors
of these atoms. Furthermore, the change of substitution
affects the NQR parameters of the acidic hydrogen atom on
the 14P (28H) in bisphosphonates and their derivative. The
decrease of χ (28H) and increase of the O–H bond length in
bisphosphonates and their derivatives the increased acidity
of the hydrogen atom in the 21 O–28H bond. The results
show that chemical shielding of 31P (14) is more than that
of 31P (15). Therefore, the phosphorus atom should result in
an increased polarization of the charge distribution of 31P
leading to an increased paramagnetic shielding. The
polarity of the bisphosphonates shows that the type and
position of substitution affects this quantity. This effect for

bromine substitution is more than the others. Since bromine
atom electronegativity is less than chlorine and fluorine
atoms, the bromine atom increases the polarity of
bisphosphonates.
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Abstract In the present work, in order to investigate the
electronic excited-state intermolecular hydrogen bonding
between the chromophore coumarin 153 (C153) and the room-
temperature ionic liquid N,N-dimethylethanolammonium
formate (DAF), both the geometric structures and the
infrared spectra of the hydrogen-bonded complex C153–
DAF+ in the excited state were studied by a time-
dependent density functional theory (TDDFT) method.
We theoretically demonstrated that the intermolecular
hydrogen bond C1=O1···H1–O3 in the hydrogen-bonded
C153–DAF+ complex is significantly strengthened in the
S1 state by monitoring the spectral shifts of the C=O group
and O–H group involved in the hydrogen bond C1=
O1···H1–O3. Moreover, the length of the hydrogen bond
C1=O1···H1–O3 between the oxygen atom and hydrogen
atom decreased from 1.693 Å to 1.633 Å upon photoex-
citation. This was also confirmed by the increase in the
hydrogen-bond binding energy from 69.92 kJ mol−1 in the
ground state to 90.17 kJ mol−1 in the excited state. Thus,
the excited-state hydrogen-bond strengthening of the
coumarin chromophore in an ionic liquid has been
demonstrated theoretically for the first time.

Keywords Hydrogen-bonding dynamics . Excited state .

Hydrogen bond strengthening . Spectral shift

Introduction

Numerous experimental and theoretical methods have been
developed to investigate the nature of a hydrogen bond
linking a solute with a polarizable functional group and a
protic solvent. Since intermolecular hydrogen bonds are
site-specific solute–solvent interactions, they play a funda-
mental role in the molecular photochemistry of organic and
biological chromophores in solution [1–24]. Upon photo-
excitation, the intermolecular hydrogen bonds formed
between solute and solvent molecules will reorganize
themselves as the result of differences in the charge
distribution of the different electronic states; this process
is termed hydrogen-bonding dynamics, and it is linked to
photochemical and photophysical processes [25–31]. A
strengthening of the hydrogen bond between C102 and
phenol early during photoexcitation to the electronic
excited state was first demonstrated by Zhao and Han
theoretically [4], and since then a great deal of work has
focused on hydrogen-bonding dynamics in the excited state
[4–10]. Their work has already yielded much information
on the structural and relaxation dynamics of hydrogen
bonds after photoexcitation, which has aided our under-
standing of fluorescence-quenching phenomena in the
excited state [32–35]. However, previous studies focused
on the intermolecular hydrogen bonds that form between
chromophores and traditional polar protic solvents, and
while great progress has been made in this field [36–44],
fewer studies have been conducted on the solute–solvent
interactions between chromophores and room-temperature
ionic liquids [45–47].

We have shifted the attention in our research away from
traditional solvents and towards solvents containing ions—
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room-temperature ionic liquids (RTILs). The properties of
RTILs—a novel class of molten salts that mainly
comprise organic cations and inorganic anions with
melting points below room temperature—are currently
receiving a great deal of attention at present [48–69].
Due to their unique ingredients, their propoerties differ
drastically from those of conventional organic solvents
[51, 52]. Recent work in this field has focused on the
dynamics of the solvation of a solvatochromic probe in an
RTIL, which has been explored through experimental
studies and spectroscopic measurements [53–66]. For
example, Mroncelli and coworkers [65] have monitored
the steady-state spectra, rotation times, and time-resolved
emission spectra of the probe 4-aminophthalimide (4-AP)
in the ionic liquid 1-n-butyl-3-methylimidazolium hexa-
fluorophosphate ([bmim+][PF−]). They found that the
solvation energy of 4-AP in [bmim+][PF−] is comparable
to those of 4-AP in highly polar but aprotic solvents, and
they demonstrated that [bmim+][PF− ] possesses essential-
ly no hydrogen bond donating ability, so no hydrogen
bonds form in the 4-AP [bmim+][PF−] system. The
solvation and rotational dynamics of coumarin 153
(C153) in a series of phosphonium ionic liquids has also
been reported by Mroncelli and coworkers [66]. To
investigate the influence of specific hydrogen-bonding
interactions on solvation and rotational dynamics in
RTILs, Paul and Samanta [46] performed spectroscopic
measurements to study the behavior of C153 in an
alcohol-functionalized room-temperature ionic liquid, 1-
(hydroxyethyl)-3-methylimidazolium bis(trifluorometha-
nesulfonyl)imide, abbreviated to [OH–emim][Tf2N]. The
presence of the OH group in [OH–emim][Tf2N] makes it a
good hydrogen bond donor, and the occurrence of
hydrogen-bonding interactions between the probe mole-
cule C153 and the hydroxylated cation was confirmed by
experimental measurements; furthermore, the hydrogen
bonding exerts a significant influence on the overall
dynamics in RTILs [46]. Cation–anion hydrogen-bonding
associations in the first solvation shell can also help to
reduce the ultrafast component of the dynamics [46].
Besides investigations into the dynamics of RTILs, efforts
have also been directed into the study of hydrogen bonds
between ionic pairs [69]. For instance, Dhumal et al. [69]
provided very useful insights into the intermolecular
interactions between the 1-methyl-3-imidazolium cation
and acetate anion by combining theoretical analysis with
experimental methods. In other words, hydrogen bonding
in RTILs is the focus of much important research.

C153 is widely utilized as a solvation probe to monitor the
nature of a solvent, owing to its rigid structure and the large
change in dipole moment that is caused by photoexcitation
[67, 68]. C153 was also employed in the investigation
reported by Seth et al., who found that a nonbonding

interaction formed between the cation and the anion from
the optimized structure of N,N-dimethylethanolammonium
formate (DAF) [45]. Moreover, they concluded that the
rotational dynamics of C153 were hindered in DAF
compared to the viscous flow of DAF, which is possibly
due to hydrogen-bond formation for C153 in DAF [45].
Their work has played an important role in showing that
hydrogen-bond formation affects the rotational dynamics of
a solute, and thus affects investigations of the nature of
RTILs. Significantly, their work aroused our interest in
studying the hydrogen bonding that forms between solute
and solvent in RTILs. To our knowledge, little theoretical
work has been performed on the hydrogen bonding
between solvatochromic probe molecules and solvent
molecules in novel RTIL systems. To determine the precise
nature of the hydrogen bonding in this novel system,
further theoretical methods need to be adopted for excited-
state geometry optimization and electronic transition calcu-
lations. TDDFT is accepted as a reliable method for
excited-state computation, and it can also be used to
calculate the IR spectrum in the electronically excited state
[70–74]. Infrared spectra also reflect hydrogen-bonding
dynamics, since such dynamics occur on an ultrafast
timescale that is primarily dictated by the vibrational modes
of the atoms engaged in the formation of the hydrogen
bond [75–78]. Therefore, in this study, we were motivated
to research the hydrogen-bonded dimer C153–DAF+ that
forms between isolated C153 and the DAF+ cation in ionic
liquid DAF, and the TDDFT method was performed to
study the hydrogen dynamics of this hydrogen-bonded
C153–DAF+ complex in the electronically excited state.
The calculated absorption peak of C153 in DAF is 407 nm,
which is in good agreement with experiment results [45].
At the same time, the basis set superposition error (BSSE)
for the intermolecular hydrogen bond calculated using the
MP2 method only accounts for a small proportion of the
intermolecular hydrogen-bond binding energy. Further-
more, the calculated results for the proposed hydrogen-
bonded complex C153–DAF+ are also consistent with the
mechanism of hydrogen bond strengthening in the elec-
tronically excited state that was first demonstrated by Zhao
and Han [4].

Computational details

All of the electronic structure calculations were carried out
using the TURBOMOLE program suite. The ground-state
geometric optimization was performed using the density
function theory (DFT) method with Becke’s three-
parameter hybrid exchange function and the Lee–Yang–
Parr gradient-correlation functional (B3LYP functional)
[79]. The excited state electronic structures were calculated
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using the time-dependent density functional theory
(TDDFT) with the B3LYP functional. In both the ground-
state and excited-state geometric optimizations, triple-ζ
valence quality basis sets with one set of polarization
functions (TZVP) were chosen [80]. Fine quadrature grids 4
were also employed [81]. Harmonic vibrational frequencies
in the ground state and excited state were determined by
diagonalizing the Hessian [82]. The excited-state Hessian
was obtained by the numerical differentiation of analytical
gradients using central differences and a default displace-
ment of 0.02 bohr. The infrared intensities were determined
from the gradients of the dipole moment [83]. The BSSEs
were calculated at the MP2/TZVP level.

Results and discussion

Geometric structures in the ground state

The optimized geometry in the ground state of the
hydrogen-bonded complex C153–DAF+, where the oxygen
atom of the carbonyl group in C153 is linked to the
hydrogen atom of the hydroxyl group in the cation DAF+ in
the RTIL DAF is shown in Fig. 1. We chose the hydrogen-
bonded complex C153–DAF+ here to study the ultrafast
hydrogen-bonding dynamics for the following reason. As
we know, in traditional polar protic solvents, the solvent
molecules reorient themselves around the photoexcited
solute molecules to form many solvation shells, but only
the solvent molecules in the inner solvation shell can be
taken into consideration early on in hydrogen-bonding
dynamics that occur on the ultrafast timescale [4]. The
model built by Zhao and Han for traditional polar protic
solvents can be adopted for the hydrogen bonding in RTILs
too, as the solvation time in most conventional solvents is
extremely short (≤10 ps), but, the solvation time in neat
RTILs is rather long (in the range of 0.1–10 ns) [65, 66]. In
addition, only the hydrogen bond C1=O1···H1–O3 joining
the C1=O1 group of isolated C153 and the O3–H1 group of
the isolated cation in DAF is studied here.

Some calculated bond lengths, angles and dihedral angles in
the hydrogen-bonded complex C153–DAF+ as well as the
related monomers in the ground state are listed in Table 1. In
the optimized geometric structure of the hydrogen-bonded
complex C153–DAF+, the bond angles C1=O1···H1 and
O1···H1–O3 are 29.89° and 169.4°, respectively. In addition,
the calculated dihedral angle C1=O1···H1–O3 is 10.38°. The
calculated length of the hydrogen bond C1=O1···H1–O3

between the oxygen atom and hydrogen atom is 1.693 Å,
which, generally speaking, is shorter than the hydrogen bonds
formed in traditional solvents [4–10]. In Table 1, the
calculated bond length for C1=O1 in isolated C153 is
1.204 Å , which increases to 1.227 Å upon the formation
of the intermolecular hydrogen bond C1=O1···H1–O3. At the
same time, the O3–H1 bond in isolated cation DAF+ increases
slightly in length from 0.965 Å to 0.987 Å upon the
formation of the intermolecular hydrogen bond C1=O1···H1–
O3. These changes are similar to the conditions in other
traditional solvents [4–10]. The length of the C1–C2 bond in
isolated C153 and that of the C3–O3 bond in the isolated
cation DAF+ were calculated to be 1.450 Å and 1.410 Å,
respectivey, and they decrease to 1.433 Å and 1.396 Å upon
the formation of the hydrogen-bonded complex C153–DAF+.
The C1–O2 bond in isolated C153 shortens from 1.391 Å to
1.366 upon the formation of the hydrogen-bonded complex
C153–DAF+. However, the lengths of the C2–H2, C3–H3 and
C3–H4 bonds remain almost unchanged upon forming the
hydrogen-bonded complex C153–DAF+.

Electronic spectra

To understand the nature of the excited states of C153 and
its hydrogen-bonded dimer C153–DAF+, we need to
investigate the properties of the low-lying electronically
excited states in detail. The electronic excitation energies
and corresponding oscillator strengths for the singlet
excited states of the hydrogen-bonded dimer C153–DAF+

as well as the involved monomers were calculated using the
TDDFT method, and the results are shown in Table 2. Both
the isolated C153 and the hydrogen-bonded complex
C153–DAF+ can be initially photoexcited to the S1 state,
since the S1 states of both species have larger oscillator
strengths than the other states. The absorption peak of the
hydrogen-bonded complex C153–DAF+ was calculated to
occur at 407 nm; in experiments, the absorption maximum
of C153 in DAF is found at about 425 nm [45]. Thus, our
theoretical calculation is very close to the experimental
value. Interestingly, it should be noted that all of the
excitation energies of the hydrogen-bonded complex C153–
DAF+ are slightly redshifted compared with those of the
isolated C153 in different electronically excited states,
which indicates that the intermolecular hydrogen-bonding
interactions can reduce the excitation energies of the

Fig. 1 Optimized geometric configuration of the hydrogen-bonded
complex C153–DAF+; dotted line denotes the intermolecular hydrogen
bond
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hydrogen-bonded dimer C153–DAF+. This may be useful
information for us when investigating the changes in the
hydrogen bond with different electronically excited states.
Furthermore, the excitation energies of the isolated cation
DAF+ are much larger than those of the isolated C153 and
the hydrogen-bonded dimer C153–DAF+. The data mentioned
above reveal that only the C153 moiety is electronically
excited when the hydrogen-bonded complex C153–DAF+ is
photoexcited to the S1 state; the DAF+ moiety remains in its
electronic ground state. Thus, the S1 state of the hydrogen-
bonded complex C153–DAF+ is defined as a locally excited
(LE) state [83, 84]. From Table 2, we can also obtain
information on the orbital transition that contributes to the S1
state of the isolated C153 and the hydrogen-bonded complex
C153–DAF+: both of the S1 states correspond to the
molecular orbital transition from the highest occupied orbital
(HOMO) to the lowest unoccupied orbital (LUMO) accord-
ing to our TDDFT calculations.

Frontier molecular orbitals

The two main frontier molecular orbitals involved in the first
photoexcited state of the hydrogen-bonded complex C153–

DAF+ are depicted in Fig. 2. It is clear that the electron
densities of the HOMO and LUMO orbitals are localized on
the C153 moiety. Thus, the S1 state of the hydrogen-bonded
complex C153–DAF+ has the characteristics of the LE state.
After further observation, it is apparent that the electron
density distribution of the HOMO is comparatively uniform,
but it is deformed for the LUMO because the electron
density reaches to the side of the C1=O1 group moiety.
Consequently, the electron density of the C1=O1 group is
strengthened in the first photoexcited state. This indicates
that the electronic excitation may have a significant influence
on the intensity of the hydrogen bond C1=O1···H1–O3.

Vibrational absorption spectra

Based on the optimized excited-state geometry, all of the IR
spectra of the ground state and the S1 state for the isolated

Table 2 Calculated electronic excitation energies (nm) and the
corresponding oscillator strengths of the isolated monomers as well
as the hydrogen-bonded complex C153–DAF+

C153 DAF+ C153–DAF+

S1 380 (0.336) 191 (0.007) 407 (0.374)

H→L 96.3% H→L 98.8% H→L 95.5%

S2 323 (0.024) 168 (0.002) 371 (0.000)

S3 282 (0.000) 156 (0.015) 332 (0.047)

S4 279 (0.040) 150 (0.014) 281 (0.064)

S5 258 (0.067) 148 (0.013) 277 (0.000)

S6 241 (0.045) 145 (0.002) 266 (0.000) Fig. 2 Frontier molecular orbitals (MOs) of the hydrogen-bonded
complex C153–DAF+

Parameter C153 DAF+ C153–DAF+

Bond length (Å) C1=O1 1.204 1.227

O1···H1 1.693

O3–H1 0.965 0.987

C1–O2 1.391 1.366

C1–C2 1.450 1.433

C2–H2 1.079 1.079

C3–O3 1.410 1.396

C3–H3 1.095 1.095

C3–H4 1.101 1.106

Bond or dihedral angle (°) C1=O1···H1 29.89

O1···H1–O3 169.4

C1=O1···H1–O3 10.38

Table 1 Calculated bond
lengths (Å), angles (°) and
dihedral angles (°) of the
isolated monomers and the
hydrogen-bonded complex
C153–DAF+ in the ground state
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C153 as well as the hydrogen-bonded complex C153–
DAF+ were calculated using the DFT and the TDDFT
methods, respectively, and the ground-state IR spectrum of
DAF+ was also calculated for comparison.

The calculated IR spectra for both the isolated C153 and
the hydrogen-bonded complex C153–DAF+ in different
electronic states over the spectra range 1000–2000 cm−1 are
presented in Fig. 3, and the spectral regions of the C=O
stretching band are indicated with red arrows. Electronic
excitation from the ground state to the S1 state of the
isolated C153 induces a large redshift (of 251 cm−1) in the
stretching vibrational mode of the C1=O1 group from
1797 cm−1 to 1546 cm−1, while the stretching vibrational
mode of the C1=O1 group in the ground state is redshifted
by only 80 cm−1 from 1797 cm−1 to 1717 cm−1 because of
the hydrogen-bonding interactions. So, we can conclude
that both the formation of the hydrogen bond C1=O1···H1–
O3 and electronic excitation can cause the stretching
vibrational mode of the C1=O1 group to redshift, whereas
electronic excitation can produce a relatively large redshift
in the stretching vibrational mode of the C1=O1 group.

The calculated IR spectra for the hydrogen-bonded
complex C153–DAF+ in different electronic states over
the spectral range 2000–4000 cm−1 are shown in Fig. 4.
Additionally, the O–H stretching band of the cation DAF+

is presented. The stretching vibrational frequencies of the
O3–H1 group are depicted in Fig. 4. Upon observing the
stretching vibrational mode of the O3–H1 group, it is clear
that the stretching vibrational mode of the O3–H1 group in
the ground state is significantly redshifted (by 472 cm−1)
from 3812 cm−1 to 3340 cm−1 owing to the formation of the
hydrogen bond C1=O1···H1–O3. This suggests that the
stretching vibrational mode of the O3–H1 group undergoes
a larger shift than that of the C1=O1 group upon the
formation of the hydrogen bond C1=O1···H1–O3 in the
ground state. As a result, the O3–H1 group is more sensitive

to hydrogen-bonding interactions. As we discussed earlier,
the DAF+ moiety remains in its ground state when the
hydrogen-bonded complex C153–DAF+ is photoexcited to
the S1 state. These analyses indicate that the stretching
vibrational mode of the O3–H1 group is an excellent mode
to monitor the hydrogen-bonding dynamics of the
hydrogen-bonded complex C153–DAF+.

Comparing Fig. 3 and Fig. 4, when the hydrogen-bonded
complex C153–DAF+ is photoexcited to the S1 state from
the electronic ground state, a clear redshift in the stretching
vibrational mode of the C1=O1 group occurs, as it changes
from 1717 cm−1 to 1526 cm−1. This suggests that the
electron density of the C1=O1 group of the hydrogen-
bonded complex C153–DAF+ changes significantly upon
electronic excitation, which is in accordance with the
results we obtained in the molecular orbital (MO) analysis.
At the same time, the stretching vibrational mode of the
O3–H1 group also changes significantly, from 3340 cm−1 to
3158 cm−1.

Excited-state hydrogen-bond strengthening

As mentioned before, when the hydrogen-bonded complex
C153–DAF+ is electronically excited to the S1 state, the
moiety of the isolated cation DAF+ in DAF remains in the
ground state. Therefore, we calculated the binding energy
of the hydrogen bond in the excited state by subtracting the
energy of the isolated C153 in the S1 state and the energy of
the isolated cation in the ground state from the energy of
the hydrogen-bonded complex C153–DAF+ in the S1 state.
The calculated binding energies of the hydrogen bonds as
well as the corresponding hydrogen bond lengths in the
ground and S1 electronic states are shown in Table 3.
Moreover, the hydrogen bond energies include BSSE
corrections performed using the counterpoise method,

Fig. 4 Calculated O–H stretching bands of the isolated cation DAF+

and the hydrogen-bonded complex C153–DAF+ in different electronic
states

Fig. 3 Calculated IR spectra of the isolated C153 and the hydrogen-
bonded complex C153–DAF+ in different electronic states across the
spectral range of the C=O stretching absorption band
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although the BSSE corrections did not affect the binding
energies notably. It is clear that the hydrogen bond
C1=O1···H1–O3 is strengthened in the excited state, since
the BSSE-corrected binding energy for this hydrogen bond
is greatly increased by 20.25 kJ mol−1 from 69.92 kJ mol−1

in the ground state to 90.17 kJ mol−1 in the S1 state. It is
worth noting that the binding energies of the hydrogen
bond in this novel system are quite large compared to those
obtained with conventional solvents; binding energies for a
hydrogen bond between a fluorescent probe and conven-
tional solvent generally fall within the range 8–50 kJ mol−1

[4–6, 36–39]. Lee et al. [84] have carried out some
theoretical studies on a similar system. They found that
cationic and anionic dimers with short and strong hydrogen
bonds (SSHBs) have larger hydrogen-bond binding energies
(by almost 100 kJ mol−1) than neutral hydrogen-bonded
dimers, and this leads to the polarization of proton-donating
H atoms on proton-accepting O/N atoms [84].

When the dimer is photoexcited, the calculated length of
the C1=O1 bond increases from 1.227 Å to 1.242 Å, while
the O3–H1 bond length increases to 0.997 Å from 0.987 Å.
Moreover, the length of the hydrogen bond O1···H1 is
correspondingly shortened by 0.06 Å from 1.693 Å to
1.633 Å. Thus, the conclusion that the hydrogen bond is
strengthened in the photoexcited state, as seen for conven-

tional solvents [4–10], can also be drawn for C153
hydrogen bonded to the cation DAF+.

To show the influence of electronic excitation on the
whole hydrogen-bonded complex C153–DAF+, the changes
in the lengths of the bonds adjacent to the hydrogen bond
C1=O1···H1–O3 induced by electronic excitation are listed
in Table 3. The C1–O2 bond is stretched, the C1–C2 bond is
shortened, but the lengths of the C2–H2, O3–C3, C3–H3, and
C3–H4 bonds are almost unchanged. The results basically
correlate with the discussion of the LE characteristics of the
S1 state. The bond angles of C1=O1···H1 and O1···H1–O3 in
the electronically excited state are practically the same as
those in the ground state (they change by only −5.7° and
3.0° from 128.9° and 169.6°, respectively). On the other
hand, the dihedral angle C1=O1···H1–O3 is significantly
increased by 18.9° from 10.38° in the ground state to
29.28° in the S1 state.

Conclusions

In this work, the electronic excited-state hydrogen-bonding
dynamics of the chromophore C153 in the room-
temperature ionic liquid DAF was studied using time-
dependent density functional theory (TDDFT). We investi-
gated the hydrogen bond C1=O1···H1–O3 that forms
between isolated C153 and the cation DAF+ in DAF. Based
on the geometric structures and the energies of the
hydrogen-bonded complex C153–DAF+ for both the
ground state and electronic excited state, it is clear that a
short and strong hydrogen bond forms between C153 and
the cation DAF+ in DAF. Also, the hydrogen bond
C1=O1···H1–O3 decreases from 1.693 Å to 1.633 Å, and
the corresponding binding energy corrected for BSSE
increases from 69.92 kJ mol−1 to 90.17 kJ mol−1, upon
photoexcitation. Using a molecular orbital analysis, we
demonstrated that the S1 state of the hydrogen-bonded
complex C153–DAF+ has the characteristics of a locally
excited (LE) state, and the electron density is concentrated
on the C153 moiety. The calculated maximum absorption
peak of the hydrogen-bonded complex C153–DAF+ coin-
cides with the experimental results. In addition, we
calculated the IR spectra of the ground state and the S1
state of the hydrogen-bonded complex C153–DAF+ as well
as C153, and the ground state of the cation DAF+ was also
calculated. The vibrational absorption frequencies of the
C=O group and the O–H group associated with the
formation of the C1=O1···H1–O3 hydrogen bond both
redshift due to photoexcitation; in other words, the
hydrogen bond is strengthened when moving from the
ground state to the S1 state. Our calculations also revealed
that the hydrogen bond C1=O1···H1–O3 linking the oxygen
atom of the C=O group in C153 and the hydrogen atom of

Table 3 Calculated bond lengths (Å), angles (°) and dihedral angles
(°) for the hydrogen bond and the bonds very near to the hydrogen
bond in different electronic states for isolated monomers and the
hydrogen-bonded complex C153–DAF+. Calculated hydrogen-bond
binding energies Eb (kJ mol−1), BSSEs (kJ mol−1), and BSSE-
corrected hydrogen bond binding energies Eb

BSSE (kJ mol−1) in
different electronic states are also listed

Parameter C153–DAF+

S0 S1

Bond length (Å) C1=O1 1.227 1.242

O1···H1 1.693 1.633

O3–H1 0.987 0.997

C1–O2 1.366 1.405

C1–C2 1.433 1.417

C2–H2 1.079 1.081

C3–O3 1.396 1.393

C3–H3 1.095 1.096

C3–H4 1.106 1.107

Bond or dihedral angle (°) C1=O1···H1 128.9 123.2

O1···H1–O3 169.4 172.4

C1=O1···H1—O3 10.38 29.28

Eb 77.19 98.46

BSSE −7.268 −8.292
Eb

BSSE 69.92 90.17

Eb
BSSE =Eb+BSSE
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the O–H group in cation DAF+ is stronger than those
formed in conventional solvents; the polarization of the
cation in DAF is responsible for the strengthening of the
hydrogen bond C1=O1···H1–O3. More research effort
should be directed into studying the hydrogen bonds
formed in ionic liquids.
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Abstract Membrane-interaction QSAR (MI-QSAR) and
Holographic QSAR (HQSAR) analyses have been per-
formed on a diverse set of drugs and drug-like molecules.
MI-QSAR combines a set of membrane-solute interaction
properties calculated during molecular dynamics simulation
with the set of classical solute descriptors to predict the
biological behavior of drugs and drug-like molecules.
HQSAR is a technique which employs fragment finger-
prints or molecular holograms as predictive variables of
biological activity. A data set of 60 structurally diverse
molecules with permeability coefficients were used to
construct significant MI-QSAR and HQSAR models of
Caco-2 cell permeation. A statistically meaningful MI-
QSAR model was obtained with r2=0.805 and q2=0.696.
Subsequently, HQSAR models were developed on the same
data set. The best HQSAR model (r2=0.915, q2=0.539)
was obtained with fragment distinctions atom, bond, donor
and acceptor with atom count 4 to 7. The predictions for
training and test set molecules are in good agreement with
experimental results and show the potential of models for
untested compounds. This displays the importance of MI-
QSAR and HQSAR analysis in estimating ADME proper-
ties characterized by the transport of solutes through
biological membranes.

Keywords Descriptors . Fragment . HQSAR .Membrane .

MI-QSAR .Molecular Dynamics Simulation . Solubility

Introduction

The discovery and development of a new drug product
consists of multiple steps including discovering an active
pharmaceutical ingredient (API), preclinical ADME/T
testing, designing an optimum formulation for the API,
clinical trials, etc. Discovery of APIs has been facilitated by
the high-throughput methods, thereby leading to a large
number of new chemical entities (NCE). The traditional
trial and error approach of drug design is too costly and
time consuming to meet the increasing demand for new
drugs. It has been estimated that roughly 10% of the
compounds that enter development eventually become
marketed drugs and 40% of compounds fail due to poor
pharmacokinetic properties. The ability to predict the
parameters such as solubility, permeability and partition
co-efficient certainly plays an important role in optimizing
the drug-like molecules. Properties derived from molecular
structure would have an impact on the drug discovery both
in cost and time needed to bring a new compound to
market. Informatics tools can be helpful to achieve the goal
of reducing time and money needed in drug discovery.
These tools help to streamline the drug discovery by
rejecting the dead end leads in the earlier stages of
development.

One of the bottlenecks of modern drug discovery and
development is to characterize absorption, distribution,
metabolism and excretion (ADME) properties of hits
coming from combinatorial and natural product libraries
or from rational synthesis in the early stage of drug
discovery process [1]. Current in vitro and in vivo
practices have concentrated on characterization of ADME
properties of late stage molecules and the protocols are not
always suitable for early stage molecules. The methods
used for this require a large number of samples and high-
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level of validation and quantification leading to high cost
for testing. Also, in vivo activity screening and toxico-
logical studies are not integrated to support ADME
characterization to save time, resources and laboratory
animals. Clearly, modified and tailored approaches are
needed at different stages of drug discovery and develop-
ment. The use of computational models in the prediction
of ADME properties of compounds is growing rapidly in
drug discovery as the benefits they provide in high
throughput screening and early application in drug design
are being realized [2].

Intestinal absorption is one of the most important ADME
parameters for a molecule that is designed for the oral
therapy. It is defined as the process of transfer of the
molecule form apical side to basolateral side of enterocyte.
Cellular membrane, described as phospholipid bilayer,
plays a significant role in the absorption [3]. It makes
hydrophilic and hydrophobic interactions with molecules
and thus governs their transport across membrane. Most
drugs are absorbed via transcellular route through passive
diffusion; such are more lipophilic. In contrast, small,
hydrophilic molecules and peptides pass through water
filled pores that are formed by fusion of adjacent cells
(paracellular route) [4]. Caco-2 cell lines are one of the
most studied cells for their ability to predict the intestinal
absorption. These cells are derived from human colorectal
carcinoma and possess structural and functional similarities
with enterocytes [5]. Many research groups have efficiently
used Caco-2 cell monolayers to predict drug transport by
different pathways across the intestinal epithelium. In the
majority of studies the best correlation with the in vivo
absorbed fraction is obtained for passively transported
drugs. In case of other transport mechanisms variable
results are obtained and in such cases it is advised to use
Caco-2 cell permeability cautiously [6]. High predictivity of
the intestinal absorption by Caco-2 cell lines prompted us
to use Caco-2 permeability in the development of the
QSAR models. Additionally computational Caco-2 perme-
ability prediction models are another source that provides
an inexpensive and fast way to assess the potential for
intestinal permeability of a molecule which enables
prioritization of molecules for in vitro and in vivo studies
before their synthesis.

Computational Caco-2 permeability prediction models
are another source that provides an inexpensive and fast
way to assess the potential for intestinal permeability of a
molecule. The majority of the computational studies carried
out correlate Caco-2 permeability with the physicochemical
properties of drug molecules. In silico prediction of oral
absorption started taking shape with Lipsinki’s ‘rule-of-
five’ where permeability shown to be dependent on
hydrogen bond acceptors, hydrogen bond donors, molecu-
lar weight and logP [7]. Afterward different simple

descriptors like molecular size, hydrophobicity, rotatable
bonds, dynamic polar surface area, charge etc. [4, 8–11]
and complex descriptors like quadratic indices of the
molecular pseudograph’s atom adjacency matrix [12],
interaction descriptors derived from simulation of molecule
transport across cell membrane [13], molecular orbital
calculation [14], MolSurf-derived descriptors [15], Volsurf
derived descriptors [16], etc. were used to predict the
permeability. Here we used two approaches. MI-QSAR
simulates the transfer of molecules through the membrane
while HQSAR provides information about the importance
of different structural fragments in the permeability.
Kulkarni et al. has carried out membrane interaction
QSAR on a set of 38 molecules [17]. It was observed
that permeability is governed by factors viz. aqueous
solubility, size and shape of molecule, intramolecular
hydrogen bonding energy, membrane-solute interactions
energy and conformational flexibility of the solute in the
membrane.

Here we tried to find out important properties that
govern the permeability of molecules through MI-QSAR
and HQSAR methods with more molecules (60) than
considered by Kulkarni et al. [17]. The dataset used
cover a relatively wide range of chemical space and
permeability.

Materials and methods

Data set

The apparent Caco-2 permeability coefficients for 60
structurally diverse compounds that are absorbed via
transcellular and paracellular were selected from the
different sources [18–22]. The majority of the data (41
compounds) were taken from a single source where
experiments were performed under uniform experimental
condition [23]. Briefly, Caco-2 cells were obtained from
American Tissue Culture Collection, Rockville, MD and
cells were seeded at a density of 80,000 cells cm-2 and
allowed to grow and differentiate for up to 25 days. Cells of
passage numbers 23 to 50 were used throughout. Prior to
permeability experiments, the culture medium was replaced
with the transport medium of pH 7.4 and equilibrated for
30 minutes at 37 °C. Drug solutions were prepared in
HBSS at a final concentration of 0.01 to 0.1 mM. Initially
apical side of the monolayers provided 1.5 ml of drug
solution. The amount of solute permeated was determined
by either moving the inserts to new wells containing fresh
medium or taking a sample form the basolateral side and
replacing it with fresh medium at discrete time intervals.
Transport rates were then determined by plotting the
cumulative amount permeated as a function of time.
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Permeability experiments were performed in an incubator at
37 °C and an atmosphere of 5% CO2 over the duration of
two hours. Experiments were performed under sink
condition where the concentration of the solute in the
receiver side was less than 10% of the dose applied at all
intervals of time. The permeability coefficient was then
determined according to the following equation:

PCaco� 2 ¼ J ACoð Þ � 1 ð1Þ
.

In Eq. 1, J is the rate of appearance of solute in the
receiver chamber, Co is the initial concentration of the
solute in the donor chamber, and A is the surface area of the
filter. Caco-2 cell permeability (P) of all compounds was
represented in negative logarithm, i.e., −logP(PCaco−2). All
the QSAR analyses were performed considering PCaco−2 as
dependent variable. In relation to the descriptors this
implies that the positively correlated descriptors to PCaco−2

will decrease the Caco-2 cell permeability. Table 1 contains
the Caco-2 cell permeability values for 60 structurally
diverse drugs and drug-like molecules used for the study.
Representative molecules from the data set are shown in
Chart 1.

MI-QSAR

Building molecules and phospholipid layer

The 3-dimensional structures of the solute molecules of the
training set were built using the Sybyl7.1 package [24]. The
phospholipid Dimyristoyl phosphatidylcholine (DMPC)
was selected as the model phospholipid. It was built using
available crystal structure data in HyperChem [25, 26]. The
structure of a DMPC molecule is shown in Fig. 1. Building
of the DMPC membrane monolayer was carried out in the
MI-QSAR package installed on a Silicon Graphics Fuel
Workstation [27]. Construction of the model monolayer
was performed on the basis of information available in the
literature [28]. An assembly of 25 DMPC molecules
(5*5*1) in x, y, z directions, respectively, was used as the
model membrane monolayer. The size of the monolayer
simulation system was selected based on the work done by
van der Ploeg and Berendsen [29].

A central DMPC molecules was removed from the
equilibrated monolayer and a test solute molecule was
inserted in the space created by the missing DMPC
molecule. Each of the test solute molecules of the data set
was inserted at three different positions in the DMPC
monolayer with the most polar group of the solute molecule
“facing” toward the head group region of the monolayer.
Three molecular dynamics simulation (MDS) models were
generated for each solute molecule for the trial positions of
the solute molecule in the monolayer.

Table 1 The data set used in the QSAR analysis

S. No. M. No. Name Caco-2 cell
permeability
(P) *106

-Log P
(Pcaco-2)

1 1 Acebutalol 0.51 6.29

2 2 Acyclovir 0.25 6.60

3 3 Alprenolol 25.30 4.60

4 4 Aminopyrine 36.50 4.44

5 5 Amoxicilline 0.80 6.10

6 6 Antipyrine 28.20 4.55

7 10 Caffeine 30.80 4.51

8 11 Cephalexin 0.50 6.30

9 12 Chloromphenicol 20.60 4.69

10 13 Chlorpromazine 19.90 4.70

11 14 Chlorthiazide 0.15 6.82

12 15 Cimetidine 0.74 6.13

13 16 Clodine 21.80 4.66

14 18 Decipramine 24.20 4.62

15 19 Desoxycarticosterone 21.20 4.67

16 20 Dexamethazone 12.20 4.91

17 21 Diazepam 33.40 4.48

18 22 Diltiazem 29.80 4.53

19 23 Dopamine 9.33 5.03

20 24 Doxorubicine 0.16 6.80

21 25 Enalapril 2.13 5.67

22 26 Erythromycine 3.73 5.43

23 27 Estradiol 16.90 4.77

24 28 Furesomide 0.12 6.92

25 29 Gancyclovir 0.38 6.42

26 30 Griseofulvin 36.60 4.44

27 31 Guanabenz 20.90 4.68

28 32 Hydrocartisone 14.00 4.85

29 33 Hydrochlorthiazide 0.51 6.29

30 34 Ibuprofen 52.50 4.28

31 35 Imipramine 14.10 4.85

32 36 Indomethacin 20.40 4.69

33 37 Labetalol 9.31 5.03

34 38 Mannitol 0.38 6.42

35 39 Meloxicam 19.50 4.71

36 40 Metaprolal 23.70 4.63

37 41 Methotrexate 1.20 5.92

38 42 Nadalol 3.88 5.41

39 43 Naproxen 39.50 4.40

40 44 Nicotine 19.40 4.71

41 45 Phenatoin 26.70 4.57

42 46 Phencyclidine 24.70 4.61

43 47 Pindolol 16.70 4.78

44 48 Piroxicam 35.60 4.45

45 49 Prazocine 43.60 4.36

46 50 Progesterone 23.70 4.63

47 51 Propronalol 21.80 4.66
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The three trial positions were,

(1) Solute molecule in the head group region
(2) Solute molecule between the head-group region and

the aliphatic chains

(3) Solute molecule in the tail region of the aliphatic
chains.

The lowest energy geometry of the solute molecule in
the monolayer was sought using each of the three trial
solute positions [30, 31]. Figure 2 shows the top view of
acebutolol molecule docked into DMPC monolayer at the
head position. The acebutolol molecule is shown at the
center.

Molecular dynamic simulation (MDS)

MI-QSAR uses molecular dynamics to find out the lowest
energy conformation of the solute molecules. Molecular
dynamics is a process which reproduces the time dependent
motional behavior of a molecule. It assumes that the atoms
in the molecule interact with one another according to the
force field used. At regular time intervals the classical
equation of motion represented by Newton’s second law is
solved:

FiðtÞ ¼ miaiðtÞ;
where Fi is the force on an atom i at time t, mi is the mass
of an atom i, and ai is the acceleration of atom i at time t.
The gradient of potential energy function is used to

Table 1 (continued)

S. No. M. No. Name Caco-2 cell
permeability
(P) *106

-Log P
(Pcaco-2)

48 52 Quinidine 20.40 4.69

49 53 Ranitidine 0.49 6.31

50 54 Salicylic acid 22.00 4.66

51 55 Saquinavir 0.80 6.10

52 56 Scopolamine 11.80 4.93

53 57 Sucrose 1.71 5.77

54 58 Sulfa salazine 0.30 6.52

55 59 Telmisartan 15.10 4.82

56 60 Terbutaline 0.47 6.33

57 61 Testosterone 24.90 4.60

58 62 Timolol 12.80 4.89

59 63 Urea 4.56 5.34

60 64 Valproic acid 48.00 4.32

Chart 1 Representative molecules from the data set
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calculate the forces on the atoms while the initial velocities
on the atoms are generated randomly at the beginning of the
dynamics run. Based on the initial atom coordinates of the
system, new positions and velocities on the atoms can be
calculated at time t and atom will be moved to those new
positions. As a result, a new conformation is generated. The
cycle will then be repeated for a specified period of time
steps. MDS calculations are used to estimate membrane-
solute interaction properties and to "add" the resultant
membrane-solute properties to the intramolecular physico-
chemical property descriptors to provide an extended set of
trial descriptors for building QSAR models. MDS was
carried out using the Molsim package with an extended
MM2 force field [32]. The temperature was set at 311K as
the simulation temperature and held constant in the MDS
by coupling the system to an external fixed-temperature
bath [33]. All the remaining parameters were kept default in
the study. The trajectory step size was 0.001 ps over a total
simulation time of 10 ps for each test compound. Periodic
boundary conditions (PBC) were applied for the DMPC
monolayer model, but not for the test solute molecule. By
using periodic boundary conditions it is possible to simulate
an infinite system. Also by using PBC, simulations can be
performed on relatively small systems in such a way that
the system experiences forces in bulk fluid. The solute
molecule was placed in one of the three positions and MDS
was carried out. For each MDS, only one solute molecule
was considered [34]. A trajectory plot of the total energy
versus simulation time for acebutalol embedded in the
model DMPC monolayer is shown in Fig. 3.

Calculation of descriptors, construction and testing
of models

The descriptors were calculated using the MI-QSAR
package. The descriptors calculated are classified into three
groups.

1) Intramolecular solute descriptors
2) Intermolecular membrane solute descriptors
3) Dissolution and solvation solute descriptors

We calculated both the intra and intermolecular descrip-
tors. Intermolecular solute membrane descriptors were
derived from the MDS [34–37]. MI-QSAR models were
constructed using the genetic function approximation

(GFA). The GFA algorithm uses a genetic algorithm to
perform a search over the space of possible QSAR/QSPR
models using the LOF score to estimate the fitness of each
model. All intramolecular and intermolecular descriptors in
the MI-QSAR trial descriptor pool were used as linear
terms during the evolution of genetic function approxima-
tion to generate MI-QSAR models.

HQSAR

Molecular modeling studies were performed using the
molecular modeling package SYBYL7.1 installed on a
Silicon Graphics Fuel Workstation running on IRIX 6.5.
The structures were sketched and minimized individually
by using Powell’s conjugate gradient method [38].

HQSAR is a technique which employs fragment finger-
prints or molecular holograms as predictive variables of
biological activity or other structurally related data [39].
Fragments with different atom counts were generated and
fragments with 4 to 7 atoms were hashed into bins 1 to 85
of the fingerprint. These molecular fingerprints are broken
into strings at fixed intervals as specified by a hologram
length (HL) parameter. The HL determines the number of

Fig. 1 The chemical structure
of the DMPC molecule

Fig. 2 The top view of acebutolol molecule docked into DMPC
monolayer at head position. Acebutolol is placed at the center
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bins in the hologram into which the fragments are hashed.
Each corresponding fragment SLN is then mapped to a
pseudo-random integer in the range 0 to 231 using the CRC
(cyclic redundancy check) algorithm. The integer generated
by the CRC algorithm is unique and reproducible for each
and every unique SLN string. The hashing then occurs by
folding the pseudorandom integer for a particular SLN
string into the bin range defined. In HQSAR, bins contain
information about the number of fragments hashed into
each bin. The optimal HQSAR model was derived from
screening through the 12 default HL values, which were a
set of 12 prime numbers ranging from 53 to 401. A
schematic representation of the generation of molecular
hologram is shown in Fig. 4.

Results and discussion

MI-QSAR

Various MI-QSAR Models for Caco-2 cell permeability
were developed based on the genetic function approxima-
tion (GFA) optimization. As the correlation coefficient (r2)
changes with the number of terms in the QSAR equation,
we took the cross validation correlation coefficient (q2) as
the limiting factor for a number of descriptors to be used in
the model. The plot of (q2) for 1–6 term MI-QSAR models
versus the numbers of terms in the corresponding models is
shown in Fig. 5. The (q2) value increased till the number of
descriptors in the equation reached up to six. When the
number of descriptors in the equation increased above six,
there was a decrease in (q2) value of model. So the number
of descriptors was restricted to six.

Model-1

In order to arrive at the first MI-QSAR model many models
were tried. Various models were developed and the model

with r2=0.807; q2=0.742 (Model-1) was found to be the
best and the results were statistically compatible with the
literature. The equation for Model-1 is shown below and
the correlation matrix for the Model-1 is shown in Table 2.
Training set and test set predictions of Model-1 are shown
in Tables 3 and 4 respectively.

PCaco�2 ¼ 4:28549� 0:048541� LE14� 0:01117

� EHBDþ 0:000642� Ic � 0:035672

� Ecohþ 0:017574� LETOR

� 0:004383� LUMO ð1Þ
r2=0.807; q2=0.742; n=45

Fig. 4 Schematic representation of generation of molecular hologram

Fig. 3 The molecular dynamics
simulation (MDS) trajectory plot
of the total energy versus step
size for acebutalol embedded in
the model DMPC monolayer
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Where, n is the no. of molecules in training set r2is the
correlation coefficient and q2 is the cross validated
correlation coefficient.

Descriptors Ic and LETOR of Model-1 showed negative
correlation. This implies that the higher the solute torsional
energy, LETOR, lower the permeability will be and vice
versa. LUMO, LE14 and EHBD are the other descriptors
correlated positively to the activity. LUMO is the lowest
occupied molecular orbital energy level. LE14 denotes the
solute 1–4 interaction energy. EHBD is the total complex
hydrogen bonding energy. Ecoh and Ic are the cohesive
energy descriptors, Ecoh is negatively correlated and Ic
positively correlated. Model-1 is statistically robust but this
model was not selected for further analyses due to the high
inter correlation (0.70) between the descriptors Ecoh and
LE14 (Table 2).

Model-2

Model-1 was further refined to predict a meaningful
QSAR equation. In this process different term models
were obtained by considering the combination of

intramolecular, intermolecular and membrane interaction
descriptors as a function of number of terms, i.e.,
descriptors included in a given MI-QSAR model. After
many iterations of this exercise model-2 was obtained
with a set of descriptors that are not inter-correlated.
The results obtained for 1–6 term models are presented
below. The 6-term model, i.e., model-2 was selected
for final analysis. The training and test set prediction
of this model are shown in Tables 3 and 4, receptively.
The correlation matrix for this model is shown in
Table 5.

Comparing the descriptors obtained for model 1 and 2,
LE14 is found common in both the models and other
descriptors namely Dipole, Chi-8, LEHBD, DEHBD and Ic
which are the new descriptors in Model-2. The calculated
values for these descriptors are given in Table 6. Equation
for this model is shown below.

The plot for actual PCaco-2 versus predicted PCaco-2

values of the training and test set molecules for model-2 is
shown in Fig. 6. Predictivity of the test set was determined
with the use of root mean squared error (RMSE) and mean
error (ME). For model 1 the statistic was 0.88 (RMSE) and

Table 2 Correlation between Model-1 descriptors

Ic Ecoh LUMO LETOR LE14 EHBD Pcaco-2

Ic 1.00

Ecoh 0.04 1.00

LUMO -0.25 -0.27 1.00

LETOR 0.07 0.22 -0.02 1.00

LE14 -0.12 0.70 -0.13 0.54 1.00

EHBD 0.20 -0.66 -0.23 -0.11 -0.44 1.00

Pcaco-2 0.21 0.54 -0.13 -0.03 -0.03 -0.63 1.00

Fig. 5 Plot of cross-validation
coefficient (q2) versus number
of terms in the corresponding
MI -QSAR model
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0.79 (ME) while for model 2 it was 0.96 (RMSE) and 0.80
(ME).

PCaco�2 ¼ 4:17571� 0:041073� LE14� 1:6024

� Dipoleþ 0:388243� Chi8þ 0:001484

� Ic � 0:023404 � LEHBD� 0:009813

� DEHBD ð2Þ
r2=0.805; q2=0.696; n=45

The best MI-QSAR models for Caco-2 cell permeabil-
ity, with different numbers of descriptor terms are as
follows:

1-term Model

PCaco�2 ¼ 4:83609þ 0:019949� LEHBD ð3Þ
r2=0.353; q2=0.163; n=45

2-term Model

PCaco�2 ¼ 5:24901� 0:02785� LEHBD

� 0:025547 � LE14 ð4Þ

r2=0.502; q2=0.288; n=45
3-term Model

PCaco�2 ¼ 5:12795 � 0:008272� DEHBD� 0:022744

� LEHBD� 0:025729� LE14

ð5Þ

r2=0.571; q2=0.322; n=45

Table 3 Actual, model-1 and model-2 predicted, Pcaco-2 values for
training set molecule

S. No. M. No. Actual Model-1 Model-2

1 2 6.60 6.35 6.41

2 3 4.60 4.33 4.50

3 4 4.44 4.28 4.30

4 5 6.10 5.96 5.94

5 6 4.55 4.76 4.69

6 10 4.51 4.53 4.97

7 11 6.30 5.87 5.76

8 13 4.70 4.54 4.38

9 18 4.62 4.49 4.33

10 19 4.67 4.76 4.88

11 20 4.91 5.22 5.36

12 21 4.48 4.64 4.55

13 22 4.53 4.74 4.33

14 23 5.03 4.61 4.80

15 24 6.80 6.88 6.29

16 27 4.77 4.58 4.57

17 28 6.92 6.09 6.46

18 29 6.42 6.81 6.63

19 30 4.44 4.92 4.55

20 33 6.29 5.67 5.67

21 34 4.28 4.69 4.98

22 35 4.85 4.17 4.18

23 36 4.69 5.20 5.14

24 38 6.42 6.44 6.38

25 39 4.71 4.91 5.09

26 40 4.63 4.67 4.79

27 41 5.92 6.31 6.04

28 42 5.41 5.49 5.78

29 43 4.40 4.52 4.60

30 45 4.57 5.27 5.04

31 47 4.78 4.85 4.93

32 48 4.45 4.80 4.78

33 49 4.36 4.62 4.35

34 50 4.63 4.93 5.03

35 51 4.66 4.36 4.30

36 53 6.31 6.23 5.93

37 54 4.66 5.19 5.01

38 55 6.10 6.15 6.45

39 56 4.93 4.77 4.71

40 57 5.77 5.62 6.00

41 59 4.82 4.59 4.59

42 60 6.33 5.41 5.75

43 61 4.60 4.83 5.01

44 62 4.89 4.76 4.36

45 64 4.32 4.64 4.57

Table 4 Actual, model-1 and model-2 predicted, Pcaco-2 values for
test set molecules

S. No Molecule Actual
Pcaco-2

Pcaco-2
(Model-1)

Pcaco-2
(Model-2)

1 1 6.29 5.38 5.12

2 12 4.69 6.19 5.61

3 14 6.82 5.61 5.79

4 15 6.13 5.91 5.64

5 16 4.66 5.17 4.86

6 25 5.64 4.59 4.79

7 26 5.43 5.75 5.60

8 31 4.68 5.57 5.74

9 35 4.85 5.41 5.46

10 37 5.03 5.85 5.43

11 39 4.71 4.17 4.36

12 46 4.61 4.03 4.18

13 52 4.69 4.42 4.16

14 58 6.52 5.47 4.95

15 63 5.34 6.83 7.54
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4-term Model

PCaco�2 ¼ 4:6808� 0:020225� LEHBD

� 0:032855 � LE14þ 0:39337

� Chi8� 0:008614� DEHBD ð6Þ

r2=0.701; q2=0.580; n=45
5-term Model

PCaco�2 ¼ 4:03869þ 0:001108� Ic � 0:035904

� LE14þ 0:361843� Chi8

� 0:020611 � LEHBD� 0:009813

� DEHBD ð7Þ

r2=0.770; q2=0.688; n=45

6-term Model

PCaco�2 ¼ 4:17571� 0:041073� LE14

� 1:6024� Dipoleþ 0:388243

� Chi8þ 0:001484� Ic � 0:023404

� LEHBD� 0:009813� DEHBD ð8Þ

r2=0.805; q2=0.696; n=45.

The best MI-QSAR models for Caco-2 cell permeability
were realized by considering the combination of general
intramolecular solute, intermolecular dissolution/solvation-
solute, and intermolecular membrane-solute descriptors. It
appears from the analysis of Eqs. 3–8, that there is no
specific descriptor which accounts for the variance of
PCaco−2 across the training set. The first term model is a

Table 5 Correlation between model-2 descriptors

LE14 LEHBD DEHBD Chi8 Dipole Ic Pcaco-2

LE14 1

LEHBD -0.52 1

DEHBD -0.27 0.50 1

Chi8 0.57 -0.41 -0.19 1

Dipole -0.21 -0.13 0.04 0.04 1

Ic -0.12 0.14 0.20 0.01 0.35 1

Pcaco-2 -0.02 -0.59 -0.52 0.37 0.15 0.20 1

Table 6 Descriptors values for test set molecules of model-2

S. No. M. No. Pcaco-2 LE14 LEHBD DEHBD Chi8 Dipole Ic

1 1 6.29 16.08 -15.44 -12.09 1.83 0.14 438.14

2 12 4.69 19.61 -17.79 -92.98 1.59 0.13 372.30

3 14 6.82 15.43 -5.39 -46.38 3.05 0.23 594.15

4 15 6.13 -4.96 -5.64 -25.53 0.61 0.35 825.05

5 16 4.66 3.09 0.00 -12.54 0.81 0.23 499.37

6 25 5.64 31.36 -21.85 -12.50 1.64 0.08 510.76

7 26 5.43 70.92 -51.63 -82.43 6.36 0.25 195.53

8 31 4.68 -2.65 -3.11 -13.39 1.02 0.18 778.07

9 35 4.85 25.85 0.00 0.00 1.15 0.07 493.22

10 37 5.03 19.98 -22.81 -52.25 1.60 0.25 557.24

11 39 4.71 42.60 -16.99 -9.13 2.36 0.09 946.80

12 46 4.61 22.76 0.00 0.00 0.81 0.15 580.99

13 52 4.69 35.71 -3.82 -31.04 1.47 0.19 548.07

14 58 6.52 24.33 -11.13 -30.52 2.51 0.29 484.70

15 63 5.34 -20.70 0.00 -88.33 0.58 0.16 1158.80
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specific membrane interaction descriptor showing the
influence of membrane system on solute molecules. A
composite analysis of all the MI-QSAR models using
Eqs. 2–8, suggests that the 4-term MI-QSAR model
captures the essential features of the postulated mechanism
responsible for solute membrane permeability as repre-
sented by PCaco−2 values. The 4-term model showed
statistical improvement over the 1-term model. After
successive refinement of the 4-term model, 5 & 6 term
models were obtained with two additional descriptors. The
5 & 6 term models fit well with the training set and are also
supported by the improved statistical values after the
addition of each new descriptor. It is noted from the 1–6
term models that the regression coefficients of the descrip-
tors are found to be remarkably similar to each other
indicating the robustness of the models and their respective
roles in predicting the permeability. Out of all the
equations, we have selected the 6-term model for further
analysis. One of the descriptor selected for the 6-term
model is LEHBD. LEHBD is the intramolecular hydrogen
bonding energy of the solute molecule when it is in the
lowest membrane solute interaction state within the
membrane. As this is correlated negatively, increasing the
value will decrease the Caco-2 cell permeability. This is the
descriptor which has the high correlation. The next
descriptor is LE14 which represents the Van der Waals
and electrostatic energies associated with each set of atoms
separated by one torsion angle in the solute molecule and
all the DMPC molecules of the model membrane. This
contribution to the total conformational energy measures
the composite rigidity of an average torsion rotation of the
entire solute-membrane system. As LE14 increases, the

molecules of the membrane solute system, on the average
are moving away from minimum energy conformer states
and exploring more conformational states, thus expressing
greater flexibility.

This greater flexibility results in a higher permeation
coefficient of the solute molecule based on the negative
regression coefficients for LE14 in Eqs. 4–8. Presumably,
an increase in conformational flexibility of the membrane
solute system makes it easier for the solute to navigate
through the membrane. DEHBD is the change in the
hydrogen bonding energy of the entire membrane-solute
system. Solute is relocated from free-space to the position
corresponding to the lowest solute membrane interaction
energy state of the model system. This is the change
(complex - solute alone - membrane alone) of hydrogen
bonding energy. DEHBD is the difference in the total
hydrogen bond energy of the solute in the membrane minus
the solute being present in free space and the membrane by
itself. No hydrogen bonding can occur within, or between,
DMPC molecules. Thus, the hydrogen bond energy of the
membrane by itself is zero. The regression coefficients of
this descriptor term are negative. It shows that if intramo-
lecular hydrogen bonding of the solute decreases upon
uptake into the membrane, a decrease in intramolecular
solute hydrogen bonding should correspond to an increase
in the conformational flexibility of the solute. Solute
conformational flexibility within the membrane is very
important for high permeability as other MI-QSAR model
descriptors. Chi-8 is the topological descriptor measuring
the size and shape of a molecule. Chi-8 which is one of the
topological indices developed to encode both molecular
size and shape information within a common measure.

Fig. 6 Plot for actual versus
predicted PCaco-2 values of the
training and test set molecules of
model-2. The training set and
test set molecules are shown in
blue (diamond) and pink
(square) spots, respectively
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Caco-2 cell permeability is positively correlated to Chi-8 in
Eq. 8. Thus, the form of Chi-8 in Eqs. 6–8 suggests that the
more bulky/large is a solute molecule, the less will be its
permeability through a Caco-2 cell membrane which makes
intuitive sense. Dipole moment of the molecule increases as
the permeability increases. As the polarizability increases
the hydrogen bonding energy decreases and the molecule
will be readily permeable.

Consistent with results of Kulkarni et al., model-2
consisted of intramolecular hydrogen bonding (LEHBD
and LE14), size and shape of molecule (Chi8) and change
of hydrogen bonding energy membrane-solute system as
descriptors governing the permeability of the compounds
[17]. In addition to this, the model provided a novel
intermolecular descriptor, Ic, hypothetical crystal-melt
transition temperature of a solute, as a negative contributor
toward the permeability. It is a measure of crystal packing
strength of a solute and describes the dissolution behavior
of a solute. The dissolution of a drug in water is controlled
by two types of interaction, intra-molecular and inter-
molecular. The first describes how strongly the molecule

associates with the solvent. Compounds having a large
number of polar groups such as sugar alcohols show more
favorable interactions with water than themselves. This is
often translated into greater solubility. The second defines
the crystal packing strength, i.e., the affinity of the solute
for itself, or how tightly bound the compound is to its own
crystal lattice. The stronger the inter-molecular interactions,
the higher the energy required to disintegrate molecules out
of it, leading to lower solubility. Thus an increase in the
crystal-melt transition temperature lowers the solubility
which in turn lowers the permeability. This relationship
suggests that as dissolution of a solute becomes difficult,
the Caco-2 permeability gets lowered.

Model-2 showed high residual (actual=5.34, predicted=
7.54) for the molecule 63 (urea). Urea possesses no
intramolecular hydrogen bonding. Because of smaller size
it makes hydrogen bonds with the water molecule that
provide it high solubility in water. The training set is not
sufficiently populated with molecules that show similar
molecular weight (60.06 Da, lowest among all molecules
considered), intramolecular binding and permeability as

Table 7 Statistics for different HQSAR models

Model Fragment distinction q2(LOO) r2ncv S.E. B.H.L. Component

a A/B/C 0.165 0.711 0.449 307 4

b A/B/H NO MODEL

c A/B/Ch 0.280 0.793 0.390 151 6

d A/B/DA 0.539 0.915 0.249 151 6

e A/B/C/H 0.030 0.560 0.554 83 4

f A/B/C/Ch 0.248 0.868 0.312 257 6

g A/B/C/DA 0.311 0.890 0.284 53 6

h A/B/H/Ch 0.164 0.837 0.346 59 6

i A/B/H/DA 0.277 0.894 0.279 401 6

j A/B/Ch/DA 0.384 0.908 0.260 151 6

k A/B/C/H/Ch 0.054 0.665 0.483 151 4

l A/B/C/Ch/DA 0.380 0.933 0.211 199 6

m A/B/C/H/DA 0.375 0.787 0.391 59 5

n A/B/H/DA/Ch 0.243 0.876 0.302 199 6

o A/B/C/H/Ch/DA 0.288 0.863 0.313 151 5

Table 8 Statistical parameters obtained for HQSAR model-d with different atom count

Model Atom count q2(LOO) r2ncv S.E. B.H.L. Component

d-1 1-4 0.565 0.846 0.277 257 6

d-2 2-5 0.538 0.894 0.279 151 6

d-3 3-6 0.473 0.890 0.285 307 6

d-4 4-7 0.539 0.915 0.249 151 6

d-5 5-8 0.119 0.892 0.282 199 6

d-6 6-9 0.286 0.725 0.438 307 4

d-7 7-10 0.382 0.781 0.396 97 5
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that of urea. This can be attributed to the high residual (2.2)
in the prediction. Thus the model can be improved by
increasing the chemical space.

HQSAR

Model development and validation

HQSAR uses different parameters for developing the
model. Parameters like atom count, hologram length and
fragment distinctions are important while (when) generating
the hologram fingerprints [40–42]. The atom parameters
enable fragments determination based on elemental atom
types while the bonds and connections consider the bond
orders and hybridization states within fragments respec-
tively [43]. Initially, for developing the model, we used the
default parameters namely atoms (A), bonds (B) and
connections (C) which gave poor r2 (0.680) and q2

(0.221) values. After trying various combinations of the
default parameters we included other parameters like
hydrogen atom (H) chirality (Ch), donor acceptor (DA) to
develop robust models.

We developed numerous models with the combination of
parameters such as A/B/C, A/B/H, A/B/Ch, A/B/DA, A/B/C/
H, A/B/C/Ch, A/B/C/DA, A/B/H/Ch, A/B/H/DA, A/B/Ch/
DA, A/B/C/H/Ch, A/B/C/Ch/DA, A/B/C/H/DA, A/B/H/DA/
Ch, A/B/C/H/Ch/DA. Model-d built with four parameters
atom, bond, donor and acceptor was found to best predictive
over training set. It gave statistically significant r2 and q2 of
0.915 and 0.539 respectively as shown in Table 7.

As the second criterion for improving the statistical
values we used the atom count which refers to the
minimum and maximum length of the fragment in
hologram finger print. The statistical parameters obtained
for a variety of models developed using A/B/DA parame-
ters with different atom count is shown in Table 8. There
was a significant difference noticed in statistical values of
models with reference to the atom counts. Models with
increase or decrease in the atom count with respect to atom
count of 4–7 showed reduced prediction power. So, the
Model-d-4 developed with atom count of 4–7 with essential
parameters namely atoms, bonds, donor and acceptor was
used for further analysis. For this model, actual and
predicted PCaco-2 values of the training and test set
molecules are shown in Tables 9 and 10 respectively, while
their plot is shown in Fig. 7.

This model showed less predictivity on the test set of 15
molecules (rpred

2=0.47). Among the test set, three mole-
cules [molecule no. 53 (ranitidine), 58 (sulfasalazine) and
60 (terbutaline)] showed very large residuals. This model
was found to be sufficiently trained with the compounds
containing guanidine group as it showed good predictivity
for the compounds in training set [molecule 2 (residual:

Table 9 Actual and predicted Pcaco-2 values for training set molecules
of HQSAR model

S. No. Molecule Actual Pcaco-2 Predicted Pcaco-2 Residual

1 1 6.29 5.59 0.70

2 10 4.51 4.38 0.13

3 12 4.69 4.75 -0.06

4 13 4.70 4.85 -0.15

5 14 6.82 6.80 0.02

6 15 6.13 5.92 0.21

7 16 4.66 4.77 -0.11

8 2 6.60 6.45 0.15

9 20 4.91 4.87 0.04

10 21 4.48 4.34 0.14

11 22 4.53 4.55 -0.02

12 23 5.03 5.04 -0.01

13 24 6.80 6.84 -0.04

14 25 5.64 5.48 0.16

15 26 5.43 5.29 0.14

16 28 6.92 6.38 0.54

17 29 6.42 6.59 -0.17

18 30 4.44 4.36 0.08

19 32 4.85 4.82 0.03

20 33 6.29 6.73 -0.44

21 34 4.28 4.80 -0.52

22 35 4.85 4.84 0.01

23 37 5.03 4.97 0.06

24 38 6.42 6.60 -0.18

25 39 4.71 4.73 -0.02

26 40 4.63 4.94 -0.31

27 42 5.41 5.33 0.08

28 43 4.40 4.30 0.10

29 44 4.71 4.72 -0.01

30 45 4.57 4.74 -0.17

31 46 4.61 4.41 0.20

32 48 4.45 4.44 0.01

33 49 4.36 4.52 -0.16

34 50 4.63 4.60 0.03

35 51 4.66 4.54 0.12

36 52 4.69 4.66 0.03

37 55 6.10 6.16 -0.06

38 56 4.93 4.87 0.06

39 57 5.77 5.95 -0.18

40 59 4.82 4.71 0.11

41 61 4.60 4.77 -0.17

42 62 4.89 4.83 0.06

43 63 5.34 4.99 0.35

44 64 4.32 4.95 -0.63

45 6 4.55 4.71 -0.16
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0.15); molecule 15 (residual: 0.21); molecule 16 (residual:
-0.11); molecule 29 (residual: -0.17)] and test set molecule
31 (residual: -0.13). Molecule 53, ranitidine, contains the
guanidine group where the imine nitrogen is replaced with
the carbon atom. This arrangement is absent in the training
set molecules. This can be attributed to the weak prediction
of permeability of this compound. Molecule 58 (sulfasala-
zine) contains the functional group diazene (N=N) that is
absent in training set chemical space. This can be the cause
of residual 1.01 in the prediction space. Tebutaline is a
recemate and its bioavailability is stereoselective. Based on
the plasma data, Borgstrom et al. have found that the oral
bioavailability of (+)tebutaline is 7.5% and that of (−)

tebutaline is 14.8%. The bioavailability of (±)tebutaline is
similar to that of (−)tebutaline [44]. Thus the permeability
of the turbutaline is dependent on the isoforms and their
equilibrium concentrations. This has lead to the weak
prediction of terbutaline permeability. If these three outliers
are removed, the model shows significantly better rpred

2 of
0.70. Thus, two out of three outliers are because of
insufficient molecular space covered in the training set.
Because of this the model may not be applicable for the
prediction of molecules having imine and diazine functional
groups.

Color coding

The HQSAR module in SYBYL uses the color coding to
show the atomic contributions to the activity. While the
color codes red, red orange and orange show the favorable
or positive contribution to the activity, the color codes
yellow, green blue, green denote unfavorable or negative
contribution to the activity. The white color code shows the
intermediate contribution to the activity. Contribution map
obtained for a few molecules by HQSAR analysis is shown
in Fig. 8. Molecule 49 with three nitrogen atoms has red
color code on the ring system which increases the solubility
in water, thus enhances the absorption of the molecule.
Molecule 43 has red-orange color on the naphthalene ring
which indicates that the ring plays an important role in
enhancing permeability by increasing the lipid solubility.
The carboxylic acid group is coded with orange color
which also further indicates toward enhanced solubility of
the molecule.

The aromatic ether is a hydrogen bond acceptor and thus
increases the water solubility. Molecule 48 has N-H group
which is hydrogen bond donor and it makes the molecule

Table 10 Actual and predicted Pcaco-2 values for test set molecules of
HQSAR model

S. No. Molecule Actual Pcaco-2 Predicted Pcaco-2 Residual

1 3 4.60 5.07 -0.47

2 4 4.44 4.41 0.03

3 5 6.10 6.59 -0.49

4 11 6.30 5.85 0.45

5 18 4.62 4.80 -0.18

6 19 4.67 4.52 0.15

7 27 4.77 4.78 -0.01

8 31 4.68 5.16 -0.48

9 36 4.69 4.82 -0.13

10 41 5.92 5.34 0.58

11 47 4.78 4.93 -0.15

12 53 6.31 5.14 1.17

13 54 4.66 5.12 -0.46

14 58 6.52 5.51 1.01

15 60 6.33 5.17 1.16

Fig. 7 Plot for actual versus
predicted PCaco-2 values of the
training and test set molecules of
HQSAR-d-4 model. The train-
ing set and test set molecules are
shown in blue (diamond) and
pink (square) spots, respectively
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highly polar thereby increasing its lipid solubility. More-
over, amide bond which is also highly polar increases the
lipid solubility. In molecule 14 and 28, the sulfone group
has the green color code which shows that the group may
be responsible for a decrease in the absorption.

Fragment analysis

The final HQSAR model produced hundreds of fragments.
The fragments produced are useful in predicting the

variability in biological activity. Although a direct correla-
tion may not be established between the activity and all the
fragments produced, these fragments provide useful hints
toward improving the activity. Analysis of the fragments
and their contributions shows that the fragments possessing
positive values contribute favorably to the activity while the
fragments possessing negative values contribute unfavor-
ably to the activity. A few fragments showing positive and
negative contributions toward the absorption of the various
drugs are shown in Fig. 9.

Fig. 9 A few fragments showing positive and negative contributions toward the permeability of the various drugs

Fig. 8 Contribution map
obtained for a few molecules
by HQSAR analysis
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Fragment 1 has a negative coefficient value of −0.014.
This fragment has the methyl group which may increase
electron density on nitrogen and increases the polarity of
the molecule thus making the molecule water soluble. As
the number of hydrocarbon groups like methyl group
increases, the lipid partitioning of the molecule is also
nicely enhanced as seen in molecule 10. Fragment 2 has
coefficient value of −0.012 and is derived from an aromatic
ring system. The aromatic ring is a non-polar group and it
will increase the lipid partitioning of the molecules.
Fragment 3 is derived from molecule 49 with the
coefficient value of −0.012. This fragment 3 has hydrogen
bond acceptors which may increase the water solubility.
Fragment 4 has the coefficient value of −0.011 and the two
hydrogen bond acceptor groups. It might positively
contribute in their absorption which shows that it may
contribute certainly for the absorption of the molecule.
Fragment 5 has the coefficient value of −0.011. This
fragment is also derived from molecule 49 which has two
oxygen with the two methyl groups substituted on them.
These methyl groups are non-polar groups and increases the
lipid partitioning of the molecule. Molecule 49 has both the
fragment that are involved in lipid and water solubility
which is important in absorption. Fragment 6 and 7 have
negative coefficient values and positively contribute in
absorption as seen in molecule 22.

Fragment 8 has the coefficient value of 0.009; it is
observed that sulfur increases the electron density on the
nitrogen while the hydrogen bonding property of the
nitrogen decreases.

Fragment 10 has positive coefficient value of 0.011. In
this fragment the electron delocalization from one oxygen
to another oxygen decrease the hydrogen-bonding-acceptor
property of the oxygen and negatively affect the absorption
as seen in molecule number 58.

Fragment 11 is cyanoguanidine with the coefficient
value of 0.012. This property may decrease the absorption
of the molecule as seen in molecule 15 which is highly
polar in nature and affects absorption. Fragment 12 has
coefficient value of 0.013 and is from the beta lactum ring
which is also more hydrophilic in nature.

Fragment 13 has the coefficient value of 0.014. The
halogen substitution in the molecules may play an
important role in increasing the polarization and thus
decrease the water solubility and absorption of the molecule
as seen in molecule 28. Fragment 14 has the coefficient
value of 0.014. This fragment also has the chlorine
substitution, thus may negatively contribute in their absorp-
tion. Fragment 15 has the coefficient value of 0.014 and is
taken from the amide bond of the molecules which increases
the hydrophilicity of the molecule. In spite of having
acceptor groups, the hydrogen-bonding-acceptor properties
decreases and negatively contributes in their absorption.

Conclusions

An important strength of the MI-QSAR approach is to build
simple and statistically significant relationships such as
Eqs. 1–3. Solute conformational flexibility within the
membrane is important for high permeability. Decrease in
the hydrogen bonding energy of the solute increases the
absorption of the molecule. Chi-8 points out that the
smaller molecule will permeate more freely than the larger
one. Dipole moment increases as the permeability
increases.

Through HQSAR analysis we noted important features
for improving the absorption of drugs and drug-like
molecules. Maintaining the HLB is important for the
absorption of the molecule. The presence of one or more
chlorines shows negative contribution for absorption. The
methyl group increases the lipophilicity thus affecting the
absorption. The presence of a polar group will have a
negative effect on absorption.
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Abstract A series of crown ethers containing the azobenzene
moiety incorporated into crowns of various sizes [Cr(O6), Cr
(O7) and Cr(O8)] and their corresponding alkali metal cation
(Li+, Na+, K+, Rb+) complexes have been studied theoreti-
cally. The density functional theory (DFT) method was
employed to elucidate the stereochemical structural natures
and thermodynamic properties of all of the target molecules
at the B3LYP/6-31 G(d) and LANL2DZ level for the cation
Rb+. The fully optimized geometries had real frequencies,
thus indicating their minimum-energy status. In addition, the
bond lengths between the metal cation and oxygen atoms,
atomic torsion angles and thermodynamic energies for
complexes were studied. Natural bond orbital (NBO)
analysis was used to explore the origin of the internal forces
and the intermolecular interactions for the metal complexes.
The calculated results show that the most significant
interaction is that between the lone pair electrons of
electron-donating oxygens in the cis-forms of azobenzene
crown ethers (cis-ACEs) and the LP* (1-center valence
antibond lone pair) orbitals of the alkali-metal cations (Li+,
Na+, K+ and Rb+). The electronic spectra for the cis-ACEs
[cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)] are obtained by the
time-dependent density functional theory (TDDFT) at the
B3LYP/6-31 G(d) level. The spectra of the cis-isomers show
broad π→π* (S0→S2) absorption bands at 310–340 nm but
weaker n→π* (S0→S1) bands at 480–490 nm. The
calculated results are in good agreement with the experi-
mental results.

Keywords Azobenzene crown ethers (ACEs) .

Photoisomerization . Preorganization . Switchable
molecules . Time-dependent density functional theory
(TDDFT)

Introduction

Supramolecular chemistry is a highly interdisciplinary field
covering the chemical, physical, and biological features of
complex chemical species that are held together and
organized by means of intermolecular (noncovalent) bond-
ing interactions. How well things fit together depends on
their predisposition to do so, a matter frequently referred to
as “preorganization.” Reliably predicting host–guest inter-
actions is an important goal of supramolecular chemistry
[1]. A molecular system with a preorganized and effectively
functionalized recognition unit for guest molecules is ideal
for host–guest interactions.

Nowadays, most molecular builders are very interested
in constructing switchable molecular systems that can
selectively bind different metal cations. The key to
designing a successful system of this type involves the
use of binding interactions that have well-defined, predict-
able geometric consequences. These are important aspects
in the development of functional molecular devices of
increasing complexity [2]. Ever since the first synthesis of
crown ethers was reported by Pedersen [3], these molecules
have been the focus of extensive study due to their ability
to complex metal cations [4]. A large number of studies
have shown that the binding properties of crown ethers are
sensitive to change in conformation or effective size [5].

Azobenzenes comprise an interesting class of com-
pounds that exhibit photoresponsive properties. Their
photoisomerization properties have led to them becoming
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among the most common used photoresponsive molecular
switches [6]. They have been incorporated into a number of
supramolecular frameworks to produce ionophores for
transports and photoswitchable receptors [7]. Azobenzene
has the ability to undergo isomerization between the
straight trans-isomer and the bent cis-isomer with light
irradiation (trans ↔ cis) and thermal induction (cis→ trans)
(see Fig. 1), respectively. Because of their facile intercon-
version at appropriate wavelengths, azobenzenes have the
potential to be used in optical switching and image storage
devices [8–11] as well as molecular scissors [12] and as
targets for coherent control in molecular electronics [13].

The basic requirement of a successful molecular switch
is the presence of two distinct forms of the molecule that
can be interconverted reversibly by means of an external
stimulus, such as light, heat, pressure, magnetic or electric
fields, a pH change or a chemical reaction [14]. Irradiating
or heating azobenzene-containing materials induces revers-
ible isomerization between the two isomers, making
azobenzenes switchable molecules. The isomerization of
azobenzenes is accompanied by significant changes in the
absorption spectra and structures of the molecules. These
changes can alter properties of their surrounding environ-
ment by switching them “on” or “off.”

The azobenzene moiety incorporated into the crowns
(see Fig. 2) is used to change the size of the crowns and
hence to modify the complexing properties of the molecules
[15, 16]. The combination of a crown ether with an
azobenzene moiety enables us to control ionic conductivity
by light irradiation or thermal induction.

The azobenzene-type crown ethers (hereafter referred to as
“ACEs”) Cr(O7) and Cr(O8), in which the 4 and 4′ positions
of azobenzene are linked by a polyoxyethylene chain, were
synthesized and studied by Seiji Shinkai and co-workers
[17]. Cr(O7) and Cr(O8) have azobenzene as an antenna and
the crown ether as a functional group, and change their
chemical and physical functions in response to photo-
irradiation or changes in temperature. Similarly, azobenzene
derivatives have been utilized as light-driven or temperature-
driven triggers to control the functions of metal ligands.

Computational methods are a promising way to calculate
the structures and properties of complexes, such as their
binding energies and absorbance spectra. In the work
presented here, a family of ACEs [Cr(O6), Cr(O7) and Cr
(O8)] with rings of different sizes containing the azoben-

zene moiety incorporated into the crown were studied
theoretically.

Theory and methods of calculation

In the framework of the density functional theory (DFT)
approach, the B3LYP hybrid functional [18, 19] is one of
the most preferred methods, as it has proven its ability to
reproduce various molecular properties, including structural
parameters and vibrational spectra. The combined use of
the B3LYP functional and the standard split valence basis
set 6-31 G(d) has been previously shown to provide an
excellent compromise between the accuracy of the results
and computational efficiency for large and medium-sized
molecules [20–26]. Ground-state electronic structure cal-
culations of all complexes were performed using density
functional theory (DFT) methods as implemented using the
Gaussian 03 software package [27]. The functional that was
used throughout this study is B3LYP, consisting of a hybrid
exchange functional, as defined by Becke’s three-parameter
equation, and the Lee–Yang–Par correlation functional [18,
19]. The ground-state geometries were obtained in the gas
phase by full geometry optimization, and the optimum
structures, located as stationary points on the potential
energy surfaces, were verified by the absence of imaginary
frequencies. The standard 6–31 G(d) and LANL2DZ basis
sets were found to be suitable for most ligands.

Time-dependent density functional theory (TDDFT) can
model highly complex molecules like azobenzenes accurately,
efficiently, and cost-effectively. In this study, TDDFTwas used
to model the absorption spectra of several azobenzene
derivatives. The results show a reasonably good association
between the theoretical and experimental values for the
absorbance spectra of the azobenzenes. A natural bond orbital
(NBO) population analysis was performed with the NBO 3.1
program as implemented in Gaussian [28–31]. NBO analysis
represents a unique and powerful approach to evaluating the

Fig. 1 Schematic diagram of the trans ↔ cis isomerization of
azobenzenes

Fig. 2 Schematic diagram of the trans ↔ cis isomerization of crown
ethers with an incorporated azobenzene moiety
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origins of intermolecular interactions from a computational
standpoint.

The binding energies, binding enthalpies, and Gibbs free
energies in the gas phase for the complexes were calculated
for the reaction

cis� ACEsfree þMþ
free ! ðcis� ACEs=MþÞcomplex: ð1Þ

For this system, the binding energy ΔE can be expressed
as follows:

ΔE ¼ Eðcis� ACEs=MþÞcomplex � ½Eðcis� ACEsfreeÞ þ EðMþ
freeÞ�:
ð2Þ

Results and discussion

Optimized ground-state geometry

The structures of molecules play an especially important
role in determining their chemical properties. The opti-
mized stability structures for both the trans and cis forms of
ACEs [Cr(O6), Cr(O7) and Cr(O8)] were obtained at the
B3LYP/6-31 G(d) level in the gas phase at 298 K, while
unsubstituted trans- and cis-azobenzene were studied as
reference compounds at the same level. The results of the
analysis of all of the target molecules described above are
depicted in Table 1, and their ground-state structures are
presented in Fig. 3.

The trans isomer of azobenzene is about 15.1 kcal mol−1

or 0.65 eV lower in energy than that of the cis isomer. This
is only slightly higher than the experimental value of
0.6 eV [32]. The DFT results are very similar to some of the
previous theoretical predictions [33–39]. The calculated
results indicate that the phenyl rings of trans-azobenzene
are 50.2° out of plane compared to those of the cis isomer,

and the distance between the 4 and 4′ positions decreases
from 9.079Å to 6.562Å for trans- and cis-azobenzene,
respectively.

The energies of the cis ACEs are 16.3 kcal mol−1 (cis-Cr
(O6)), 20.1 kcal mol−1 (cis-Cr(O7)), and 15.7 (cis-Cr(O8))
kcal mol−1 higher than those of their corresponding trans
isomers, respectively. The optimized structures of the trans
isomers of Cr(O6), Cr(O7), and Cr(O8) are shown in Fig. 3,
and the calculated parameters for them are listed in Table 1.
The polyoxyethylene (−CH2–O–CH2–)n (n=1, 2, 3) chains
between the two aromatic rings are almost linearly
extended. The distances between the 4 and 4′ positions of
azobenzene of the three trans isomers are 8.945, 9.072
and 9.034Å, respectively, which are all smaller than those
of the unsubstituted trans-azobenzene (9.079Å). The
angle ∠NNCC for trans-Cr(O6), trans-Cr(O7), and trans-
Cr(O8) are 3.2°, 1.4°, and 8.4°, respectively. These results
indicate that the phenyl rings of the trans-azobenzene unit
in the ACEs are out of plane compared to those of the
unsubstituted azobenzene, and there must be some steric
restriction in play during the trans ↔ cis isomerization.
The methylene chain of trans-Cr(O8) undergoes a small
amount of folding, and trans-Cr(O6) shows the most
restricted structure (see from Fig. 3). The trans isomers
of the ACEs show poor preorganization because of the
long loops in their structures; the isomers lack any affinity
for metal cations according to the rules of supermolecule
preorganization [40]. With respect to the cis ACEs, there is
a crown loop in each of the target molecules. The preorgani-
zation of the cis forms of ACEs is enhanced, allowing them
to coordinate with metal cations; they thus present an “on”
state, while the trans forms of the ACEs are in an “off” state
in terms of coordinating with metal cations. Cis forms of
these crown ethers show affinity for metal cations. The sizes
of the loops in the cis-type ACEs follows the order: cis-Cr
(O6)<cis-Cr(O7)<cis-Cr(O8). The arrangement of atoms in

Table 1 Comparison of the calculated parameters of the trans and cis isomers of ligands optimized at the B3LYP/6-31 G(d) level

Ligand Angle (°) Distances (Å) Energya (kcal/mol)

∠CNNC ∠NNCC ∠NNC dNN dCN dC–C

Trans-azobenzene 180.0 0 114.8 1.261 1.419 9.079 0

Cis-azobenzene 9.8 50.2 124.1 1.250 1.436 6.562 15.1

Trans-Cr(O6) 171.0 3.2 114.8 1.265 1.410 8.945 0

Cis-Cr(O6) 11.1 49.6 123.6 1.253 1.434 6.507 16.3

Trans-Cr(O7) 176.8 1.4 115.3 1.265 1.410 9.072 0

Cis-Cr(O7) 9.0 57.2 122.4 1.254 1.434 6.233 20.1

Trans-Cr(O8) 178.0 8.4 113.5 1.264 1.408 9.034 0

Cis-Cr(O8) 8.3 48.6 123.5 1.255 1.434 6.284 15.7

dC–C: the distances (Å) between the 4 and 4′ positions of azobenzene and azobenzene crown ethers (ACEs)
a Energies are relative to the corresponding trans isomer of the ligand
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the cis isomers is more relaxed than that in the trans isomers.
In addition, the flexibility of the crown-like loop increases as
the number of –CH2–O–CH2– units between the 4 and 4′
positions of azobenzene increases. These results show that in
ACEs with a polyoxyethylene chain, the crown-like loop

appears in cis ACEs and disappears in trans ACEs,
causing an “all-or-nothing” change in the ion-binding
ability. The molecules of ACEs in their cis and trans
isomer forms act as “switched-on” and “switched-off”
crown ethers, respectively.

trans-azobenzene               cis-azobenzene 

trans-Cr(O6)                  cis-Cr(O6) 

trans-Cr(O7)  cis-Cr(O7) 

trans-Cr(O8) cis-Cr(O8)

Fig. 3 The optimized structures
of the trans and cis isomers of
azobenzene and azobenzene
crown ethers (ACEs) at the
B3LYP/6-31 G(d) level
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Optimized geometries of the complexes

The optimized structures of the cis ACE/M+ complexes
[cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)]/Li

+, Na+, K+ and
Rb+] are given in Fig. 4, whereas the most important

parameters for these complexes, which were optimized by
performing DFT at the B3LYP/6-31 G(d) and LANL2DZ
level, are given in Table 2.

Upon inspecting Figs. 3 and 4 and Tables 1 and 2, it is
clear that the distances between the 4 and 4′ positions of the
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Fig. 4 The optimized structures of the cis isomers of azobenzene crown ethers (cis ACEs) complexed with Li+, Na+, K+ and Rb+ metal cations,
obtained at the B3LYP/6-31 G(d) and LANL2DZ level of theory
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azobenzene crown ether loops all change greatly when the
free ligand cis ACE [cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)]
coordinates with the alkali cations (Li+, Na+, K+ and Rb+).
It can be assumed that the decreased distances dC–C are due
to the inductive effect arising from the O…M+ interactions.
The smaller the number of methylene groups between the 4
and 4′ positions of azobenzene, the stronger the restrictions
on the crown-like ring. In addition, not all of the oxygen
atoms can contribute to the formation of a crown-like ring
in the cis isomers. The oxygen atoms in the crown loops do
not all interact with M+( Li+, Na+, K+ and Rb+) because
they are too far away.

When the crown ether loop of cis-Cr(O6) coordinates
with an alkali-metal cation, the structural features of the
dihedral angle ∠CNNC of the complex change significantly
and show different properties to those of the metal-free cis-
Cr(O6) (11.1°). Upon inspecting Fig. 4 and Table 2, it is
clear that in the complexes cis-Cr(O6)/Li

+ and cis-Cr(O6)/
Na+, the interatomic distances between Li+ and (O1–O6) are
2.155, 2.096, 2.343, 2.078, 2.094, and 4.965Å; those
between Na+ and (O1–O6) are 2.405, 2.431, 2.486, 2.387,
2.457, and 5.115Å, respectively. It is clear that r6 is 4.965Å
for cis-Cr(O6)/Li

+ and 5.115Å for cis-Cr(O6)/Na
+. The bond

length r6 is much larger than the others in each of the
complexes. The oxygen O6 in the crown loop of cis-Cr(O6)
shows only weak interactions with Li+ and Na+ because it
is too far away from them. The optimized structure of cis-
Cr(O6) with and without the cations K+ and Rb+ presents
only small changes. This result can be attributed to the
small size of the crown-like cavity but the big cation
diameters of K+ and Rb+.

Turning our attention to the structures of the complexes
cis-Cr(O7)/M

+ (Li+, Na+, K+ and Rb+), a polyoxyethylene
loop is formed that is analogous to 15-crown-5 [40–42].

Not all of the donor oxygen atoms in cis-Cr(O7) interact
with metal cations. In the complexes, the average coordi-
nation bond lengths of the metal cations are 2.111, 2.424,
2.783, and 3.050Å, respectively. The bond lengths for cis-
CrO7/Li

+ and Na+ are smaller than those for cis-Cr(O7)/K
+

and Rb+; in other words, there are stronger metal–oxygen
interactions between the ligand cis-Cr(O7) and Li+ and Na+

than K+ and Rb+. Li+ gives a shorter bond length with the
donor O than Na+ does in these complexes. However, the
structures of cis-Cr(O7)/M

+ (Li+ and Na+) from Fig. 4
indicate that Na+ improves the planarity of the oxygens
compared to Li+. Therefore, Na+ fits with the crown-like
ring better than Li+. Cis-Cr(O7) cannot bind well with the
large alkali metal cation Rb+, as can be seen from the
structures in Fig. 4.

Based on the optimized structures of the complexes
formed by the alkali cations Li+, Na+, K+ and Rb+ and the
ligand cis-Cr(O8), a 18-crown-6 crown-like ring is pro-
duced when cis-Cr(O8) coordinates with metal cations.
There are six donor oxygens that are mainly involved in the
O…M+ interactions. Cis-Cr(O8) can bind with both small
and large alkali-metal cations, as can be seen from the
structures shown in Fig. 4. Li+ is too small to coordinate
with all six oxygen atoms in the crown-like ring of cis-Cr
(O8). The coordination bond lengths shown in Table 2 for
the complex cis-Cr(O8)/Li

+ are 3.290, 2.009, 2.055, 2.066,
2.016 and 3.192Å, respectively. It is clear that r1 and r6 are
all much larger than the other bond lengths. The optimized
structure shown in Fig. 4 indicates that Li+ is drawn to one
side of the crown-like ring. The bond lengths indicate that
the best match for the crown-like loop in the ligand cis-Cr
(O8) is Na

+ according to the lock-and-key complementarity
rule [43]. However, crown-6 ethers are known to prefer K+

according to experimental results [44–47]. The most

Table 2 Selected parameters for the ACE/M+ (Li+, Na+, K+ and Rb+) complexes optimized at the B3LYP/6-31 G(d) and LANL2DZ level
(distances in Å, dihedral angles in degrees °)

Parameter cis-Cr(O6) cis-Cr(O7) cis-Cr(O8)

Li+ Na+ K+ Rb+ Li+ Na+ K+ Rb+ Li+ Na+ K+ Rb+

r1 2.155 2.405 3.370 3.709 2.105 2.413 2.796 3.137 3.290 2.675 2.934 3.065

r2 2.096 2.431 2.909 3.125 2.044 2.424 2.777 2.983 2.009 2.380 2.752 2.969

r3 2.343 2.486 2.864 3.027 2.193 2.470 2.776 3.015 2.055 2.511 2.843 3.012

r4 2.078 2.387 2.864 3.027 1.989 2.372 2.753 3.020 2.066 2.518 2.841 3.006

r5 2.094 2.457 2.907 3.125 2.226 2.439 2.813 3.097 2.016 2.363 2.781 2.983

r6 4.965 5.115 3.357 3.709 _ _ _ _ 3.192 2.585 2.935 3.131

dC–C 5.027 5.307 5.365 5.814 5.663 5.530 5.870 5.915 6.391 5.606 5.391 5.689

∠CNNC 7.0 7.7 7.5 8.6 8.3 7.3 8.4 8.5 8.5 8.1 6.7 8.4

∠NNCC 64.3 62.9 65.6 64.5 59.5 57.7 54.8 52.7 55.1 61.0 57.7 58.4

r: bond lengths (Å) between O atoms and alkali-metal cations

dC–C: distances (Å) between the 4 and 4′ positions of azobenzene

968 J Mol Model (2012) 18:963–972



plausible reason for this difference between experiment and
theory is that the calculations do not include the effect of
the solvent, and Na+ is even more strongly solvated than K+

[48]; the calculations were performed for isolated molecules
in the gas phase, but the experiments were done in aqueous
solution.

Natural bond orbital analysis

For each donor NBO (i) and acceptor NBO (j), the
stabilization energy (E2) associated with i→j delocalization
is explicitly estimated using the following equation [49–52]:

E2 ¼ ΔEij ¼ qi
F2 i; jð Þ
"j � "i

; ð3Þ

where qi is the ith donor orbital occupancy, εi and εj, are
the diagonal elements (orbital energies), and F (i, j) are the
off-diagonal elements, respectively, associated with the
NBO Fock matrix.

The results of second-order perturbation theory analysis
of the Fock matrix for cis-ACE/M+ [cis-Cr(O6), cis-Cr(O7)
and cis-Cr(O8)/Li

+, Na+, K+ and Rb+], obtained by NBO
analysis, are summarized in Table 3. The interaction
energies E2 of the host–guest molecules cis-ACE/M+ are
mainly dependent on the lone-pair electrons of O atoms of
the crown ether and the LP* orbitals of the alkali-metal
cation (Li+, Na+, K+ and Rb+); the N atoms in the
azobenzene part do not appear to be as important.

For the complexes cis-Cr(O6)/M
+, the strong donor–

acceptor interactions for cis-Cr(O6)/Li
+ between the lone-

pair electrons of the electron-donating oxygens O1, O2, O3,
O4, and O5 and the LP* orbital of Li+ have stabilization
energies of 3.05, 4.76, 4.47, 3.81, and 4.41 kcal mol−1,
respectively, which are much bigger than the corresponding
energies E2 for the complex cis-Cr(O6)/Na

+ (1.28, 3.72,
3.14, 2.92, and 3.32 kcal mol−1). Obviously, one of the
electron-donating oxygens, O6, in the ligand cis-Cr(O6) is
not considered to interact with Li+ and Na+, and the E2 data
show a poor distribution. However, the interaction stabili-

Table 3 Results of second-order perturbation theory analysis of the Fock matrix for cis-ACE/M+ [cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)/Li
+, Na+,

K+ and Rb+] within the NBO basis

cis-Cr(O6) cis-Cr(O7) cis-Cr(O8)

Donor NBO(i) E2 Donor NBO(i) E2 Donor NBO(i) E2

→Acceptor NBO (j) (kcal/mol) →Acceptor NBO (j) (kcal/mol) →Acceptor NBO (j) (kcal/mol)

LP O1→LP* Li 3.05 LP O1→LP* Li 4.91 LP O1→LP* Li 3.10

LP O2→LP* Li 4.47 LP O2→LP* Li 4.52 LP O2→LP* Li 3.54

LP O3→LP* Li 4.41 LP O3→LP* Li 4.48 LP O3→LP* Li 3.29

LP O4→LP* Li 3.81 LP O4→LP* Li 4.01 LP O4→LP* Li 3.30

LP O5→LP* Li 4.76 LP O5→LP* Li 5.01 LP O5→LP* Li 3.51

LP O6→LP* Li 2.33

LP O1→LP* Na 1.28 LP O1→LP* Na 3.32 LP O1→LP* Na 4.43

LP O2→LP* Na 3.14 LP O2→LP* Na 2.77 LP O2→LP* Na 2.83

LP O3→LP* Na 3.32 LP O3→LP* Na 2.81 LP O3→LP* Na 3.53

LP O4→LP* Na 2.92 LP O4→LP* Na 2.65 LP O4→LP* Na 3.62

LP O5→LP* Na 3.72 LP O5→LP* Na 3.35 LP O5→LP* Na 2.82

LP O6→LP* Na 4.18

LP O1→LP* K 1.12 LP O1→LP* K 2.45 LP O1→LP* K 2.95

LP O2→LP*K 2.36 LP O2→LP*K 2.16 LP O2→LP*K 2.38

LP O3→LP* K 2.99 LP O3→LP* K 2.01 LP O3→LP* K 2.69

LP O4→LP* K 2.99 LP O4→LP* K 1.88 LP O4→LP* K 2.72

LP O5→LP* K 2.36 LP O5→LP* K 2.55 LP O5→LP* K 2.51

LP O6→LP* K 1.11 LP O6→LP* K 2.99

LP O1→LP* Rb 0.57 LP O1→LP* Rb 1.15 LP O1→LP* Rb 1.62

LP O2→LP* Rb 1.21 LP O2→LP* Rb 1.03 LP O2→LP* Rb 1.32

LP O3→LP* Rb 1.64 LP O3→LP* Rb 1.04 LP O3→LP* Rb 1.51

LP O4→LP* Rb 1.64 LP O4→LP* Rb 1.02 LP O4→LP* Rb 1.54

LP O5→LP* Rb 1.21 LP O5→LP* Rb 1.05 LP O5→LP* Rb 1.34

LP O6→LP* Rb 0.57 LP O6→LP* Rb 1.76
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zation energy E2 between an electron-donating oxygen and
K+ or Rb+ is weaker than that for cis-Cr(O6)/M

+ (Li+ and
Na+). Also, six electron-donating oxygens in cis-Cr(O6) all
interact with the cations K+ and Rb+. This result can be
attributed to the small size of the crown-like cavity and the
big cation diameters of K+ and Rb+.

In cis-Cr(O7)/M
+ (Li+, Na+, K+ and Rb+) complexes, the

stronger donor–acceptor interactions mainly derive from
the lone-pair electrons of the five electron-donating oxy-
gens (O1, O2, O3, O4, O5) and the LP* orbital of the alkali-
metal cation M+(Li+, Na+, K+ or Rb+), and the interaction
phenomenon is analogous to 15-crown-5/M+. The stabili-
zation energies E2 for the complexes cis-Cr(O7)/Li

+ and
Na+ are larger than those of the complexes cis-Cr(O7)/K

+

and Rb+. For the complex cis-Cr(O7)/Li
+, the data

distribution for the stabilization energy E2 of cis-Cr(O7)/
Na+ is better than that of cis-Cr(O7)/Li

+.
In the cis-Cr(O8)/M

+ complexes, the strongest donor–
acceptor interactions mainly come from the lone-pair
electrons of the six electron-donating oxygens (O1, O2,
O3, O4, O5, O6) and the LP* orbital of the alkali-metal
cation M+(Li+, Na+, K+ or Rb+), and the interaction
phenomenon is analogous to 18-crown-6/M+. The stabili-
zation energy E2 for O6…Li+ in the cis-Cr(O8)/ Li

+ complex
is 2.33 kcal mol−1, which is much smaller than those of the
other five oxygens (O1: 3.10, O2: 3.54, O3: 3.29, O4: 3.30,
O5: 3.51 kcal mol−1). The data distributions of the
stabilization energies E2 for the complexes cis-Cr(O8)/K

+

and cis-Cr(O8)/Rb
+ are better than those of the complexes

cis-Cr(O8)/Li
+ and cis-Cr(O8)/Na

+. In the complex cis-Cr
(O8)/K

+, the strong donor–acceptor interactions between
the lone-pair electrons of the electron-donating oxygens
O1–O6 and the LP* orbital of Li+ have stabilization
energies of 2.95, 2.38, 2.69, 2.72, 2.51 and 2.99 kcal
mol−1, respectively, which are much bigger than the
corresponding stabilization energies E2 of the complex

cis-Cr(O8)/Rb
+ (1.62, 1.32, 1.51, 1.54, 1.34 and 1.76 kcal

mol−1).

Binding energies and stabilities

The calculated binding energies (ΔEb), enthalpies (ΔHb)
and Gibbs free energies (ΔGb) (298 K) of the ACE/M+

complexes [cis-Cr(O6), cis-Cr(O7), and cis-Cr(O8)/Li
+, Na+,

K+ and Rb+], based on reaction (1) at the B3LYP/6-31 G(d)
and LANL2DZ level in the gas phase are listed in Table 4.
When performing such a study, it is important to consider
the large basis set superposition error (BSSE), which in
most cases leads to overestimated interaction energies [53,
54]. One of the most commonly used methods of correcting
for the BSSE is the counterpoise (CP) method [55]. Thus, the
binding energies were corrected for the undesirable effects of
the BSSE using the CP method at the B3LYP/6-31 G (d)
level with relaxed fragment geometries.

Table 4 shows that the gas-phase binding energies (ΔEb),
binding enthalpies (ΔHb) and Gibbs free energies (ΔGb) at
298 K decrease for the three different free ligands cis-Cr(O6),
cis-Cr(O7) and cis-Cr(O8) as the size of the alkali cation
increases, in other words: ΔEACEs=Liþ > ΔEACEs=Naþ >

ΔEACEs=Kþ > ΔEACEs=Rbþ :

For cis-Cr(O6)/M
+ (Li+, Na+, K+ and Rb+), the crown-

like cavity ring of cis-Cr(O6) must undergo considerable
folding/twisting to bring the binding sites in close
proximity to the small cations Li+ and Na+. These
distortions enhance the host–guest intramolecular inter-
actions. Although the backbone of the complex suffers
much distortion and displays poor structural symmetry, the
calculations are performed for isolated molecules in the gas
phase (i.e., they do not include the intramolecular interactions
of the studied complexes); therefore, the thermal energies of
cis-Cr(O6)/Li

+ and cis-Cr(O6)/Na
+ are larger than those of

cis-Cr(O6)/K
+ and cis-Cr(O6)/Rb

+. However, because the

Ligands Metal cations ΔEb EBSSE ΔEb
BSSE ΔHb ΔGb

Cis-Cr(O6) Li+ −92.9 28.9 −64.0 −93.5 −77.8
Na+ −72.2 22.0 −50.2 −72.8 −60.9
K+ −51.5 17.6 −33.9 −52.1 −41.4
Rb+ −23.2 13.8 −9.4 −33.9 −13.2

Cis-Cr(O7) Li+ −105.4 18.2 −87.2 −106.0 −94.8
Na+ −83.5 18.2 −65.3 −84.1 −73.4
K+ −60.9 6.9 −54.0 −61.5 −51.5
Rb+ −30.7 8.2 −22.5 −31.4 −21.3

Cis-Cr(O8) Li+ −109.8 15.1 −94.7 −110.4 −97.9
Na+ −90.4 14.4 −66.0 −91.0 −79.1
K+ −67.1 8.2 −58.9 −67.8 −58.45
Rb+ −33.3 6.9 −26.4 −33.9 −23.2

Table 4 Calculated binding
energies ΔEb (kcal mol−1),
binding enthalpies ΔHb (kcal
mol−1), and Gibbs free energies
ΔGb (kcal mol−1) in the gas
phase for the complexes at
298 K
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metal cations K+ and Rb+ are large but the crown-like cavity
is small, the thermal energies of cis-Cr(O6)/K

+ and cis-Cr
(O6)/Rb

+ are also small. For cis-Cr(O7)/M
+ and cis-Cr(O8)/

M+ (Li+, Na+, K+ and Rb+), the complexes suffer much
distortion, display poor structural symmetry and so exhibit
the biggest thermal energies for the cation Li+. Thus, the
relationship between the cavity size of the crown ether and
the cation diameter plays an important role in determining
the thermal energies of complexes during coordination.

For cis-Cr(O6)/M
+, cis-Cr(O7)/M

+ and cis-Cr(O8)/M
+

(Li+, Na+, K+ and Rb+), the different alkali cations show
different trends. If we consider Na+, the thermal energy
shows the relation cis-Cr(O6)/Na

+ < cis-Cr(O6)/Na
+ < cis-

Cr(O6)/Na
+, while the binding energies of the cis ACEs

with Na+ [cis-Cr(O6) < cis-Cr(O7) < cis-Cr(O8)] indicate
that the affinities of the cis ACEs for Na+ increase as the
number of –CH2–O–CH2– units increases, enlarging the
crown-like loop. As the loop enlarges, the rigidity of the
crown ether is reduced, so it becomes easier for the ACE to
bind with metal cations.

Absorption spectra

The absorption spectra of the cis isomers of azobenzene and
ACEs [cis-Cr(O6), cis-Cr(O7 ) and cis-Cr(O8)] were
investigated by time-dependent density functional theory
(TDDFT) with the 6-31 G(d) basis set. The calculated
excitation energies (Eg), wavelengths of peak absorption
(λabs) and the oscillator strengths (f) of all compounds in
their optimized ground-state geometries are summarized in
Table 5.

The absorption spectrum of cis-azobenzene shows two
distinct bands: a strong π→π*,(S0→S2) absorption band
peaking at about 270 nm and a much weaker n→π*(S0→
S1) band with a peak at around 470 nm. The results are in a
good agreement with some of the previous studies [56, 57].

Obviously, the values of the parameters of the cis
isomers of the ACEs are all different from those of cis-
azobenzene. The spectra of the cis ACEs [cis-Cr(O6), cis-Cr

(O7) and cis-Cr(O8)] contain broad π→π* (S0→S2)
absorption bands with a characteristic peak at 310–
340 nm in the near-UV region, and their oscillator strengths
are much more intense. Weaker bands in the visible region
(peak wavelengths: 480–490 nm) and lower oscillator
strengths due to the n→π* (S0→S1) transitions are also
observed. The spectra of the cis ACEs present significant
redshifts in comparison to the spectrum of unsubstituted
cis-azobenzene. This result indicates that the size of the
crown has a distinct influence on the absorption spectra of
the cis ACEs.

In ref. [15], the experimental results indicated that both
Cr(O7) and Cr(O8) give high yields of the cis isomer at
about 360 nm, which is a little different from the peak
wavelengths obtained in our calculations. This difference
between the theoretical calculations and the experimental
results arises because the calculations performed in this
paper relate to the gas phase at 303 K, while the experi-
ments were performed in liquids at 298 K. However, this
theoretical study is still useful for predicting reactions and
gauging trends.

Conclusions and perspectives

The ground-state electronic structures of azobenzene crown
ethers [ACEs: Cr(O6), Cr(O7) and Cr(O8)] and complexes
of their cis isomers with the alkali-metal cations Li+, Na+,
K+ and Rb+ were obtained by DFT methods at the B3LYP/
6-31 G(d) level and LANL2DZ. The significant structural
differences between the optimized trans and cis isomers of
the ACEs indicate that the preorganization of the trans
ACEs is poor and in an “off” state, while it is enhanced for
the cis isomers and in an “on” state in relation to
coordinating with alkali metal cations. These “molecular
machines” can therefore be used as "on/off” switches as
they can switch between different molecular structures and
parameters. The cis isomers showed spherical recognition
patterns in the binding of alkali-metal cations. In NBO

Ligands Electronic transitions TD-B3LYP/6-31 G(d) // LANL2DZ

Eg (eV) Wavelength (nm) f

Cis-azobenzene S0→S1 2.60 465.30 0.0105

S0→S2 4.65 266.79 0.5858

Cis-Cr(O6) S0→S1 2.49 497.71 0.0708

S0→S2 3.74 331.24 0.1951

Cis-Cr(O7) S0→S1 2.57 482.33 0.0542

S0→S2 3.97 312.69 0.1289

Cis-Cr(O8) S0→S1 2.53 490.81 0.0582

S0→S2 3.78 328.25 0.1370

Table 5 Electronic transition
data obtained by TDDFT for a
family of azobenzene-type
crown ethers [cis-Cr(O6), cis-Cr
(O7) and cis-Cr(O8)]
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analysis, the main intermolecular charge-transfer inter-
actions were between the LP* orbitals of the metal
cations and the lone-pair electrons of the electron-
donating O atoms of the cis ACEs, but not all of the
donor oxygen atoms in the cis ACEs interact with metal
cations. The interaction pattern of cis-CrO7 with metal
cations (M+) is analogous to 15-crown-5/M+, while that
for cis-Cr(O8)/M

+ is analogous to 18-crown-6/M+. A time-
dependent density functional theory (TDDFT) study of the
cis ACEs afforded their absorption spectral parameters.
The results of the TDDFT study indicate that the cis
isomers have broad π→π* (S0→S2) absorption bands but
weaker n→π* (S0→S1) bands, and good agreement
between the theoretical and experimental values was seen.
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Abstract Presently, an in silico modelingwas carried out on a
series of 63 phosphonic acid-containing thiazole derivatives
as fructose-1,6-bisphosphatase (FBPase) inhibitors using
CoMFA/CoMSIA and molecular docking methods. The
CoMFA and CoMSIA models using 51 molecules in the
training set gave rcv

2 values of 0.675 and 0.619, r2 values of
0.985 and 0.979, respectively. The systemic external valida-
tion indicated that our CoMFA and CoMSIA models
possessed high predictive powers with r0

2 values of 0.995
and 0.994, rm(test)

2 values of 0.887 and 0.860, respectively.
The 3D contour maps of the CoMFA and CoMSIA provided
smooth and interpretable explanation of the structure-activity
relationship for the inhibitors. Molecular docking studies
revealed that a phosphonic group was essential for binding to
the AMP binding site, and some key features were also
identified. The analyses of the 3D contour plots and
molecular docking results permitted interesting conclusions
about the effects of different substituent groups at different
positions of the common scaffold, which might guide the
design of novel FBPase inhibitors with higher activity and
bioavailability. A set of 60 new analogues were designed by
utilizing the results revealed in the present study, and were
predicted with significantly improved potencies in the
developed models. The findings can be quite useful to aid
the designing of new fructose-1,6-biphophatase inhibitors
with improved biological response.

Keywords CoMFA . CoMSIA . Docking .

Fructose-1,6-biphophatase

Introduction

In order to develop new therapeutics for the treatment of
type-2 diabetes, many investigations have been carried out
especially through the use of small-molecule compounds
binding to various enzyme targets [1]. Significant effort has
targeted fructose-1,6-biphosphatase (FBPase, EC 3.1.3.11),
a key regulatory enzyme of hepatic glucogeogenesis (GNG)
pathway which catalyzes the irreversible reaction of
hydrolysis of fructose-1,6-bisphosphate to fructose-6-
phosphate [2]. A large number of radioisotope studies and
several experiments have demonstrated that the GNG can
account for up to 100% of the glucose produced by the liver
in the non-absorptive state, moreover, the GNG flux is
excessive in type-2 diabetes patients [3]. As a rate-limiting
and highly regulated enzyme in the GNG pathway, FBPase
is an attractive approach in the development of new anti-
diabetic pharmaceuticals [4–6].

As a tetramer of four identical polypeptide chains,
FBPase exists as a dimer of dimers. Regulation of FBPase
enzymatic activity involves changes in quaternary structure
between the active (R) and inactive (T) conformational
states [7]. This enzyme is subject to competitive substrate
inhibition by fructose-2,6-bisphosphate and to allosteric
inhibition by AMP. Without effectors the FBPase exists in
the active R-quaternary structure, AMP binds to the
allosteric site and inhibits the FBPase by shifting the
enzyme from R to T conformation or stabilizing the T state
[8, 9]. Therefore, efforts over the past two decades have
focused on designing AMP mimics capable of retaining the
key binding interactions of AMP with the allosteric binding
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site of FBPase, moreover, forming additional interactions
designed to enhance inhibitory potency and specificity [10,
11]. Despite numerous discovery programs over the past
decades targeting the AMP binding site of FBPase, few
AMP mimics have emerged with suitable potency and
specificity [12]. Unlike most drug binding sites which are
hydrophilic and highly dependent on hydrogen bond
interactions, the FBPase relies strictly on the structural
similarity of AMP. Many compounds were proved to be
unsuitable AMP mimics due to the strict structural require-
ments and other reasons [13]. Efforts to develop nucleoside
analogs that generate nucleoside monophosphates (NMPs)
inside cells capable of functioning as potent and specific AMP
mimics were also unsuccessful. Most of these nucleoside
analogs were unable to generate high intracellular levels of the
NMP because of poor initial phosphorylation; furthermore,
the generated NMPs can be rapidly phosphorylated to the
corresponding nucleoside triphosphate [14]. Thus, many
attentions have been paid to the development of non-
nucleoside AMP mimics.

By using structure-guided drug design strategies, a series
of phosphonic acids that bind to the allosteric AMP binding
site of FBPase and serve as non-nucleoside AMP mimics
with high inhibitory potencies and specificities for FBPase
were reported recently [10–13, 15, 16]. These AMP mimics
including purine phosphonic acid [11, 12], benzimidazole
phosphonic acid [10, 13] and thiazole phosphonic acid [16].
A set of potent lead compounds have also been identified
(Fig. 1), these AMP mimics were more potent than AMP
and exhibited high specificity for the AMP binding site on
FBPase, especially the thiazole phosphonic acid, which
exhibited excellent inhibitory potency as well as good oral
bioavailability [16].

In our previous study [9], we carried out a systemic
molecular modeling and docking research on [5-(4-amino-1
H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid deriva-
tives that function as AMP mimetics with FBPase inhibi-
tory activities. Nevertheless, these compound series showed
poor oral bioavailability due to their high molecular weight

[16]. Replacement of the benzoimidazole ring system with
benzoimidazole samller 5-membered thiazole of lower
molecular weight resulted in significantly improved FBPase
inhibitory activity and oral bioavailability [16]. To investi-
gate the structure-activity relationship and the interaction
between these newly synthesized inhibitors and the FBPase,
herein we reported 3D-QSAR (CoMFA/CoMSIA), molec-
ular docking and molecular design studies on a total set of
63 thiazole phosphonic acid compounds. The main aims of
the present study are: (i) establish reliable and valuable
drug design computational methods to predict the activity
of new designed molecules; (ii) explore the regions in space
where interactive fields may influence the activity and
identify the accurate structure-activity relationship of these
inhibitors; (iii) investigate the interaction of these com-
pounds and the AMP binding region; (iv) design novel
compounds based on the results taken from current work
and predict their potencies.

During the past decades, quantitative structure-activity
relationship (QSAR) methods especially three-dimensional
quantitative structure-activity relationship (3D-QSAR)
approaches, have been successfully employed to assist the
design of new drug candidates, ranging from enzyme
inhibitors to receptor ligands [17]. Furthermore, they have
been extensively applied in connection to medicinal
chemistry research as well as proteomics, metabolomics,
and bioinformatics [18–20]. 3D-QSAR methods including
comparative molecular field analysis (CoMFA) and com-
parative molecular similarity indices analysis (CoMSIA)
are powerful and versatile tools to build and design an
activity model for a given set of compounds in rational drug
design and related applications. In CoMFA, the biological
activity of molecules is correlated with their steric and
electrostatic interaction energies. In CoMSIA, similarity
indices are calculated at regularly placed grid points for
these molecules. CoMSIA includes five molecular descrip-
tors named steric, electrostatic, hydrophobic, hydrogen
bond donor and acceptor fields [21]. We have also
employed systemic internal and external validations to
evaluate the true predictive power of the CoMFA and
CoMSIA models. Molecular docking was applied to
investigate the FBPase-inhibitor interactions.

Based on the good performances of the 3D-QSAR
(CoMFA/CoMSIA) and docking experiments, the developed
models can not only help in understanding the structure-
activity relationship of these compounds but also serve as a
useful guide for the design of new inhibitors with better
activities. We have designed a number of novel phosphonic
acid containing thiazole derivatives by utilizing the structure
analysis results obtained from previous and present work,
which exhibited excellent predicted activities as well as
binding affinities in the established 3D-QSAR and docking
models. Meanwhile, based on the excellent performance ofFig. 1 Structures of AMP and novel AMP mimics
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the external validation, the predicted potencies of these newly
designed derivatives may be reliable.

Results and discussion

PLS analysis for CoMFA and CoMSIA models

A total set of 63 compounds were randomly segregated into
training and test sets comprising 51 and 12 molecules,
respectively. Structures and associated inhibitory activities
were listed in Table 1 and Table 2. All of the structures were
aligned into a lattice box by fitting with thiazole skeleton as
a common structure. After careful selection, compound 23
displayed the highest pIC50 value and was selected as a
template. The aligned molecules were shown in Fig. 2.

The statistical parameters associated in CoMFA and
CoMSIA models were listed in Table 3. In both CoMFA
and CoMSIA methods, a cross-validated PLS analysis was
performed using the six principal components, which have
given the higher non-cross-validated correlation coefficient
after the LOO procedure on the training set of the
compounds in order to generate the corresponding CoMFA
and CoMSIA contour maps.

The CoMFAmodel gave a good cross-validated correlation
coefficient (r2cv) of 0.675 (> 0.6) which suggested that the
model should be a useful tool for predicting the IC50 values.
A high non-cross-validated correlation coefficient (r2) of
0.985 with a low standard error estimate (SEE) of 0.115 and
excellent F value of 487.178 were obtained. Contributions of
steric and electrostatic fields were 0.529 and 0.471,
respectively. The excellent r2bootstrapping (0.990±0.004) and
low SEEbootstrapping (0.091±0.056) values indicated the
robustness and statistical confidence of the generated
CoMFA model. The actual and predicted pIC50 values of
the training set and test set by the CoMFA model were given
in Table 2, and the graph of actual activity versus predicted
pIC50 of the training set and test set was illustrated in Fig. 3a.

The CoMSIA model incorporated steric (S), electrostatic
(E), hydrophobic (H), hydrogen bond donor (D) and
hydrogen bond acceptor (A) fields also gave a good cross-
validated correlation coefficient (r2cv) of 0.619 (> 0.6) which
indicated that the model should be a reliable tool for
predicting the IC50 values. A high non-cross-validated
correlation coefficient (r2) of 0.979 with a low standard
error estimate (SEE) of 0.136 and excellent F value of
345.303 were obtained. Contributions of each field were
0.138 (S), 0.260 (E), 0.196 (H), 0.253 (D) and 0.153 (A),
accordingly. The high r2bootstrapping (0.987±0.005) and low
SEEbootstrapping (0.106±0.066) values demonstrated the
robustness and statistical confidence of the established
CoMSIA model. The actual and predicted pIC50 values of
the training set and test set by the CoMSIA model were given

in Table 2, and the graph of actual activity versus predicted
pIC50 of the training set and test set was illustrated in Fig. 3b.

External validation analysis for CoMFA and CoMSIA
models

The most important part of QSAR model development is the
model validation. Most of the QSAR modeling methods
employ the leave-one-out (LOO) cross-validation procedure
which leads to the LOO correlation coefficient (r2cv).
Normally, the r2cv is used as a criterion of both robustness
and predictive ability of the model. In many cases, a high
r2cv value (usually >0.5) is considered as an indicator or even
as the ultimate proof that the model is accurate or reliable
[22]. Nevertheless, previous research revealed that validating
a QSAR model only by a r2cv value is not enough and
unacceptable. In fact, the high r2cv value does not imply
automatically a high predictive power of the model. Even
though the low value of r2cv can serve as an indicator of a
low predictive ability, the opposite is not necessarily true
[22]. In many cases, a model with high r2cv and r2 values
can be proved to be inaccurate. Moreover, although a
model may exhibit a good predictive ability based on the
statistics for the test set, it is not always sure that the
model will perform well on a new set of data [23]. The
only way to estimate the true predictive power of a model
is to test it on an external validation. To evaluate the true
predictive abilities of the established models, both the
CoMFA and CoMSIA models were subjected to systemic
external validation process, several statistics such as r2pred,
r2m(test), r0

2, R, a, b and k were employed. For the ideal
model, the slope a is equal to 1, intercept b is equal to 0,
and correlation coefficient R is equal to 1. 3D-QSAR
models were considered acceptable if they satisfy all of
the following conditions [22–24]:

r2cv > 0:5; r2 > 0:6; r2 � r0
2

� �
=r2

� �
< 0:1; 0:85 � k

� 1:15 and r2m testð Þ > 0:5:

The results of the external validation for both the
CoMFA and CoMSIA models were shown in Table 4. The
established CoMFA model using 12 molecules in the test
set, gave a predictive correlation coefficient (r2pred) of
0.805, slope a value of 1.136 (close to 1), intercept b value
of −0.995 (close to 0), an excellent r2m(test) value of 0.887
(> 0.5) as well as high slope of regression lines through the
origin (k) value of 0.995 (0.85≤k ≤ 1.15), and the
correlation coefficient (R) values of 0.940 (close to 1), the
calculated [(r2- r0

2)/ r2] values of −0.010 (<0.1) were
obtained. These excellent external validation statistics
indicated that the CoMFA model possessed a high
accommodating capacity, and it may be reliable for being
used to predict the activities of new derivatives.
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Table 1 The structures and experimental IC50 values of the training and test set molecules [16]

N

S
[linker]P

O

HO
HO

R1

R2

Compound No. Substituent IC50 (μM)

linker R1 R2

1 2,5-furanyl Me i-Bu 0.1

2 2,5-furanyl Et i-Bu 0.4

3 2,5-furanyl vinyl i-Bu 1.2

4 2,5-furanyl CH2OH i-Bu 0.22

5 2,5-furanyl Cl i-Bu 0.18

6 2,5-furanyl SMe i-Bu 0.89

7 2,5-furanyl CN i-Bu 2

8 2,5-furanyl NHMe i-Bu 1

9 2,5-furanyl NHAc i-Bu 10

10 2,5-furanyl CONH2 i-Bu 2.75

11 2,5-furanyl CSNH2 i-Bu 0.5

12 2,5-furanyl Ph i-Bu 13.5

13 2,5-furanyl 2-thienyl i-Bu 8

14 2,5-furanyl 3-pyridyl i-Bu 5

15 2,5-furanyl NH2 H 0.45

16 2,5-furanyl NH2 Me 0.12

17 2,5-furanyl NH2 n-Pr 0.03

18 2,5-furanyl NH2 i-Pr 0.028

19 2,5-furanyl NH2 CF3CH2 0.057

20 2,5-furanyl NH2 neopentyl 0.012

21 2,5-furanyl NH2 cyclobutyl 0.019

22 2,5-furanyl NH2 cyclopentyl 0.021

23 2,5-furanyl NH2 cyclohexyl 0.01

24 2,5-furanyl NH2 cyclopropyl-CH2 0.02

25 2,5-furanyl NH2 cyclopentyl-CH2 0.018

26 2,5-furanyl NH2 cyclohexyl-CH2 0.059

27 2,5-furanyl NH2 PhCH2 0.15

28 2,5-furanyl NH2 morpholinyl-CH2 0.56

29 2,5-furanyl NH2 Cl 0.07

30 2,5-furanyl NH2 Br 0.05

31 2,5-furanyl NH2 I 0.1

32 2,5-furanyl NH2 1-morpholinyl 0.016

33 2,5-furanyl NH2 EtS 0.033

34 2,5-furanyl NH2 n-PrS 0.016

35 2,5-furanyl NH2 i-PrS 0.024

36 2,5-furanyl NH2 t-BuS 0.024

37 2,5-furanyl NH2 PhS 0.3

38 2,5-furanyl NH2 CO2Et 0.014

39 2,5-furanyl NH2 CO2Bn 0.015

40 2,5-furanyl NH2 n-PrSO 0.858

41 2,5-furanyl NH2 Ph 0.014
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The CoMSIA model also using 12 molecules in the test set,
gave a predictive correlation coefficient (r2pred) of 0.710, slope
a value of 1.042 (close to 1), intercept b value of −0.365
(close to 0), an excellent r2m(test) value of 0.860 (> 0.5) as
well as high slope of regression lines through the origin (k)
value of 0.994 (0.85≤k≤1.15), and the correlation coefficient
(R) values of 0.895 (close to 1), the calculated [(r2- r0

2)/ r2]
values of −0.015 (<0.1) were obtained. It was indicated in
this external validation process that the CoMSIA model
exhibited slightly better predictive power than CoMFA
model, and both the two models may be reliable for being
used to predict the potencies of novel derivatives.

CoMFA versus CoMSIA

The conclusions derived from the PLS and external
validation parts of present study demonstrated that both
the CoMFA and CoMSIA models could be used reliably

to predict the FBPase inhibitory activities of these
phosphonic acid-containing thiazole derivatives; more-
over, they may be regarded as valuable tools to design
new inhibitors with improved potencies against FBPase.
Compared with CoMSIA, the CoMFA model displayed
slightly better PLS statistics, which indicated that the
CoMFA model possessed higher predictive power than
CoMSIA. In the external validation analysis, the CoMFA
model was also found to be slightly more reliable, it
displayed better r2pred, r

2
m(test), r0

2, R, and slope k values
than the CoMSIA model.

Graphical interpretation of CoMFA model

To visualize the information content of the derived 3D-
QSAR models, both the CoMFA and CoMSIA contour
maps were generated by interpolating the products between
the 3D-QSAR coefficients and their associated standard

Table 1 (continued)

N

S
[linker]P

O

HO
HO

R1

R2

Compound No. Substituent IC50 (μM)

linker R1 R2

42 2,5-furanyl NH2 2-MeO-Ph 0.043

43 2,5-furanyl NH2 3-MeO-Ph 0.021

44 2,5-furanyl NH2 4-MeO-Ph 0.022

45 2,5-furanyl NH2 4-MeS-Ph 0.021

46 2,5-furanyl NH2 4-t-Bu-Ph 0.088

47 2,5-furanyl NH2 4-MeO2C-Ph 0.014

48 2,5-furanyl NH2 4-F-Ph 0.016

49 2,5-furanyl NH2 4-Cl-Ph 0.013

50 2,5-furanyl NH2 4-Ac-Ph 0.032

51 2,5-furanyl NH2 4-MeSO2-Ph 0.041

52 2,5-furanyl NH2 4-Ph-Ph 0.034

53 2,5-furanyl NH2 2-nathphyl 0.012

54 2,5-furanyl NH2 2-furanyl 0.04

55 2,5-furanyl NH2 2-thienyl 0.044

56 -CH2OCO- NH2 n-Pr 0.05

57 -CH2NHCO- NH2 2-thienyl 0.95

58 2,6-pyridyl NH2 H 2

59 1,3-phenyl NH2 H 1.3

60 1,3-phenyl NH2 n-Pr 0.25

61 1,3-phenyl-(6-Me) NH2 n-Pr 0.135

62 1,3-phenyl-(6-OMe) NH2 i-Pr 0.21

63 1,3-phenyl-(6-F) NH2 Ph 0.08
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Table 2 The actual pIC50s, predicted pIC50s (Pred.), their residuals (Res.) and Surflex-Dock total score (docking score) values of the training and
test set molecules

Compound pIC50 CoMFA CoMSIA Docking

No. Actual Pred. Res. Pred. Res. score

1 7.000 7.157 -0.157 7.055 -0.055 6.43

2 6.398 6.625 -0.227 6.836 -0.438 6.34

3* 5.921 6.580 -0.659 6.698 -0.777 6.07

4 6.658 6.730 -0.072 6.608 0.050 5.20

5 6.745 6.456 0.289 6.817 -0.072 6.14

6 6.051 5.947 0.104 6.109 -0.058 6.38

7* 5.699 5.782 -0.083 5.811 -0.112 5.48

8 6.000 6.017 -0.017 5.993 0.007 5.77

9 5.000 4.844 0.156 5.025 -0.025 5.44

10 5.561 5.674 -0.113 5.595 -0.034 5.20

11 6.301 6.234 0.067 6.089 0.212 4.58

12 4.870 4.940 -0.070 4.935 -0.065 6.34

13 5.097 5.169 -0.072 5.129 -0.032 6.24

14 5.301 5.175 0.126 5.088 0.213 6.32

15* 6.347 6.242 0.105 6.621 -0.274 4.31

16* 6.921 6.960 -0.039 7.061 -0.140 6.30

17 7.523 7.632 -0.109 7.511 0.012 7.38

18 7.553 7.466 0.087 7.558 -0.005 6.88

19* 7.244 7.412 -0.168 6.905 0.339 6.34

20 7.921 7.742 0.179 7.971 -0.050 7.23

21 7.721 7.665 0.056 7.626 0.095 4.97

22 7.678 7.642 0.036 7.602 0.076 6.84

23 8.000 8.062 -0.062 7.956 0.044 6.98

24 7.699 7.690 0.009 7.612 0.087 6.96

25* 7.745 7.542 0.203 7.590 0.155 6.67

26 7.229 7.359 -0.130 7.368 -0.139 7.20

27 6.824 6.798 0.026 6.916 -0.092 7.35

28 6.252 6.269 -0.017 6.186 0.066 5.91

29* 7.155 7.002 0.153 7.182 -0.027 3.50

30 7.301 7.076 0.225 7.284 0.017 4.42

31 7.000 7.213 -0.213 7.386 -0.386 4.95

32 7.796 7.914 -0.118 7.826 -0.030 5.93

33 7.482 7.493 -0.012 7.527 -0.046 7.33

34 7.796 7.775 0.021 7.604 0.192 5.57

35 7.620 7.657 -0.037 7.717 -0.097 7.30

36 7.620 7.610 0.010 7.447 0.173 7.31

37 6.523 6.548 -0.025 6.568 -0.045 5.56

38 7.854 7.757 0.097 7.652 0.202 6.08

39 7.824 7.794 0.030 7.930 -0.106 2.72

40 6.067 6.016 0.050 6.328 -0.262 6.47

41 7.854 7.683 0.171 7.695 0.159 6.49

42 7.367 7.562 -0.196 7.448 -0.082 4.98

43 7.678 7.654 0.024 7.568 0.110 6.47

44 7.658 7.528 0.130 7.443 0.215 5.49

45 7.678 7.709 -0.031 7.761 -0.083 6.92

46 7.056 7.122 -0.066 7.100 -0.044 7.03

47 7.854 7.844 0.010 7.864 -0.010 6.24
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deviations. They could rationalize the regions in 3D space
around the molecules where changes in the steric, electro-
static, hydrophobic, hydrogen bond donor and acceptor
fields were predicted to increase or decrease the activity.

Since the compound 23 was the most suitable molecule
to illustrate the information taken from CoMFA and
CoMSIA contour maps, it was selected as a reference
structure. The CoMFA steric and electrostatic contour maps
were shown in Fig. 4. The steric field is represented by

green and yellow contours, in which green contours (80%
contribution) indicate regions where bulky group would be
favorable, while the yellow contours (20% contribution)

Table 2 (continued)

Compound pIC50 CoMFA CoMSIA Docking

48 7.796 7.873 -0.077 7.687 0.109 6.16

49 7.886 7.935 -0.049 7.762 0.124 7.34

50* 7.495 7.353 0.142 7.621 -0.126 6.97

51 7.387 7.436 -0.049 7.419 -0.032 6.62

52* 7.469 7.448 0.020 7.477 -0.009 6.74

53 7.921 7.884 0.037 7.976 -0.055 6.46

54 7.398 7.302 0.096 7.342 0.056 6.60

55* 7.357 7.311 0.045 7.584 -0.228 6.40

56 7.301 7.199 0.102 7.351 -0.050 7.35

57 6.022 6.093 -0.071 6.056 -0.034 6.43

58 5.699 5.955 -0.256 5.833 -0.134 5.24

59 5.886 5.818 0.068 5.636 0.250 6.05

60* 6.602 6.788 -0.186 6.477 0.125 6.14

61* 6.870 6.974 -0.104 6.658 0.212 5.89

62 6.678 6.638 0.040 6.664 0.014 5.78

63 7.097 7.123 -0.026 7.065 0.032 5.17

* Test set molecules

Fig. 2 Alignment of the compounds used in the training set

Table 3 PLS statistics of CoMFA and CoMSIA models

PLS statistics CoMFA CoMSIA

r2cv
a 0.675 0.619

r2b 0.985 0.979

ONCc 6 6

SEEd 0.115 0.136

F valuee 487.178 345.303

r2bootstrapping
f 0.990±0.004 0.987±0.005

SEEbootstrapping
g 0.091±0.056 0.106±0.066

Field contribution

Steric 0.529 0.138

Electrostatic 0.471 0.260

Hydrophobic - 0.196

H-bond donor - 0.253

H-bond acceptor - 0.153

a the cross-validated correlation coefficient after the LOO procedure
on the training set of compounds
b the non-cross-validated correlation coefficient of the training set
c the optimal number of principal components in the PLS model
d the standard error of estimate
e the value of Fisher test
f the average of correlation coefficient for 100 samplings using
bootstrapping procedure
g the average standard error of estimate for 100 samplings using
bootstrapping procedure
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represent regions where bulky group would decrease the
activity. The electrostatic field is indicated by blue (80%
contribution) and red (20% contribution) contours, which
demonstrate the regions where electron-donating group and
electron-withdrawing group would be favorable respectively.

In Fig. 4a, the huge green contour around the R2 position
suggested that a bulky group at this site would benefit the
inhibitory activity. This consisted of the fact that com-
pounds 20–26, 32, 34–36, 38, 39, 41, 43–45, 47–49 and 53
which possessed a relative bulky substituent (e.g., cyclo-
butyl, cyclopentyl, cyclohexyl, 1-morpholinyl, phenyl, 3-
MeO-phenyl, 4-MeO-phenyl, 4-MeS-phenyl, 4-MeO2C-
phenyl, 4-F-phenyl, 4-Cl-phenyl and 2-nathphyl) at R2

exhibited excellent inhibitory potencies. On the other hand,
compounds 15, 16, 58 and 59 bearing a minor group (e.g.,

H, methyl) at R2 showed significantly decreased activities.
For instance, compounds 15 (pIC50=6.347), 16 (pIC50=
6.921), 17 (pIC50=7.523), 18 (pIC50=7.553) had an order
for the activity of 15<16<17<18, with the corresponding
R2 substituent -H, methyl, n-propyl, i-propyl, respectively.
By comparing compounds 54 (R2=2-furanyl, pIC50=7.398)
and 55 (R2=2-thienyl, pIC50=7.357) with compound 41
(R2=phenyl, pIC50=7.854), it can be concluded that their
activity discrepancies can be also explained by this green
contour. Two green contours along with three yellow
contours around the furanyl-2-phosphonic acid indicated
that the steric field at this site exerted no significant effect
on the inhibitory activity.

In Fig. 4b, the huge blue contour near the R1 position
revealed that an electron-donating substituent at this site
would be favorable. In general, compared to compounds 15–
63 with a strong electron-donating amino group at R1, the
compounds 1–14 bearing electron-withdrawing groups (i.e.,
vinyl, -Cl, -CN, -NHAc, -CONH2, -CSNH2, phenyl, 2-thienyl
and 3-pyridyl) or less electron-donating substituent (i.e.,
methyl, ethyl and -CH2OH) at R1 displayed significantly
decreased potencies. Moreover, compounds 3 (R1=vinyl,
pIC50=5.921), 7 (R1 = −CN, pIC50=5.699), 12 (R1=phenyl,
pIC50=4.870), 13 (R1=2-thienyl, pIC50=5.097), 14 (R1=3-
pyridyl, pIC50=5.301) had a strong electron-withdrawing
group at R1 were the most inactive inhibitors. Four red
contours along with one blue contours around the R2 site
demonstrated that the electrostatic field at this position
exerted no significant influence on the inhibitory potency.
This was validated by the fact that both compounds 20–25
and 32 with electron-donating groups (i.e., neopentyl,
cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl-CH2,
cyclopentyl-CH2, 1-morpholinyl) and compounds 38, 39,
41, 47–49 and 53 bearing electron-withdrawing substitu-
ent (i.e., -CO2Et, -CO2Bn, phenyl, 4-MeO2C-phenyl, 4-F-
phenyl, 4-Cl-phenyl, 2-nathphyl) at R2 site showed
excellent inhibitory activities with the pIC50 values
ranging from 7.678 to 8.000.

Fig. 3 Graph of actual versus predicted pIC50 of the training set and
the test set using CoMFA (a) and CoMSIA (b)

Table 4 Results of the external validation for CoMFA and CoMSIA
models

Parameters CoMFA CoMSIA

r2pred 0.805 0.710

Slope a 1.136 1.042

Intercept b -0.995 -0.365

Correlation coefficient R 0.940 0.895

Slope k 0.995 0.994

r0
2 0.995 0.994

r2m(test) 0.887 0.860

[(r2- r0
2)/ r2] -0.010 -0.015
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Graphical interpretation of CoMSIA model

Figure 5a-e provided the steric, electrostatic, hydrophobic,
hydrogen bond donor and acceptor contours plots for
compound 23 of the CoMSIA model. The CoMSIA
electrostatic contour map was almost the same AS the
corresponding CoMFA electrostatic contour map. In hydro-
phobic field, white (20% contribution) and yellow (80%
contribution) contours highlighted areas where hydrophilic
and hydrophobic properties were favored. In hydrogen bond
donor field, the cyan (80% contribution) and purple (20%
contribution) contours indicated favorable and unfavorable
hydrogen bond donor groups. In hydrogen bond acceptor
field, the magenta (80% contribution) and red (20%
contribution) contours identified favorable and unfavorable
positions for hydrogen bond acceptors.

Unlike the CoMFA steric contour map, in Fig. 5a, a huge
yellow contour near the R1 position indicated that a bulky
substituent would decrease the activity. Most of the
compounds possessed a relative minor amino group at R1,
meanwhile, compounds 8–14 with bulky substituent (phenyl,
2-thienyl, 3-pyridyl, -CONH2, -CSNH2, -NHAc, -NHMe) at
this site were the most inactive inhibitors with their pIC50

values ranging from 4.870 to 6.301. The green contour
around the R2 position was in agreement with the
corresponding CoMFA steric contour map.

In Fig. 5c, a white contour near the R1 position revealed
that a hydrophilic group at this site may benefit the activity.
This may be one of the reasons why compounds 15–63 with
a hydrophilic amino group at R1 showed better inhibitory
potencies than compounds 1–15 bearing hydrophobic groups
(i.e., methyl, ethyl, vinyl, -Cl, -CN, -NHAc, -CONH2, -
CSNH2, phenyl, 2-thienyl and 3-pyridyl). Another huge
yellow contour around the R2 site suggested that a
hydrophobic substituent may have the positive effect on the
activity. This consisted of the fact that most of the potential

inhibitors such as 20–26, 32, 34–36, 38, 39, 41, 43–45, 47–
49 and 53 all possessed a hydrophobic substituent (e.g.
cyclobutyl, cyclopentyl, cyclohexyl, 1-morpholinyl, phenyl,
3-MeO-phenyl, 4-MeO-phenyl, 4-MeS-phenyl, 4-MeO2C-
phenyl, 4-F-phenyl, 4-Cl-phenyl and 2-nathphyl) at R2.
Moreover, the hydrophobic favored yellow contour near the
furanyl moiety indicated the extreme importance of the
hydrophobic linker. In fact, almost every compound had a
hydrophobic linker at this position. Meanwhile, two huge
white contours around the phosphate group also demonstrat-
ed the extreme importance of the hydrophilic phosphate
group. Each compound of the entire dataset possessed a
phosphate group which was necessary for the inhibitory
activity.

In Fig. 5d, the cyan contour near the R1 position suggested
that a hydrogen bond donor group at this site would increase
the potency. This was validated by the fact that compounds
15–63 with a hydrogen bond donor amino group at R1

exhibited much more excellent inhibitory potencies than
compounds 1–3, 5–7 and 12–14 without hydrogen bond
donor groups. In fact, the amino group at R1 acted as
hydrogen bond donor and formed H-bond with the residues
of the AMP binding region of FBPase, removing of it may
result in decreased activity. A purple contour around the
furanyl group indicated that a hydrogen bond acceptor linker
was essential for the potency. In fact, almost every inhibitor
possessed such a hydrogen bond acceptor linker. On the
other hand, two purple contours along with one cyan contour
near the phosphate group revealed that it may serve as
hydrogen bond donor and acceptor at the same time and
indicated the extreme importance of the phosphate group.

In Fig. 5e, the red contour near the R1 site indicated that
a hydrogen bond acceptor substituent would be unfavor-
able. This was in agreement with the observation taken
from Fig. 5d. The oxygen atom of furanyl group was
oriented towards a huge magenta contour, suggesting a

Fig. 4 Std* coeff contour maps of CoMFA analysis with 2Å grid
spacing in combination with compound 23. (a) Steric fields: green
contours indicate regions where bulky groups increase activity, while
yellow contours indicate regions where bulky groups decrease activity,

and (b) Electrostatic fields: blue contours represent regions where
electron-donating groups improve activity, while red contours repre-
sent regions where electron-withdrawing groups benefit activity
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hydrogen bond acceptor moiety at this site would be
favored. Meanwhile, the phosphate group was surrounded
by two huge purple and one red contours, indicating it may
serve as hydrogen bond donor and acceptor at the same
time. The observations taken from this hydrogen bond
acceptor contour map satisfactorily matched the hydrogen
bond donor contour map (Fig. 5d).

Molecular docking analysis

Molecular docking was employed to explore the binding
mode between these phosphonic acid-containing thiazole
derivatives and the receptor, furthermore, to examine the
stability of 3D-QSAR models previous established. Since
the crystal structure of FBPase was known, we replaced
AMP with these derivatives to examine their bound to
FBPase. The calculated Surflex-Dock total score of the
entire database ranging from 2.32 to 7.38 were listed in
Table 2. In general, the most active compounds 20–25, 32,

34–36, 38, 39, 41, 43–45, 47–49 and 53 with their pIC50

values ranging from 7.620 to 8.000 had a mean docking
score value of 6.31; the active compounds 17–19, 26, 29–
31, 33, 42, 46, 50–52, 54–56 and 63 with their pIC50 values
ranging from 7.000 to 7.553 had a mean docking score
value of 6.18; the less inactive compounds 1, 2, 4–6, 15,
16, 27, 28, 37, 40 and 60–62 with the pIC50 values ranging
from 6.051 to 7.000 had a mean docking score value of
6.08; the most inactive compounds 3, 7–14 and 57–59 with
the pIC50 values ranging from 4.870 to 6.301 had a mean
docking score value of 5.76. Since the docking score
represented the binding affinities and energies between
these inhibitors and the pocket, it could be inferred that the
enhanced affinities (higher docking scores) may result in
improved inhibitory potencies. Meanwhile, their binding
affinities were determined by their molecular structures. In
order to identify the structural features responsible for the
binding affinity, the most potential inhibitors 23 was
selected for more detailed study.

Fig. 5 Std* coeff contour maps
of CoMSIA analysis with 2Å
grid spacing in combination
with compound 23. (a) Steric
contour map. Green and yellow
contours refer to sterically
favored and unfavored regions.
(b) Electrostatic contour map.
Blue and red contours refer to
regions where electron-donating
and electron withdrawing
groups are favored.
(c) Hydrophobic contour map.
White and yellow contours refer
to regions where hydrophilic
and hydrophobic substituent are
favored. (d) Hydrogen bond
donor contour map. The cyan
and purple contours indicate
favorable and unfavorable
hydrogen bond donor groups.
(e) Hydrogen bond acceptor
contour map. The magenta and
red contours demonstrated
favorable and unfavorable
hydrogen bond acceptor groups
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Figure 6a showed the exact hydrogen bond binding
mode between the selected compound 23 and the residues
of AMP binding site of FBPase, the key residues and
hydrogen bonds were labeled. Not surprisingly, the -NH2

at R1 position served as hydrogen bond donor by forming
three H-bonds with the carbonyl group of Val17 and the
hydroxyl group of Thr31, respectively. Furthermore, the
carbonyl of the phosphate group acted as hydrogen bond
acceptor and formed four H-bonds with the imino groups
of Leu30, Gly28, Glu29 and the hydroxyl group of Thr27;
one hydroxyl of the phosphate group served as hydrogen
bond donor and acceptor at the same time and formed five
H-bonds with the imino and hydroxyl groups of Thr27 as
well as the water molecule; the other hydroxyl only acted
as hydrogen bond acceptor by forming two H-bonds with
the -NH3 group of Lys112 and the hydroxyl group of
Tyr113, respectively. The water molecule was important
for the binding since it contributed three H-bonds. The
observations obtained from this picture were in agreement
with the corresponding CoMSIA hydrogen bond donor
and acceptor contour maps, which indicated the extreme
importance of the amino and phosphate groups for the
inhibitory potency. This may be the reason for the poor
activities of compounds 1–3, 5–7 and 12–14 without
hydrogen bond donor groups at R1. To validate this
assumption, the most inactive compound 12 was selected
for more detailed docking research. Figure 6b illustrated
the hydrogen bond binding mode between compound 12
and the residues of AMP binding site for comparison. It
can be found that the hydrogen bond interaction in Fig. 6b
was less than Fig. 6a. In Fig. 6b, the carbonyl of the
phosphate group acted as hydrogen bond acceptor and
formed four H-bonds with the imino and hydroxyl groups
of Thr27, Gly28 and the water molecule; one hydroxyl of the
phosphate group served as hydrogen bond acceptor and
formed three H-bonds with the imino and hydroxyl groups
of Leu30, Glu29 and Tyr113; the other hydroxyl only acted
as hydrogen bond acceptor by forming three H-bonds with
the -NH3 group of Lys112 and the hydroxyl group of Tyr113

as well as the water molecule. Compound 12 was unable to
form hydrogen bond with Val17 and Thr31 due to lacking of
the amino group at R1 position.

The MOLCAD surface of AMP binding site was also
developed and displayed with cavity depth (CD), electro-
static potential (EP), lipophilic potential (LP) and hydrogen
bond site (HB) to further explore the interaction between
these inhibitors and the receptor. These potentials on a
protein surface can be used to find the sites that act
attractively on ligands by matching opposite colors.

Figure 7a and b depicted the MOLCAD ribbon and
multi-channel cavity depth potential (CD) surfaces structure
of the binding site within the compound 23 in ball & stick
(a) and space fill (b) formats, respectively. The cavity depth
color ramp ranges from blue (low depth values=outside of
the pocket) to light red (high depth values=cavities deep
inside the pocket). As shown in Fig. 7a and b, the R1 site of
the thiazole scaffold and the phosphate group (along with
the linker part) were oriented to yellow areas, which
revealed that these parts of the compound 23 were anchored
deep inside the binding region. It can be inferred that since
the R1 position was found to be very close to the binding
surface, the space between the R1 and the surface was
narrow, thus a bulky substituent at this position may exert
negative effects on the binding affinity, which will result in
decreased activity. This was validated by the fact that
compounds 8–14 with bulky substituent at R1 were the
most inactive inhibitors. Meanwhile, the cyclohexyl group
at R2 was located in a blue region, suggesting it was
oriented to the entrance of the binding pocket. Since the
space accommodating the R2 substituent was large, it was
capable for holding a bulky group. This may be the reason
why compounds 20–26, 32, 34–36, 38, 39, 41, 43–45, 47–
49 and 53 bearing a bulky substituent at R2 exhibited
excellent inhibitory potencies. The observations and con-
clusions taken from Fig. 7 satisfactorily matched the
corresponding CoMFA and CoMSIA steric contour maps.

The MOLCAD electrostatic potential (EP) surface of the
binding region was shown in Fig. 8a. The color ramp for

Fig. 6 The binding modes
between selected compound
23 (a) and compound 12
(b) with the AMP binding site of
FBPase (PDB code 1FTA).
Key residues and hydrogen
bonds were labeled

J Mol Model (2012) 18:973–990 983



EP ranges from red (most positive) to purple (most negative).
The R1 position was found in a blue area, indicating that
electron-donating properties at this site were beneficial for
the binding affinity. This consisted of the fact that com-
pounds 3–7 and 10–14 without electron-donating groups at

R1 displayed significantly decreased inhibitory potencies as
well as binding affinities. The phosphate group and the
furanyl linker were anchored in red and yellow areas,
revealing that electron-withdrawing properties may be
favored, which indicated the extreme importance of the

Fig. 7 The MOLCAD ribbon
and multi-channel surfaces
structure displayed with cavity
depth potential of the AMP
binding site within the
compound 23. Key residues and
hydrogen bonds were labeled.
The cavity depth color ramp
ranges from blue (low depth
values=outside of the pocket)
to light red (high depth
values=cavities deep inside
the pocket)

Fig. 8 The MOLCAD
electrostatic potential (a),
lipophilic potential (b) and
hydrogen binding (c) surfaces of
the AMP binding site of FBPase
within the compound 23.
The color ramp for EP ranges
from red (most positive) to
purple (most negative); the color
ramp for LP ranges from brown
(highest lipophilic area of the
surface) to blue (highest
hydrophilic area); the color
ramp for HP ranges from red
(hydrogen bond donors) to blue
(hydrogen bond acceptors)
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electron-withdrawing phosphate group and the aromatic
linkers. It can be inferred that a molecule without an
aromatic linker may be unable to participate in aromatic
(π-π) stacking interactions with the residues of the binding
region. The observations and conclusions were in agreement
with the corresponding CoMFA and CoMSIA electrostatic
contour maps.

Figure 8b showed the MOLCAD lipophilic potential
surface of the binding area, the color ramp for LP ranges
from brown (highest lipophilic area of the surface) to blue
(highest hydrophilic area). The R1 position was oriented to
a white region, which indicated that a hydrophilic substit-
uent may benefit the binding affinity. This again revealed
the importance of the amino groups of compounds 15–63.
On the other hand, the R2 site was located in a brown area,
suggesting a hydrophobic group would increase the binding
affinity. This consisted of the fact that most of the
potential inhibitors such as 20–26, 32, 34–36, 38, 39,
41, 43–45, 47–49 and 53 all possessed a hydrophobic
substituent at R2. Moreover, the phosphate group was
found in a blue region, which demonstrated that the
hydrophilic phosphate group was essential for binding to
the residues of the FBPase. The observations and con-
clusions satisfactorily matched the corresponding CoMSIA
hydrophobic contour map.

Figure 8c illustrated the MOLCAD hydrogen bonding
sites of the binding surfaces, ligands can be docked to
proteins by matching the patterns displayed on the surface,
the color ramp for HB ranges from red (hydrogen donors)
to blue (hydrogen acceptors). As shown in Fig. 8c, the
amino group at R1 was oriented to a wide blue surface,
which indicated that the surface of this site were hydrogen
bond acceptors, thus a hydrogen bond donor substituent
would be favorable. Meanwhile, the R2 position was
located in a huge gray region indicating the surface of this
region were not hydrogen bond acceptors nor donors,
therefore, the hydrogen bond donor or acceptor field had no
significant effect on R2. The oxygen atom of the furanyl
linker was oriented to a red area, which indicated that the
surfaces of this site were hydrogen bond donors, and a

hydrogen bond acceptor property may be favorable. This
may be the reason for the inactivity of compounds 59–62
(linker=1,3-phenyl, 1,3-phenyl-(6-Me), 1,3-phenyl-(6-
OMe)) without hydrogen bond acceptor linkers. The
phosphate group was also anchored in a huge red surface,
demonstrating a hydrogen bond acceptor group would
enhance the binding affinity. Removal of the hydrogen
bond acceptor of this position may result in poor binding
affinity. The observations and conclusions taken from this
hydrogen bonding sites were in agreement with the
corresponding CoMSIA hydrogen bond contour maps.

Design of new inhibitors

The structure-activity relationship and binding features
obtained by present 3D-QSAR and molecular docking
analysis are summarized in Fig. 9. In detail, the minor,
electron-donating, hydrophilic and hydrogen bond donor
groups at R1 position would be favored; the bulky,
hydrophobic substituent at R2 site would benefit the
inhibitory potency; an electron-withdrawing, hydrophobic
and hydrogen bond acceptor linker may be desirable; the
electron-donating, hydrophilic, hydrogen bond donor and
acceptor phosphate group was essential for binding to the
AMP pocket. According to literature [16], in order to
achieve acceptable OBAV, the molecular weight of these
phosphonic acid-containing thiazoles should be limited to
below 600. We have employed this combined useful
information of the structural requirements as well as the
synthetic availability of these derivatives to design a set of
40 new analogues showing excellent inhibitory activities in
the 3D-QSAR models previously established. Furthermore,
these molecules also exhibited good Surflex-Dock total
score in the molecular docking experiments.

These molecules were designed by introducing minor,
electron-donating, hydrophilic and hydrogen bond donor
groups (i.e., -OH, -NH2) at R1 site; bulky or hydrophobic
groups (i.e., substituted aromatic rings or substituted
pyrrolyl) at R2 position; electron-withdrawing, hydrophobic
and hydrogen bond acceptor groups (e.g., 2,5-furanyl, 2,5-

Fig. 9 Structure-activity
relationship and binding features
obtained by present study

J Mol Model (2012) 18:973–990 985



Table 5 Structure, predicted pIC50 values, Surflex-Dock total score (score) and molecular weight (M. W.) of newly designed derivatives

No.
Substituent Predicted pIC50

Score M.W.
linker R1 R2 CoMFA CoMSIA

D1 2,5-furanyl -NH2 O

O

7.926 8.140 6.75 406.35

D2 2,5-furanyl -NH2

O
O

O

9.228 7.733 7.38 396.31

D3 2,5-furanyl -NH2

OCH2CH3

OCH2CH3

8.353 7.422 6.80 410.38

D4 2,5-furanyl -NH2

H
N

CH3

CH3

8.066 7.823 7.46 365.34

D5 2,5-furanyl -NH2

O

O
O

8.890 7.091 6.43 380.31

D6 2,5-furanyl -NH2 O

H3CO

H3CO

COCH3 8.285 7.274 6.25 440.36

D7 2,5-furanyl -NH2 O

CH3

CH3

8.840 7.776 7.09 366.33

D8 2,5-furanyl -NH2 O

CH2CH3

CH2CH3

8.523 7.755 7.84 394.38

D9 2,5-furanyl -NH2 O

OCH3

H3COC

8.900 7.048 5.76 410.34

N

S

[linker ]P

O

HO

HO

R1

R2
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Table 5 (continued)

D10 2,5-pyrimidinyl -OH NHCOCH3 8.023 7.732 5.13 392.33

D11 2,5-pyridinyl -OH 8.068 7.415 5.12 360.32

D12 2,5-pyridinyl -OH
OH

8.010 7.656 4.78 364.31

D13 2,5-furanyl -NH2 N 7.521 8.054 5.71 315.29

D14 2,5-furanyl -NH2 N O

CH2CH3

CH2CH3

7.208 8.246 5.64 387.39

D15 2,5-pyridinyl -NH2 N O

CH3

CH3

7.690 8.053 5.70 370.36

D16 2,5-furanyl -NH2 N O

CH3

CH3

7.112 8.234 5.73 359.34

D17 2,5-furanyl -OH N
N 7.104 8.005 6.16 355.31

D18 2,5-pyridinyl -OH
N

N
7.460 7.940 5.68 366.33

D19 2,5-furanyl -NH2 N
OH

7.038 8.312 6.16 327.25

D20 2,5-furanyl -OH N
OH

7.204 8.066 5.42 328.24

D21 2,5-furanyl -NH2
N

N
7.545 8.382 6.36 358.35

No.
Substituent Predicted pIC50

Score M.W.
linker R1 R2 CoMFA CoMSIA

N

S

[linker ]P

O

HO

HO

R1

R2
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Table 5 (continued)

D27 2,5-furanyl -NH2 SCH3

SCH3

SCH3

7.327 8.045 6.69 368.37

D28 2,5-furanyl -NH2
O 7.319 7.908 6.04 394.38

D29 2,5-furanyl -OH N O CN
Cl

8.021 7.351 5.55 481.85

D30 2,5-pyridinyl -OH N O

CH3

CH3

7.892 7.747 4.96 371.35

D31 2,5-pyrimidinyl -NH2 NHCOCH3 7.877 7.909 4.90 391.34

D32 2,5-pyridinyl -OH
N

N
7.832 7.862 4.66 370.36

D33 2,5-furanyl -NH2 S
O

O
7.824 7.914 5.98 386.34

D34 2,5-pyridinyl -OH S
O

O
CH2CH3 8.086 7.950 5.78 426.40

D35 2,5-pyridinyl -OH S
O

O

CH3

CH3

8.172 8.017 5.58 426.40

D36 2,5-pyridinyl -OH S
O

O

CH2CH3

CH2CH3

8.280 7.911 5.94 454.46

D22 2,5-furanyl -NH2
N 7.744 8.098 5.47 329.31

D23 2,5-furanyl -NH2
N 7.451 8.080 6.32 343.34

D24 2,5-furanyl -NH2
NH2

C CH3

CH3

CH3

CH3

8.284 7.447 5.67 351.32

D25 2,5-pyridinyl -OH 8.093 7.416 5.06 380.38

D26 2,5-pyridinyl -NH2 7.950 7.597 5.90 379.39

No.
Substituent Predicted pIC50

Score M.W.
linker R1 R2 CoMFA CoMSIA

N

S
[linker]P

O
HO

HO

R1

R2
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pyridinyl and 2,5-pyrimidinyl) at the linker site; the
phosphonic group remained. The structure and molecular
weight as well as predicted activities and docking score of
these designed molecules were shown in Table 5.

As shown in Table 5, the hydroxyl at R1 position could
also result in excellent predicted potencies (e.g., D10-D12,
D17, D18, D20, D25, D29, D30, D32, D34-D38 and D40).
In the case of D2-D12, there were some discrepancies
between their predicted pIC50 values of CoMFA and
CoMSIA. The predicted activities of CoMFA were found
to be better than CoMSIA, it can be inferred that since the
D2-D12 possessed substituted phenyl groups at R2 site, the
CoMSIA hydrogen bond fields have no significant effect on
these substituents, resulting in decreased predicted pIC50

values. In the case of D13-D23, their predicted pIC50 values
of CoMSIA were better than CoMFA. It can be also be
inferred that the CoMSIA hydrogen bond fields possessed
effect on these substituted pyrrolyl groups, resulting in
increased predicted activities. Compounds D34-40 displayed
excellent predicted pIC50 values in both the CoMFA and
CoMSIA models. Although some of the designed molecules
showing excellent predicted potencies possessed 2,5-pyri-
dinyl and 2,5-pyrimidinyl linker (e.g., D10-D12, D15, D18,
D25, D26, D30-D32 and D34-D36), most of the designed
molecules had a 2,5-furanyl acted as linker, indicating that
the best linker for these derivatives was the 2,5-furanyl.

Conclusions

A combination of 3D-QSAR (CoMFA/CoMSIA) and
molecular docking studies was performed on a set of 63
FBPase inhibitors for designing new compounds with
improved inhibitory potency. The 3D-QSAR study yielded
stable and statistically significant predictive models as
indicated by high cross-correlation coefficients. The estab-
lished models were validated by a systemic external
validation. Furthermore, the combination of the 3D-QSAR
studies and the molecular docking calculations offered
enough information to understand the structure-activity
relationship and identified several important structural
features influencing the inhibitory activity as well as
binding affinity. The robust and predictive CoMFA and
CoMSIA models were then utilized to design new
molecules presenting improved inhibitory potency. The
selected designed molecule was subsequently docked in
the AMP binding region to check how it interacted with
the AMP binding site. This model can be used to guide the
rational design of new inhibitors presenting improved
inhibitory activity against the FBPase. Moreover, these
designed molecules can be synthesized to generate a
greater number of phosphonic acid-containing thiazole
derivatives with required pharmacokinetics for further
clinical evaluations.

Table 5 (continued)

D37 2,5-furanyl -OH COOH 7.983 7.918 4.46 373.32

D38 2,5-furanyl -OH NH2 8.010 8.011 6.74 344.32

D39 2,5-furanyl -NH2 N

OH

OH

8.066 8.142 3.16 355.26

D40 2,5-furanyl -OH
Cl

ClCl
8.359 8.364 3.71 364.53

No.
Substituent Predicted pIC50

Score M.W.
linker R1 R2 CoMFA CoMSIA

N

S

[linker ]P

O

HO

HO

R1

R2

J Mol Model (2012) 18:973–990 989



Computational details

The computational details were depicted in the supporting
information of this paper according to references [25–30].
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Abstract Three-dimensional quantitative structure–activity
relationship studies were performed on a series of 88
histamine receptor 4 (H4R) antagonists in an attempt to
elucidate the 3D structural features required for activity.
Several in silico modeling approaches, including compara-
tive molecular field analysis (CoMFA), comparative simi-
larity indices analysis (CoMSIA), molecular docking, and
molecular dynamics (MD), were carried out. The results
show that both the ligand-based CoMFA model (Q2=0.548,
Rncv

2=0.870, Rpre
2=0.879, SEE=0.410, SEP=0.386) and

the CoMSIA model (Q2=0.526, Rncv
2 =0.866, Rpre

2=0.848,
SEE=0.416, SEP=0.413) are acceptable, as they show
good predictive capabilities. Furthermore, a combined
analysis incorporating CoMFA, CoMSIA contour maps
and MD results shows that (1) compounds with bulky or
hydrophobic substituents at positions 4–6 in ring A (R2
substituent), positively charged or hydrogen-bonding (HB)
donor groups in the R1 substituent, and hydrophilic or HB
acceptor groups in ring C show enhanced biological
activities, and (2) the key amino acids in the binding
pocket are TRP67, LEU71, ASP94, TYR95, PHE263 and
GLN266. To our best knowledge, this work is the first to

report the 3D-QSAR modeling of these H4R antagonists.
The conclusions of this work may lead to a better
understanding of the mechanism of antagonism and aid in
the design of new, more potent H4R antagonists.

Keywords 3D-QSAR . H4R antagonist . CoMFA .

CoMSIA .MD . Docking

Abbreviations
QSAR Quantitative structure–activity relationship
3D-QSAR Three-dimensional quantitative structure–

activity relationship
HR Histamine receptors
H4R Histamine receptor 4
GPCR G-protein-coupled receptor
H4R Histamine receptor 4
CADD Computer-aided drug design
CoMFA Comparative molecular field analysis
CoMSIA Comparative similarity index analysis
MD Molecular dynamics
HB Hydrogen bond
RMSD Root mean square deviation
SEE Standard error of estimates
SEP Standard error of prediction
Q2 Cross-validated correlation coefficient after

the leave-one-out procedure
Rncv

2 Non-cross-validated correlation coefficient
F ratio of
Rncv

2
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2 ratio=Rncv
2/
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2)

Rpre
2 Predicted correlation coefficient for the test

set of compounds
OPN Optimal number of principal components
PLS Partial least squares
PCs Principal components
LOO Leave-one-out
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Introduction

Histamine is a biogenic amine that affects a variety of functions
in the human body by playing a role in inflammation, gastric
acid secretion, and neurotransmission [1]. Thus, the pharma-
ceutical industry has a long-standing interest in exploring
histamine receptors (HR) as therapeutic targets for the
treatment of various diseases [2]. To date, four histamine
receptor subtypes (H1R, H2R, H3R, H4R) have been
identified, and all of them are members of the G-protein-
coupled receptor (GPCR) family [3]. H1 and H2 antagonists
have long been used in the treatment of inflammatory and
gastric hyperacidity diseases, respectively [4]. H3R stimulates
the release of histamine and other neurotransmitters from
neurons as a presynaptic autoreceptor, and H3 antagonists are
useful in cognitive and memory disorders and obesity [4].
Histamine receptor 4 (H4R), identified in 2000, mediates its
effects by coupling to Gαi/o G-proteins, and has low
homology with other histamine receptors: only 35% amino
acid identity with H3R (58% homology in its transmembrane
regions), and a much lower identities with H1R and H2R [5].
Modulation of H4 receptor activity provides an opportunity to
treat inflammatory and allergic conditions [6].

Since its relatively recent discovery, H4R has been the
focus of much attention [7]. In contrast to other histamine
receptors, H4R has a distinct expression profile on immune
cells, including mast cells, eosinophils, dendritic cells and T
cells, exerting modulatory effects on cell function. More-
over, H4R appears to play a significant role in multiple
functions of these cells, such as activation, migration,
cytokine and chemokine production [8]. This suggests that
the receptor plays a crucial role in immunological and
inflammatory processes [9]. H4R is involved in immune or
inflammatory responses because histamine signaling indu-
ces changes in cell shape and chemotaxis of mast cells as
well as eosinophils, mast cell migration, and upregulation
of adhesion molecules on monocytes. All these effects can
be blocked by H4R antagonists [10].

From the above physiological reactions, one can deduce
several potential clinical uses for H4R inverse agonists/
antagonists in the broad field of anti-inflammatory therapy,
such as in treatments for allergy and asthma, pruritus
associated with allergy or autoimmune skin conditions,
inflammatory bowel disease, rheumatoid arthritis, and pain
[10]. JNJ7777120, which is the first non-imidazole H4R
antagonist reported by Jablonowski et al. in 2003 [11],
shows good selectivity over other histamine receptors that
also have interesting anti-inflammatory activities in vivo
[11]. Furthermore, it has become a standard reference agent
for evaluating H4 receptor activity in many laboratories
[12]. Recently, based on JNJ7777120, a series of new H4R
antagonists were synthesized by Altenbach et al. [12]. Due
to the facts that they currently represent the largest data set

(88 compounds in total) on H4R antagonists, and that they
have quite different molecular structures from other groups
of H4R antagonists that have been developed, they attracted
our particular interest for further quantitative structure–H4R
antagonist potency relationship studies.

The addition of computer-aided drug design (CADD)
technologies to the drug discovery and development
process could lead to a reduction of at least 50% in the
cost of drug design [13]. QSARs, especially 3D-QSAR, is a
CADD technology that has been applied widely throughout
the world to prioritize untested chemicals for more
intensive and costly experimental evaluations [14]. Molec-
ular docking and molecular dynamics are therefore being
utilized more and more in current drug design processes.
The aim of the present study was to use the 88 new fused
compounds mentioned above as a data set to identify the
structural features that lead to H4R antagonist effects,
through a combination of several in silico approaches,
including CoMFA, CoMSIA, molecular docking and
molecular dynamics. As far as we know, this study is the
first 3D-QSAR study of this new series of H4R antagonists.

Materials and methods

Dataset and biological activity

A series of 88 2-aminopyrimidine-containing H4R antago-
nists were synthesized by Robert J. Altenbach and his
colleagues as the data set for the QSAR studies described in
this paper [12]. Their pKb values (pKb=−lgKb) were
employed as their biological activities (Tables S1–S3,
“Electronic supplementary material”). Based on their skele-
ton structures, these compounds were divided into skeleton
types A–C. There were 71 type A compounds (Table S1), 6
type B (Table S2) and 11 type C compounds (Table S3). To
generate 3D-QSAR models, the molecules were divided into
a training (66 compounds) and a test set (22 molecules) for
validating the quality of the models, in the ratio 3:1. The test
molecules were selected randomly such that the data set
showed high structural diversity and a wide range of
activities. All molecular studies were performed using the
molecular modeling package SYBYL 6.9 (Tripos Associates,
St. Louis, MO, USA). Energy minimization was performed
using the Tripos force field and the conjugate gradient
method, with the convergence criterion set to 0.05 kcal mol−1

in this process. Partial atomic charges were calculated by the
Gasteiger–Huckel method [15].

Conformational sampling and alignment

It is known that the appropriate superimposition of the
molecules being studied within a three-dimensional fixed
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lattice is the key procedure in further CoMFA and CoMSIA
studies [16]. In our present work, based on an atom-by-
atom superimposition principle, molecular alignment was
carried out using the ALIGN DATABASE command in
SYBYL. Both ligand-based and receptor-based alignment
rules were adopted here. In both types of alignment,
compound 56, which had the highest pKb value (of 8.86),
was chosen as the template molecule. Figure 1a shows the
common substructure depicted in red, and Fig. 1b shows
the resulted ligand-based alignment model. The receptor-
based alignment we used is shown in Fig. 1c. For this
alignment, after the docking process, none of the con-
formations of the compounds that showed optimal scores
with the H4R protein presented a statistically significant
result. Therefore, the optimal conformation of each mole-
cule was selected through leave-one-out (LOO) cross-
validation [17], which ensures that the correlation coeffi-
cient R2=0.41. Then, the partial atomic charges of the
molecules were calculated by the Gasteiger–Hückel method
[15].

CoMFA and CoMSIA calculation

In CoMFA [18] analysis, all of the superimposed molecules
were placed in a regular 3D lattice (2 Å spacing) extending
at least 2 Å beyond the volumes of all investigated
molecules on all axes. The van der Waals potentials and
the Coulombic term representing the steric and electrostatic
fields were calculated using the standard Tripos force field
for CoMFA. A Csp3 atom with a formal charge of +1 and a
van der Waals radius of 1.52 Å served as the probe atom to
generate steric (Lennard–Jones potential) and electrostatic
(Coulombic potential) field energies, which were obtained
by summing the individual interaction energies between
each atom of the molecule and the probe atom at every grid
point [19]. The cutoff value for both the steric and
electrostatic fields was set to 30.0 kcal mol−1, with a
distance-dependent dielectric constant.

The CoMFA method only calculates the steric and
electrostatic interactions, whereas CoMSIA [20] also
includes the hydrophobic, HB donor and HB acceptor
interactions. The basic assumption of CoMSIA is that
appropriate sampling of the steric, electrostatic, hydropho-
bic and HB acceptor interactions generated around a set of
aligned molecules with a probe atom can highlight all of the
features relevant to their biological activities, and that
changes in the binding affinities of the ligands are related to
changes in molecular properties [21]. The aligned mole-
cules were placed in a 3D lattice with regular grid points
separated by 2 Å, similar to the lattice used in CoMFA
studies. CoMSIA similarity index descriptors were also
derived within a lattice box with a grid spacing of 2 Å and a
Csp3 atom with a charge of +1 was used as the probe atom.
A Gaussian function was used to evaluate the distance
between the probe atom and each atom in the molecule.
CoMSIA similarity indices (AF) for a molecule j with an
atom i at a grid point q were calculated as follows:

Aq
F;kðjÞ ¼ �

X
wprobe;kwike

�ar2iq ; ð1Þ

where wprobe,k is the probe atom with a radius of 1 Å, a
charge of +1, a hydrophobicity of +1, hydrogen bond
donation of +1, and hydrogen bond acceptance of +1. wik is
the actual value of the physicochemical property k of atom
i. riq is the distance between the probe atom at grid point q
and item i of the test molecule [22].

Calculation and validation of the 3D-QSAR models

CoMFA and CoMSIA descriptors were used as the
independent variables, and the corresponding pKb values
as the dependent variables, in the partial least squares (PLS)
regression analyses performed during 3D-QSAR model
development. The advantage of this method is that it can

Fig. 1 Molecular alignments of all of the compounds in the data set. a
The common substructure of the molecules is shown in red, based on
template compound 56. b Ligand-based alignments of all of the
compounds. c Receptor-based alignments of all of the compounds
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reduce an initially large number of descriptors to a few
principal components (PCs) that are linear combinations of
the original descriptors [23]. In our PLS analysis, the cross-
validation was performed using the leave-one-out (LOO)
method, wherein one compound is removed from the
dataset and its activity is predicted using the model derived
from the rest of the dataset. The cross-validated Q2 obtained
from the PCs was considered [24]. Using this, a non-cross-
validation analysis was then carried out, and the Pearson
coefficient (Rncv

2) and SEE were calculated [23].
During the PLS process, several statistical parameters,

including Q2 and Rncv
2, are needed to evaluate the

reliability of the model generated. The cross-validated
coefficient Q2 is used as a statistical index of the predictive
power of the model, and is calculated by the following
equation, where the parameters Ypredicted, Yobserved and Ymean

are the predicted, actual and mean values of the target
property, respectively [21]:

q2 ¼ 1�
P
Y
ðYpredicted � YobservedÞ2P

Y
ðYobserved � YmeanÞ2

: ð2Þ

When assessing the predictive power of the QSAR
model derived from the training set, an independent test set
was used, and their biological activities were predicted
using this QSAR model. The predicted R2 (Rpre

2) value was
calculated using

R2
pre ¼ SS� PRESSð Þ=SS; ð3Þ

where SS is the sum of the squared deviations between the
biological activity of the test set and the mean activity of
the training set molecules, and PRESS is the sum of the
squared deviations between the actual and the predicted
activities of the test set molecules [25]. Finally, the CoMFA/
CoMSIA results were presented graphically on field
contour maps, where the coefficients were generated using
the field type “Stdev*Coeff.”

Molecular docking

Molecular docking is the method most commonly used to
calculate protein–ligand interactions, and it is efficient at
predicting the potential ligand binding site(s) on the whole
protein target [26]. In order to find the probable binding
conformations and offer more insight into the interactions
between H4R and its antagonist, molecular docking
analysis was carried out using Surflex-Dock in the SYBYL
package in our present work. In the docking process, an
accurate 3D structure of the receptor is important. Due to
the unavailability of the X-ray structure of H4R, in the
present work we used a homology model built by Armin
Buschauer et al. [9]. In their work, a satisfactory H4R

homology model was built based on a template of human
β2-adrenoceptor, and optimized by an MD process [9].
Currently, most standard docking protocols incorporate
ligand flexibility into the docking process while consider-
ing the protein to be a rigid structure [27]. Our molecular
docking involves the following steps. (1) The protein
structure was imported into Surflex and then hydrogens were
added. (2) The protomol was generated using a ligand-based
approach. During the protomol generation process, two
particular parameters must be specified to form the appropri-
ate binding pocket. One parameter, called protomol_bloat,
determines how far the site should extend from a potential
ligand; the other is the protomol_threshold, which determines
how deep the atomic probes that are used to define the
protomol can penetrate into the protein. In the present work,
protomol_bloat was set to 0, and protomol_threshold was set
to 0.50 when a reasonable binding pocket was obtained. (3)
All of the antagonists were docked into the binding pocket,
and 20 possible active docking conformations with different
scores were obtained for each antagonist. During the docking
process, all of the other parameters were assigned their
default values.

Molecular dynamics simulations

The MD simulations were performed with the GROMACS
software package [28] using the GROMOS96 force field
[29]. The molecular topology file for the ligand in protein
was generated by the program PRODRG 2.5 [30–33]. The
simulation cell was a cubic periodic box with a side length
of 95.99 Å, and the minimum distance between the protein
and the walls of the box was set to 10 Å. In order to
neutralize the total charge, seven chloride ions were placed
randomly in the box. The total number of atoms in the
simulated system was 87,326, including the protein com-
plexes and waters. The remaining box volume was filled
with simple point charge (SPC) waters [34].

Prior to the simulation, energy minimization was
performed for the full system without constraints using
the steepest descent integrator for 7500 steps, and then the
system was equilibrated via 200 ps MD simulations at
300 K. Finally, a 5 ns simulation was performed with a time
step of 2 fs. During the MD simulations, the standard
parameters and main calculation methods were configured
as follows. The model used an NPT ensemble at 300 K with
periodic boundary conditions. The temperature was kept
constant by the Berendsen thermostat, and the values of
isothermal compressibility were set to 4.5×10−5 bar−1,
while the pressure was maintained at 1 bar using the
Parrinello–Rahman scheme [35]. Electrostatic interactions
were calculated using the particle mesh Ewald method [36],
and the cut-off distances for calculating Coulomb and van
der Waals interactions were 1.0 and 1.4 nm, respectively.
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All of the MD simulations lasted 5 ns to ensure that the
whole systems were stable.

Results and discussion

CoMFA and CoMSIA statistical results

In our present work, all CoMFA and CoMSIA models were
derived using the same training (66 molecules) and test (22
molecules) sets. To validate the reliability of these models,
all of the vital statistical parameters were analyzed,
including the leave-one-out Q2, the non-cross-validated
correlation coefficient (Rncv

2), SEE, F-statistic values, and
the predicted correlation coefficient (Rpre

2). The statistical
results obtained from standard CoMFA models constructed
with steric and electrostatic fields are summarized in
Table 1. For the ligand-based model, the optimum number
of components (five) was determined by SAMPLS analysis
implemented in SYBYL with a LOO cross-validated Q2 of
0.548, which indicated that the model had good predictive
capability. A high Rncv

2 of 0.870 for the non-cross-validated
final model showed the self-consistency of the model. The
SEE was 0.410, and the F value was 79.992. When tested
with the independent test set, the ligand-based CoMFA
model exhibited satisfactory predictive ability, with Rpre

2=
0.879 and SEP=0.386. In this ligand-based CoMFA model,
the electrostatic features was found to contribute more to
the activity (∼53%) than the steric feature. For the receptor-

based model, a cross-validated Q2 of 0.392 was obtained
using five optimum components, demonstrating the poor
predictive ability of the model. This failure is also seen
when the external predictive capability of the receptor-
based CoMFA model was evaluated with the independent
test set, ending up with statistical results of Rpre

2=0.248
and SEP=0.902. Thus, the receptor-based model failed
completely, and will not be discussed further in the present
work.

As mentioned above, CoMSIA not only offered the same
steric and electrostatic field information as CoMFA, but it
also provided hydrophobic and hydrogen-bond (HB) donor
and acceptor interaction information, which are all always
relevant to the binding affinities [19]. Thus, different
combinations of these additional three interaction fields
with the steric and electrostatic ones may result in other
useful or even better QSAR models. So, in our CoMSIA
modeling process, all five field descriptors were calculated
using the same data sets as used in CoMFA analysis, and
they were then fitted together in every possible form to
build appropriate CoMSIA models. Finally, the best ligand-
and receptor-based models were obtained with the highest
Q2 values using the steric, electrostatic, hydrophobic and
HB acceptor parameters (Table 1). The ligand-based
CoMSIA model has a Q2 value of 0.526 with five optimum
components, an Rncv

2 value of 0.866, a SEE value of 0.416,
and an F value of 77.575. However, in this model, unlike in
the ligand-based CoMFA model, the electrostatic feature
provided the major contribution to the antagonist activity
(∼32.7%). Again, poor predictive results were obtained for
the receptor-based CoMSIA model, with a Q2 value of
0.269 using three optimum components, an Rncv

2 value of
0.682, a SEE value of 0.630, and an F value of 44.238.

Normally, 3D-QSAR studies with a cross-validated Q2

value >0.5 are considered to be statistically significant [37].
In addition, higher Rncv

2 and F values as well as lower SEE
values should also be considered the foundation of a
reliable 3D-QSAR model. However, using the widely
accepted LOO cross-validated Q2 alone is insufficient to
assess the predictive power of a QSAR model [38]. Thus, to
validate the above four models (especially the two optimal
ones—the ligand-based CoMFA and CoMSIA models), an
external test set (22 molecules) that was independent of and
represented 33.3% of the training set was used to predict
the activities (pKb values) of the compounds in it.

Before this validation, an initial inspection of the fitted/
predicted activities revealed poor predictions for two
compounds (33 and 35) which were considered outliers in
our work for both the ligand-based and receptor-based
models. Careful examination of outliers may provide
additional information on their peculiarities; therefore, in
this study, the two outliers were checked carefully. Com-
pounds 33 and 35 had comparatively high residuals

Table 1 Summary of the CoMFA and CoMSIA results

PLS statistics Ligand-based model Receptor-based model

CoMFA CoMSIA CoMFA CoMSIA

Q2 0.548 0.526 0.392 0.269

Rncv
2 0.870 0.866 0.909 0.682

SEE 0.410 0.416 0.343 0.630

F 79.992 77.575 119.738 44.238

Rpre
2 0.879 0.848 0.248 0.200

SEP 0.386 0.413 0.902 0.956

OPN 5 5 5 3

Contribution:

Steric 0.47 0.095 0.512 0.080

Electrostatic 0.53 0.327 0.488 0.298

Hydrophobic 0.295 0.252

HB acceptor 0.282 0.370

Q2 cross-validated correlation coefficient after the leave-one-out
procedure; Rncv

2 non-cross-validated correlation coefficient; SEE
standard error of estimate; F ratio of explained to unexplained Rncv

2 =
Rncv

2 /(1 − Rncv
2 ); Rpre

2 predicted correlation coefficient for the test set
of compounds; SEP standard error of prediction; OPN optimal number
of principal components
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between the experimental and predicted activities—abso-
lute pKb residual values of 2.525 and 2.811 for the optimal
CoMFA model, and 2.206 and 2.553 for the optimal
CoMSIA model, respectively (both larger than 2)—and
were thus treated as outliers in the model. This discrepancy
suggests the need to recruit more (and more accurate)
experimental data with more diverse molecular structures.
After eliminating the outliers, both the CoMFA and
CoMSIA models obtained from the ligand-based alignment
exhibited good predictive abilities (with Q2>0.5, Rpre

2>
0.84, Table 1), indicating that the ligand-based alignment
rule is more appropriate for the QSAR study of this dataset.
However, for receptor-based alignment, both the CoMFA
and the CoMSIA models yielded unsatisfactory predictions
(CoMFA: Q2=0.269, Rpre

2=0.200; CoMFA: Q2=0.392,
Rpre

2=0.200).
The observed and predicted H4R inhibitory activities for

both the ligand- and receptor-based CoMFA and CoMSIA
models are shown in Table S4. Figure 2 shows the actual
and predicted pKb values plotted against each other for both
the training (filled black squares) and test (filled blue
diamonds) set molecules of the whole dataset, based on the
ligand-based CoMFA and CoMSIA models. It is clear that
all of the points are rather uniformly distributed around the
regression line in the two figures, and the predicted
activities are almost as accurate as the experimental data,
indicating good correlation between the predicted and
experimental activities of the dataset and the reliability of
the obtained models.

3D-QSAR contour maps

Based on the ligand-based optimal CoMFA and CoMSIA
models, various contour maps were constructed here to
show the important features of the ligands. The results of the
3D-QSAR models were mapped using the “StDev*Coeff”
mapping option “contoured by contribution.” The default
levels of contour by contribution (80 for favored regions
and 20 for disfavored regions) were employed during the
contour analysis. In this study, compound 56 (Fig. 3),
which was one of the most active compounds in the whole
dataset (pKb value of 8.86), is used as an example
molecule in all subsequent CoMFA and CoMSIA contour
maps (Figs. 4 and 5).

The steric and electrostatic fields from the best
CoMFA model are shown in Fig. 4. Areas where steric
bulk substituents increase the potency are represented by
green polyhedrons, while areas where steric bulk sub-
stituents decrease the potency are represented by yellow
polyhedrons (Fig. 4a). A large green contour was found
near positions 4–6 in ring A (R2 substituent). Thus,
molecules carrying a bulky substituent at these positions
should be more active than those with no or a smaller

substituent, as illustrated by the higher potencies of
compounds 3 (pKb=8.53) and 58 (pKb=8.32), which have
a bulky substituent (4-CN-Ph), than the potencies of
molecules 20–25 (with pKb values of<7.07), which have

Fig. 2 Ligand-based correlation plots of the predicted versus the
actual pKb values for the training (filled black squares) and the test
(filled blue diamonds) set compounds, based on a the CoMFA model
and b the CoMSIA model, respectively

Fig. 3 The structure of compound 56 [12]
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the group t-Bu at this position. In contrast, three negative
steric (yellow) regions appear mainly above positions 2
and 3 of ring A and positions 7 and 9 of ring B. This
suggests that a bulky substituent at this position degrades
the biological activities of the molecules, as illustrated by
the fact that compounds 68 (pKb=6.85) and 69 (pKb=
6.79) at positions 2 and 3 of ring A exhibited lower
activities than those of 38 (pKb=8.28) and 40 (pKb=7.55),
which have the substituents –NHMe and –NEt2 at the
same position, respectively.

The CoMFA electrostatic contour plots for the highly
active compound 56 are displayed in Fig. 4b. A blue
contour indicates that the substituents should be electron
deficient for high binding affinity with the protein, while a
red color indicates that they should be electron rich to
achieve this binding affinity. A large red contour appears
around the R1 substituent, indicating active site favorable
regions of high electron density, which explains the
decreased potencies of compounds 23 (pKb=5.31) and 24
(pKb=4.39) considering the electronegative groups (−Cl

Fig. 5 CoMSIA “StDev*Coeff” contour maps. a Steric (green/yellow)
contour map in combination with compound 56. Green contours
indicate regions where bulky groups increase activity; yellow contours
indicate regions where bulky groups decrease activity. b Electrostatic
contour map (red/blue) in combination with compound 56. Red
contours indicate regions where negative charges increase activity;
blue contours indicate regions where positive charges increase activity.
c Hydrophobic contour map (yellow/white) in combination with

compound 56. Yellow contours indicate regions where hydrophobic
substituents enhance activity; white contours indicate regions where
hydrophilic substituents enhance activity. d HB acceptor contour map
(magenta/cyan) in combination with compound 56. Magenta contours
indicate regions where HB acceptors on the receptor promote the
affinity; cyan contours indicate regions where HB acceptors on the
receptor degrade the affinity

Fig. 4 CoMFA “StDev*Coeff” contour plots. a Steric (green/yellow)
contour map in combination with compound 56. Green contours
indicate regions where bulky groups increase activity; yellow contours
indicate regions where bulky groups decrease activity. b Electrostatic

contour map (red/blue) in combination with compound 56. Red
contours indicate regions where negatively charged groups increase
activity; blue contours indicate regions where positively charged
groups increase activity
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and –OH) that they have in these areas. A large red isopleth
around the R2 substituent, ring B and ring C shows that this
area prefers negatively charged substituents. Due to the
strong electronegativities of nitrogen and oxygen atoms, the
activities of compounds 3 (pKb=8.53), 12 (pKb=8.08) and
56 (pKb=8.86) are greater than those of compounds 15–19
with a t-Bu substituent in R2 substituents (their pKb values
are smaller than 7.02).

In our study, the CoMSIA model not only calculates the
steric and electrostatic fields, but also uses the hydrophobic
and HB acceptor fields to correlate with the antagonist
activity. All contour maps of the four CoMSIA fields are
shown in Fig. 5. The color scheme used in the CoMSIA
steric and electrostatic field contour maps (Fig. 5a and b) is
the same as that described for the CoMFA contour maps.
The steric contour map of the CoMSIA model (Fig. 5a)
shows similar results to that of the CoMFA one, with only a
subtle difference in that all of the negative steric (yellow)
regions located above ring A (R2 substituent) in the
CoMSIA model are much larger in size than those in the
CoMFA one. These results lead to the conclusion that
compounds with bulky substituents in ring A and ring C
may possess enhanced activity. Figure 6b shows the
electrostatic contour map of the optimal CoMSIA model,
where the red polyhedron is clearly smaller than in the
CoMFA one in size. One small red contour is also observed
near position 8 (R1 substituent), indicating that occupancy
by an electronegative substituent in this region would
promote the binding affinity to H4R.

Figure 5c depicts the hydrophobic contour maps of
the CoMSIA models. Yellow contours encompass
regions where a hydrophobic group will improve
biological activity, while a hydrophobic group located
near the white regions will result in impaired biological
activity. A large yellow contour was found near the
positions 4–6 in ring A (R2 substituent). Therefore,
molecules carrying hydrophobic groups (like –OMe, –OEt,

–F, –Cl, –Br) tend to show enhanced activity, as exemplified
by the higher activity of molecule 58 (pKb=8.32), which has
a Cl at position 4 of ring A. Two small white polyhedra
appear below the plane of ring A, and one small white
contour appears around ring C, indicating that hydrophilic
(like hydroxy or amido) groups here are correlated with good
antagonist activity.

The HB acceptor fields based on PLS analysis of the
CoMSIA models are shown in Fig. 5d, where the
magenta and cyan contours highlight areas in which HB
acceptors and donors are preferred, respectively. One large
cyan contour was found near the positions 4–6 in ring A,
indicating that an HB donor at these positions may
improve the activity. The other cyan contour that appears
around R1 also has the same meaning; for instance,
compounds with –NH2 at the R1 position may have
higher activities than those without an –NH2 group at this
position (compounds 20–25). One small magenta contour
appearing near position 3 in ring A, and another magenta
contour appearing around ring C indicate that HB accept-
ors are preferred here. For example, compounds 52 (pKb=
8.62) with –OMe and 65 (pKb=8.06) with –CN at position
4 of ring A possess higher activities than most of the other
molecules in the data set. Also, the presence of an N atom
in ring C, which acts as an HB acceptor, can improve the
activity.

Fig. 6 The binding pocket in H4R. Molecule 56 is shown in green,
and all key amino acids are shown in pink, respectively

Fig. 7 MD simulation results. a Plot of the RMSD of docked
complex versus MD simulation time in the MD-simulated structures.
b View of superimposed backbone atoms of the average structure of
the last 1000 ps of the MD simulation (pink) and the initial structure
(green) for compound 56 and the H4R complex
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Docking results

Docking protocols are widely used to predict the binding
affinities of a number of ligands [39]. In this study, in order
to explore the binding environment in which the ligand
interacts within the H4R, docking studies were performed
on these compounds. After all 88 compounds had been
docked into the possible active site, we found that the
highest CScore was 5.22. Figure 6 shows the binding
pocket we generated (with molecule 56, used as a template,
shown in green). It is clear that this binding pocket is the
same as that constructed by Buschauer et al. [9]. It is easily
shown that many of the key amino acids (such as TYR72,
HIS75, TRP90, ASP94, TYR95, GLU165 and GLU182)
that interact with the H4R antagonist at the binding site are
the same as those observed in the work of Armin Buschauer
and his colleagues. All of the above results indicate that the
binding pocket we found was appropriate for the study of
H4R receptor antagonists.

Molecular dynamics simulations

In this study, a 5000 ps molecular dynamics simulation was
carried out using H4R with ligand 56, based on the docked
complex structure. The main purpose of the simulation was
to optimize the binding pocket and the correlation between
H4R and molecule 56. The root mean square deviation
(RMSD) of the trajectory with respect to their initial
structure ranged from 0.3 to 0.45 Å, as depicted in
Fig. 7a. After 2000 ps, the RMSD of the complex was
about 0.4 Å, and it almost remained at this level for the
whole simulation process. This indicates that the docked
complex structure is stable after 2000 ps of simulation [40].
A superposition of the average structure of the ensemble for
the last 1 ns and the docked structure are shown in Fig. 7b,
where the blue ribbon represents the initial structure of the
docked complex, and the green ribbon represents the MD-

simulated structure, respectively. Compound 56 is repre-
sented in green for the initial complex and pink for the final
average complex, respectively. In Fig. 7b, it is clear that the
docked complex and the MD average structure occur at the
same binding site, and their ring C regions are very similar.

As it was the most potent antagonist, compound 56 was
chosen to illustrate the analysis of the MD results. In Fig. 8,
the backbone –NH2– in GLN266 may form a hydrogen
bond with the –N atom (HB acceptor) in ring C, at a
distance of 3.19 Å. This binding mode also shows a strong

Fig. 9 The binding site formed around compound 56. a Steric amino
acid residues around the compound. b Positions of hydrophobic (pink)
and hydrophilic (blue) amino acid residues

Fig. 8 The binding pocket
formed around molecule 56. a
Superposition of the MD simu-
lation (green) and the initial
structure (cyan) for H4R. Pink
dotted region is the binding
pocket of compound 56. b HB
interactions around the com-
pound in the active docking
pocket. The black dotted line
shows the HBs formed and their
bond lengths
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HB interaction between the N atom (HB donor) in the R1
substituent and the backbone –NH– in TRP67, at a distance
of 2.36 Å. These MD results are very consistent with the
results of our CoMSIA HB acceptor field contour map
analysis, which shows that a compound with an HB
acceptor group in ring C and an HB donor in the R1
substituent should show enhanced biological activity.

The steric amino acid residues around the compound at
the binding site are shown in Fig. 9a. Clearly, no steric
amino acid residues appear around positions 4–6 in ring A
(R2 substituent). However, several crucial amino acid
residues are found near some specific positions in the
molecules. For example, TRP90, ASP94, TYR95 and
CYS164 lie near position 2 (ring A) and positions 7 and 9
in ring B. These results further confirm our results from the
CoMFA model (Fig. 4a), where bulky substituents at
positions 4–6 improved the activity but bulky groups at
position 2 of ring A and positions 7 and 9 of ring B
impaired the activity. Furthermore, it is clear that the
aromatic residue in PHE263 can participate in a π-
stacking interaction with ring C in molecule 56. Thus, we
can conclude that ring C plays an important role in this
binding pocket, due to its ability to form hydrogen-bond
and π-stacking interactions with the residues.

In Fig. 9b, hydrophobic amino acid residues ILE69,
LEU71, PHE82 and CYS164 appear above the R2
substituent, especially at positions 4–6 of ring A, indicating
that molecules with hydrophobic groups in these areas may
possess higher binding affinities to H4R. The hydrophilic
amino acid residues TYR95, PRO166, TRP235, TYR238
and GLN266 around ring C suggest that compounds with
hydrophobic groups in this region may show reduced
activity. These MD results correspond well to those from
our previous CoMSIA analysis: in Fig. 5c (the hydrophobic
field contour map), the yellow isopleth around positions 4–
6 in ring A implies that the presence of hydrophobic groups
in this region favor activity, and the white polyhedra that
appear near ring C indicate a preference for hydrophilic
groups in these areas.

These conclusions are highly consistent with the findings
obtained from the CoMFA and CoMSIA contour maps, in
that bulky or hydrophobic substituents at positions 4–6 of
ring A can interact with the receptor, because they may well
fit into the binding pocket. Hydrophilic groups on ring C
tend to enhance the activity. In addition, an R1 substituent
with an HB donor and an HB acceptor on ring C promote
high activity.

Conclusions

In this paper, two 3D-QSAR models were built using the
CoMFA and CoMSIA methods for the first time, utilizing a

total of 88 H4R antagonists. The optimal ligand-based
models obtained exhibited good predictive abilities accord-
ing to their Q2, Rncv

2, and Rpre
2 values. Furthermore, our

MD results correlated well with those from the 3D-QSAR
models. By analyzing both of the models and the derived
contour maps, significant regions that influence the potency
of H4R antagonists were identified: (1) bulky or hydropho-
bic substituents at positions 4–6 of ring A (R2 substituent)
can enhance the biological activities of these compounds;
(2) positively charged groups or HB donor groups on the
R1 substituent may improve the binding affinity; (3) the
presence of hydrophilic substituents or HB acceptor groups
on ring C increases activity, and; (4) the key amino acids
are TRP67, LEU71, ASP94, TYR95, PHE263 and
GLN266. The correlations among the results obtained from
QSAR, docking and MD studies should lead to a better
understanding of the structural features needed for en-
hanced activity, and aid in the design of new, more potent
H4R antagonists.
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Abstract Quantum chemical calculations of the structures
and stabilities of the title series at the CCSD(T) theoretical
level are performed. Laplacian, electron density deformation,
electron localization function and reduced density gradient
analysis are investigated to explore the nature of the
interaction. The results show that a covalent contribution
occurs in the Kr-M2+ bonding.

Keywords Electron density property . Interaction
Structure and stability

Introduction

Interactions of atomic ions with rare gas are of considerable
importance and interest, since it provides a convenient inert
environment for many experiments and technological pro-
cesses. About five decades ago, Bartlett reported the first rare
gas compound, xenon hexafluoroplatinate [Xe+(PtF6)

-] [1].
Gold is in fact generally regarded as the element whose
chemistry is most affected by relativistic effects [2, 3]. This
metal is nowadays used in several high-technology fields,
like microelectronics and nanostructured materials science
[4]. Seidel and Seppelt demonstrated the existence of the
[AuXe4]

2+ cation [5], it is very important because it supports
the concept that the rare gas atoms can be directly bonded to
the gold atom. Many investigations have been focused on the
M-rare gas bonding in the recently examined rare gas-
coinage metal halides, rare gas-MX (rare gas = Ar, Kr, Xe;

M = Cu, Ag, Au; and X = F, Cl, Br) [6–27]. In these species,
the presence of chemical bonds between M and rare gas
atoms is in sharp contrast to the conventional behavior,
which is considered to be inert from the existing chemical
intuitions. Pyykkö suggested that most of the bonding
interaction is covalent in character [18, 19]; while it was
questioned by saying that “covalency within the rare gas-
Au+ species appears to be unproven” [23]. In 2001, Walker
and co-workers reported the unexpected experimental and
theoretical determination of stable MArn

2+ clusters (at the
MP4/LANL2DZ level) [15]. Our previous results show that
the interactions of singly charged M+-Kr series are stronger
than those of M+-Ar series [28, 29]. However, the theoretical
investigations including geometrical structures, electronic
structures, especially the roles of interactions of small
MKrn

2+ clusters are less reported. These motivated us to
perform further calculation to investigate the M+2-Kr and
explore the nature of the interaction.

Reported here are the results of the calculations
undertaken on the MKrn

2+(M = Cu, Ag, and Au, n=1-6)
series at the CCSD(T) theoretical level, with the aim of not
only understanding the behavior of the systems under
consideration, but also to give an insight into the nature of
the interaction between Kr atom(s) and coinage metal
atoms. It would be meaningful and interesting to give a
description of structures and properties of this new class of
compounds.

Computational details

The SDD relativistic pseudopotentials and the basis set
SDB-cc-pVQZ, (14s10p3d2f1g)/ [4s4p3d2f1g] are used to
describe the Kr atom [30, 31]. The 19-valence electron
relativistic pseudopotentials and the match basis set
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((8s7p6d)/[6s5p3d]) of Dolg are employed for Au, Ag and
Cu atoms [32, 33]. Pyykkö found that two f-type polarization
functions are desirable for the correct description of the
interaction and the inclusion of an additional g function on
Au has a sizable effect on the computed bond energy and
also leads to a significant shrinking of equilibrium distance,
therefore, two f functions (0.20 and 1.19 for Au, 0.22 and
1.72 for Ag, 0.24 and 3.7 for Cu) [34], and one g function
(1.1077) for Au are augmented to the basis sets [19]. The
interactions in rare gas atoms containing compounds often
require the inclusion of very high angular momentum
functions for accurate description [35], the present g-function
including high momentum basis set is proved to be
sufficiently accurate and necessary to describe the interaction
in our previous investigation [28].

The basis set superposition error (BSSE) is corrected by
using counterpoise procedure of Boys and Bernardi [36].
The calculations were performed with the Gaussian 03 W
program package [37].

Results and discussion

The equilibrium structures, binding energies (Eb), and natural
population analyses (NPA) of M atom of MKrn

2+(n=1-6)
system are given in Table 1.

Structures

For n = 1 system, the CCSD(T) method obtained the
equilibrium M2+-Kr distances of 229.2, 242.5, and
240.4 pm, and binding energies of 2.4945, 2.5326 and
2.9173 eV, for M = Cu, Ag and Au, respectively. The
compact structure and enhanced stability compared to the
singly charged M+-Kr calculated at the same theoretical
level with the same basis sets (237.7, 268.3 and 255.8 pm;
0.7500, 0.5470 and 0.8010 eV; for M = Cu, Ag and Au,
respectively [28]) were found. A comparison along the M
series shows that the order of the RM-Kr distance is RCu-Kr <
RAu-Kr < RAg-Kr, similar to the trend of M+-Kr series. The
binding energy order is Cu < Ag < Au; the Au-containing
species is more stable and compact compared to Ag and
Cu, and this stabilization is brought about by relativistic
effects [18, 28].

The CCSD(T) global minimum energy structures of
MKrn

2+(n=2-6) are shown in Fig. 1. The most stable
structures are of D∞h(linear), C2v(planar), D4h(planar),
C4v(Pentahedron) and D4h(octahedron) for n=2-6, respec-
tively. Our results accords with Walker’s structures of
MArn

2+. One can find in Fig. 1 that the MKrn+1
2+ system

can be formed by adding one Kr atom to the stable MKrn
2+

structures without obvious changes of structural parameters.
All the MKr2

2+ (M = Cu, Ag and Au) systems are found to

have the linear symmetry, with the M ions in the center
connected to the two Kr atoms. For n=3 systems, the
angles A314 are about 170 degree for Au and Ag, while that
of Cu is only 105.8 degree. One can see from Table 1, the
bond length of M2+-Kr in larger clusters (n=2-6) are longer
than that of MKr2+. The M2+-Kr “bond” is stronger than
that of Kr-Kr “bond”; therefore, in the global minimum
energy structure for larger clusters, all the Kr atoms are in
direct contact with the central M2+, allowing the maximum
M2+-Kr “bond” to be formed. Next, the Kr atoms are
grouped in such a way that the number of Kr-Kr “bond” is
maximized.

Stabilities

In order to understand the relative stability and size-dependent
behavior, we have investigated the binding energy (Eb),
average binding energy (Eb-ave), fragmentation energy (Fe)
and the second-order difference of energies (Δ2E). The
energies are referenced to the separated-atom limit consisting
of the ground state Kr 4s24p6 and M(II) s0d9 state. The
results are shown in Fig. 2. Here the binding energy, average
binding energy, fragmentation energy and second-order
difference of energies are defined as:

EbðnÞ ¼ E Mþ2
� �þ nE Krð Þ � E MKrn

2þ� � ð1Þ

Eb�aveðnÞ ¼ E Mþ2
� �þ nE Krð Þ � E MKrn

2þ� �� �
=nþ 1 ð2Þ

Fe n; n� 1ð Þ ¼ E MKrn�1
2þ� �þ E Krð Þ � E MKrn

2þ� � ð3Þ

Δ2EðnÞ ¼ E MKrn�1
2þ� �þ E MKrnþ1

2þ� �� 2E MKrn
2þ� �

;

ð4Þ
where E(…) is the total energy of the corresponding system.

The results collected in Table 1 clearly shows that the
binding energies increase monotonically as the size of n
increase, which means that these clusters can continuously
gain energy during the growth process. One can see from
Fig. 1 that the M2+ was found to be located between the Kr
atoms, thus the M2+-Kr “bonds” increase monotonically as
the size of n increase while the Kr-Kr “bond” does not have
the same behavior; thus it results in the monotonically
increase of dissociation energies and irregular variable trend
of the average binding energies, fragmentation energies and
second-order energies.

As shown in Fig. 2, the global maximum Eb-ave, Fe and
Δ2E are found at n=2 for all the systems; it clearly shows
the enhanced stabilities of the n=2 systems. The local
maximum Eb-ave, Fe and Δ2E are found at n=4; it indicates
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the enhanced stabilities of the n=4 systems compared to its
n=3 and n=5 neighbors. While local minimum Fe and Δ2E
are found at n=3 and n=5 systems; it suggests the weaker
stabilities. It is well known that coinage metal in the
valence state + I, M+, very much prefer linear coordination
[38], and the present results indicate that for M(II) valence
state, they also prefer linear coordination. For n=2 and n=4
systems, the M2+ and Kr atoms are arranged in linear
coordination and the corresponding systems have stronger
stabilities. The plots of Δ2E clearly show odd-even
oscillation character (only for n=2-5). The linear coordina-
tions are also found for n=6 systems and it is expected it
also has stronger stability. Since the larger systems (n>6)

are not investigated in the present research, only the Fe

of AuKr6
2+ and AgKr6

2+ shows the enhanced stabilities
compared to their n=5 neighbors.

Electron density properties

Atoms in molecules (AIM)

According to the AIM theory from Bader [39] based on
topological analysis of electron density, the chemical
bonding can be characterized by the existence of a (3, -1)
type of critical point (bond critical point, BCP; i.e., a point
where the gradient vector field ▽ρ(r) is zero and ρ(r)

n Re/pm A/degree Eb/eV NPA(M)

1 Cu R12=229.2 2.4945 1.83445

Ag R12=242.5 2.5326 1.74609

Au R12=240.4 2.9173 1.70576

2 Cu R12=R13=232.1 A314=180.0 4.5493 1.64701

Ag R12=R13=246.4 A314=180.0 4.2672 1.60985

Au R12=R13=243.0 A314=180.0 5.1124 1.49270

3 Cu R13=R14=235.8 R12=237.5 A213=105.8 5.5631 1.54265

Ag R13=R14=249.1 R12=251.2 A213=170.2 5.4053 1.47417

Au R13=R14=246.1 R12=251.2 A213=168.1 6.3948 1.33102

4 Cu R12=R13=244.2 A213=90.0 6.5950 1.48538

Ag R12=R13=259.4 A213=90.0 6.4392 1.38430

Au R12=R13=257.3 A213=90.0 7.4888 1.26031

5 Cu R13=R14=247.9 R16=258.8 A214=165.4 7.2178 1.45075

Ag R13=R14=255.9 R16=281.1 A214=170.0 6.8757 1.35192

Au R13=R14=256.4 R16=289.1 A214=170.8 7.8791 1.23419

6 Cu R12=R16=246.9 R13=262.7 A213=90.0 7.6251 1.42949

Ag R12=R16=257.8 R13=287.3 A213=90.0 7.3080 1.33112

Au R12=R16=258.0 R13=296.3 A213=90.0 8.2417 1.22264

Table 1 Global minimum energy
structures, binding energies and
NPAs calculated at CCSD(T)
theoretical level

Fig. 1 CCSD(T) structures for
AuKrn

2+ clusters with n in the
range 1–6. Structures involving
the other metal cations are very
similar to these. Details of
structures are given in Table 1
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possesses one positive and two negative curvatures. At a
bond critical point, the electron density, ρ(r), is maximum in
the plane and minimum along the bond path between atoms

A and B.) and the corresponding bond path. Its nature is
revealed by descriptors at the BCP such as the electron
density ρ(r) and Laplacian ▽2ρ(r), which is composed
of the sum of three curvatures, λ1, λ2, and λ3. For all the
cases, λ3 dominates λ1 and λ2. Therefore, all Laplacians are
positive and all |λ1/ λ3| ratios are very small. The chemical
bondings are divided into two groups: shared interactions
and closed shell interactions, which correspond to the
negative and positive Laplacian value ▽2ρ. A negative
value means that the electronic charge is concentrated in the
inter-nuclear region, and is therefore shared by the two
nuclei. A positive value indicates the depletion in the region
and this is the case in all closed shell interactions. It is also
suggested that positive local energy density, E(r), the sum
of the kinetic energy density G(r) and the potential energy
density V(r), is necessary for the classification as closed
shell interactions [40]. It can be seen from the equa-
tion,EðrÞ ¼ h 4m=ð Þr2r� GðrÞ, that E(r) may still be
negative if ▽2ρ(r) is positive due to the always positive
kinetic energy density G(r). The chemical bonding charac-
terized by positive ▽2ρ(r) and negative E(r) is referred to as
“intermediate type” [41]. The interactions listed in Table 2

Fig. 2 CCSD(T) average binding energies, fragmentation energies,
and the second-order difference of energies plotted as the function of
cluster size n

. BCP (A-B) ρ (10-2) λ2 (10
-2) Lap(10-1) G(r) (10-2) V(r) (10-2) E(r) (10-2)

1 (2–1)Cu 7.5102 -6.9005 2.7123 8.431430 -10.08197 -1.650540

(2–1)Ag 8.2377 -8.6654 1.5494 6.312401 -8.751228 -2.438826

(2–1)Au 9.6983 -9.6135 1.6160 7.660748 -11.28142 -3.620672

2 (2,3-1)Cu 6.9252 -5.9810 2.6228 8.026862 -9.496497 -1.469634

(2,3-1)Ag 7.1904 -6.6184 1.9129 6.550102 -8.317730 -1.767628

(2,3-1)Au 8.8141 -7.9231 1.9684 7.868766 -10.81640 -2.947639

3 (2–1)Cu 6.3832 -6.5649 2.2596 6.691663 -7.734286 -1.042622

(3,4-1)Cu 6.3353 -5.8059 2.4647 7.184110 -8.206350 -1.022240

(2–1)Ag 6.4588 -6.0934 1.7422 5.794138 -7.232590 -1.438452

(3,4-1)Ag 6.6934 -6.1891 1.8777 6.216861 -7.739356 -1.522494

(2–1)Au 7.3690 -6.7642 1.6700 6.209714 -8.244354 -2.034639

(3,4-1)Au 8.1919 -7.5226 1.9537 7.420892 -9.957456 -2.536563

4 Cu 5.3195 -4.3177 1.9256 5.641165 -6.468223 -0.827059

Ag 5.9695 -5.3841 1.7032 5.475847 -6.693673 -1.217826

Au 6.8630 -6.0815 1.7078 6.023811 -7.778108 -1.754296

5 (2,3,4,5-1)Cu 4.8634 -3.8025 1.7699 5.094683 -5.764562 -0.669878

(6–1)Cu 4.0499 -3.5108 1.2946 3.790749 -4.344937 -0.554187

(2,3,4,5-1)Ag 5.7446 -5.0992 1.6603 5.278574 -6.406367 -1.127792

(6–1)Ag 3.3809 -2.7586 1.1009 3.102502 -3.452578 -0.350075

(2,3,4,5-1)Au 6.5858 -5.7445 1.6737 5.787358 -7.390374 -1.603016

(6–1)Au 3.3754 -2.6335 1.0938 2.972034 -3.209449 -2.374146

6 (2,4,6,7-1)Cu 4.8228 -3.5907 1.8612 5.311095 -5.969106 -0.658011

(3,5-1)Cu 3.7332 -2.9575 1.1147 3.339341 -3.891932 -0.552591

(2,4,6,7-1)Ag 5.5371 -4.8237 1.6141 5.080071 -6.124664 -1.044592

(3,5-1)Ag 5.4880 -4.7729 1.6003 5.027639 -6.054436 -1.026796

(2,4,6,7-1)Au 6.3438 -5.4448 1.6366 5.567970 -7.044432 -1.476461

(3,5-1)Au 2.9681 -2.2646 0.9394 2.494223 -2.639876 -0.145652

Table 2 BCP properties calcu-
lated at CCSD(T) theoretical
level
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(very small BCP electron density ρBCP, negative E(r) and
positive Laplacian value) all fall into the intermediate type.

Density difference function (DDF)

We performed the changes in the electron density upon the
formation of the interactions between the fragments to
understand the nature of the M2+-Kr interaction. The
density difference function (DDF), Δρ(r), is defined as
the difference between the total electron density and the
promolecule density; this function is regarded as a
deformation density associated with the redistribution of
the electron charge when the system forms from the
constituent atoms [42]. In Fig. 3 the contours of the DDF
between the complexes and the non-interacting fragments
(in the same positions) for the most stable structure, AuKr2

2+,
are plotted. Regions where the electron charges accumulate
with respect to isolated atoms have positive Δρ(r) whereas
regions of electron depletion have negative Δρ(r). For
AuKr2

2+, obvious changes of the charge distribution can be
seen in Fig. 3, there is electron accumulation in the Kr-Au
interaction region, and it enhances its stability. NBO analysis
clearly shows that the 4p orbitals of Kr atom(s) play an
important role in the strong Au-Kr interaction. Figure 3
also shows the electron depletion of the corresponding p
orbital wherein the charge transfers from the Kr atom(s) to
the Au atom.

Electron localization function (ELF)

The ELF describes how much the Pauli repulsion is
efficient at a given point of the molecular space [43].
ELF = 1 correspond to a completely localized situation, 0 to
a delocalized system, and 0.5 is the value one should obtain
for the homogenous electron gas. It provides a rigorous
basis for the analysis of the interaction. The local maxima
of ELF define localization domains and they correspond to
chemically interesting regions. Two main types of domains
are obtained from the ELF partition of the real space: (a)
core basins are located around nuclei, and always occur

when the atomic number is larger than 2, and (b) valence
basins are characterized by their synaptic orders. Mono-
synaptic basins represent the lone pairs, whereas disynaptic
basins belong to the covalent interaction. ELF analysis of
AuKr2

2+ clearly shows that there are only core basins and
valence basins around the Au and Kr atoms in the system
(Fig. 4), while valence basins located between the Au and
Kr atom(s) could not be found, and in this region the ELF
values are very small (about 0.1~0.25). However, we note
that there are considerable deformations in the valence
basin (it expands to the Au-Kr interaction region direction)
around the Kr atom(s). Taking the binding energy and DDF
analysis into account, it suggests that there is a covalent
contribution component in the interaction.

Reduced density gradient (RDG)

Johnson and co-workers developed an approach to investigate
the weak interactions in real space based on the electron
density and its derivatives [44]. The RDG is a fundamental
dimensionless quantity coming from the density and its first
derivative (RDG ¼ 1= 2 3p2ð Þ1 3=

� �
rrj j=r4=3).

Fig. 4 2D plot of the electron localization function (ELF) in the plane
of AuKr2

2+ (ELF = 0.5 contour lines are plotted)

Fig. 3 Contours map of the density difference function at the plane of
AuKr2

2+. Red and blue lines are in regions of charge concentration
(Δρ>0) and charge depletion (Δρ<0), respectively

Fig. 5 Plots of the RDG versus the electron density ρ multiplied by
the sign of λ2 for AuKr2

2+
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The weak interactions can be isolated as regions with low
electron density and lowRDG value. The density values of the
low-gradient spikes (the plot of RDG versus ρ) appear to be
an indicator of the interaction strength. The sign of λ2 is
utilized to distinguish the bonded (λ2<0) from nonbonded
(λ2>0) interactions. The plot of the RDG versus the electron
density ρ multiplied by the sign of λ2 can allow analysis and
visualization of a wide range of interactions types. The
results were calculated by Multiwfn and plotted by VMD
program [45, 46].

One or more spikes are found in the low-density, low-
gradient region (Fig. 5), indicative of weak interactions in
the system and the electron density value at the RDG versus
sign(λ2)ρ peaks itself provides the information about the
strength of interaction. Large, negative values of sign(λ2)ρ
are indicative of stronger attractive interactions (spikes in
the left part in Fig. 5), while if it is large and positive, the
interaction is repulsion (spikes in the right part in Fig. 5).
Values near zero indicate very weak, van der Waals
interactions [44]. We find that the RDG = 0.3 line crosses
only the attractive interaction spikes while the RDG > 0.4
lines cross not only the attractive but also the repulsion
spikes. The strength of the repulsion is smaller than that of
the attraction and thus the attractions dominate in the
system. RDG discriminates between different types of
interactions. Very low density values (i.e., ρ<0.005au)
generally map to weaker dispersion interactions. Slightly
higher density values (i.e., 0.005<ρ<0.05au) map to
stronger noncovalent interactions. The present electron
density value, about 0.09au (negative λ2), clearly shows
the covalent character in the Kr-Au interaction.

Conclusions

Investigations of theMKrn
+ series at the CCSD(T) theoretical

level with extended basis sets provide reliable structures and
stabilities as well as insights into its nature of the interaction
and the electron properties. Analysis on the electron
properties and the dissociation energies clearly shows the
covalent component in character for the systems studied.
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Abstract The biological toxicity of uranyl ion (UO2
2+) lies

in interacting with proteins and disrupting their native
functions. The structural and functional consequences of
UO2

2+ interacting with cytochrome b5 (cyt b5), a small
membrane heme protein, and its heme axial ligand
His39Ser variant, cyt b5 H39S, were investigated both
experimentally and theoretically. In experiments, although
cyt b5 was only slightly affected, UO2

2+ binding to cyt b5
H39S with a KD of 2.5 μM resulted in obvious alteration of
the heme active site, and led to a decrease in peroxidase
activity. Theoretically, molecular simulation proposed a
uranyl ion binding site for cyt b5 at surface residues of
Glu37 and Glu43, revealing both coordination and hydro-
gen bonding interactions. The information gained in this
study provides insights into the mechanism of uranyl
toxicity toward membrane protein at an atomic level.

Keywords Heme proteins . Metal-binding site .

Peroxidase . Toxicity . Uranium

Introduction

Uranium is one of the heaviest naturally occurring elements
on Earth, and is harmful to human health due to its long-

lived radioactivity and high toxicity. The biological toxicity
results from the ability of the uranyl ion (UO2

2+), the most
stable form of uranium under physiological conditions [1],
to interact with proteins [2–4] such as transferrin, ferritin
and albumin, and to disrupt the native function of these
biomolecules. Thus, for biological remediation purposes, it
is necessary to understand the mechanism underlying these
interactions at an atomic level. Recent studies show that
UO2

2+ binds to proteins mainly through carboxylic acid
groups such as those of aspartate (Asp) and glutamate (Glu)
[5, 6], and histidine residues as in mutated NikR [7]. The
second sphere hydrogen bonds involving uranyl oxo groups
may enhance the interaction between UO2

2+ and proteins.
On the other hand, due to the positive charge, UO2

2+ has a
strong tendency to be absorbed at the negatively charged
surfaces of membranes [8], where it has more chance to
interact with the membrane proteins; to date, limited
attention has been directed towards this aspect.

Cytochrome b5 (cyt b5) is a small heme protein with heme
coordinated by two axial histidine ligands (His39 and
His63). Cyt b5 often binds to the microsome membrane via
a short hydrophobic domain and functions as an electron
transport in biological systems [9]. By replacing heme axial
His39 with a non-coordinated residue such as serine (Ser),
cyt b5 has been converted into a peroxidase-like enzyme, cyt
b5 H39S, as a result of creating an open binding site for
substrates [10]. A distinguishing characteristic of cyt b5 is that
the hydrophilic heme-binding domain is highly negatively
charged due to the presence of a series of acidic residues
surrounding the heme group, such as Glu37, Glu43, Glu44,
Asp60 and Asp66; this is also known as the “acidic” cluster
of cyt b5 [11]. With this in mind, one might expect that UO2

2+

would tend to interact with cyt b5 involving this region, thus
offering us a suitable example with which to study the
interactions between UO2

2+ and membrane proteins.
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As shown herein, we investigated the interactions between
UO2

2+ and cyt b5, and its His39Ser variant cyt b5 H39S, by
UV-vis titration, and proposed a uranyl binding site in cyt b5
at Glu37 and Glu43 by molecular simulation. The impact of
the uranyl ion on protein function was further investigated by
evaluating peroxidase activity in presence of UO2

2+ ions. The
structural and functional consequences of UO2

2+ binding
revealed in this study provide valuable information for
understanding the mechanism of biological toxicity of the
uranyl ion at an atomic level.

Materials and methods

Materials

The lipase-solubilized bovine liver microsomal cyt b5 and
the cyt b5 H39S variant (kindly provided by Prof. Z.-X.
Huang, Fudan University, Shanghai, China) were expressed
and purified as described in a previous study [12]. Uranyl
nitrate, guaiacol, hydrogen peroxide (30%), Bis-Tris, and
other chemicals were commercial products and of analytical
grade. Double distilled water was used throughout the
experiment.

UV-vis studies

UV-vis spectra of uranyl titration were collected on a
PerkinElmer Lambda 35 spectrometer at room temperature
(25 °C). Cyt b5 H39S was dissolved in 50 mM Bis-Tris
buffer (pH 7.0) at a concentration of 10 μM, as calculated by
an extinction coefficient of ε405=80 mM−1·cm−1 in its ferric
state [12]. Up to five equivalents of uranyl ions (UO2

2+)
(2 mM uranyl nitrate solution) were titrated into the above
protein solution, and spectra were recorded at every 0.5
equivalents with an interval of 30 min. Data were plotted by
the double reciprocal plot method as used previously for
determining the binding affinity of Cu(II) in a copper-
binding site created in myoglobin [13]. Cyt b5, with an
extinction coefficient of ε413=117 mM−1·cm−1 in the ferric
state [12], was titrated under the same conditions, and the
spectra were recorded at each one equivalent of UO2

2+.

Molecular simulation studies

The structure of cyt b5 H39S was modeled based on the
crystal structure of bovine liver microsomal cyt b5 (PDB
entry 1CYO) [14], by using a procedure similar to previous
modeling cyt c axial variants [15]. The heme axial ligand
His39 was first mutated to a Ser using program VMD 1.8.7
(Visual Molecular Dynamics) [16]. The variant was
solvated in a cubic box of TIP3 water, which extended
10 Å away from any given protein atom. The resultant system

was minimized for 1,000 ps using program NAMD 2.7
(Nanoscale Molecular Dynamics) [17] with the conjugate
gradient method, subsequently equilibrated for 10 ps with a
time step of 1 fs, then further minimized for 30,000 steps for
analysis with the VMD program.

To model uranyl binding to cyt b5 and cyt b5 H39S,
namely, U-cyt b5 and U-cyt b5 H39S, a water molecule
(HOH 578) in crystal structure of cyt b5 forming hydrogen
bonds with both Glu37 and Glu43 was changed to a UO2

2+

ion. The UO2
2+-containing protein, after solvating in a

cubic box of TIP3 water, was minimized with NAMD using
5000 minimization steps at 0 K, then 10,000 molecular
dynamics steps (1 fs per step) via an VNT ensemble (where
the number of particles N, the volume V, and the
temperature T of the system were kept constant) at 310 K,
by using a procedure described recently for modeling Zn(II)
binding to a rationally designed Fe(II)-binding site above
the heme group in myoglobin [18]. The system was further
minimized for 30,000 steps before analysis with the VMD
program. The parameters used for uranyl ion were explored
in a previous study [8], with a bond length of U-O 1.77 Å
and an angle of O-U-O 180°.

Peroxidase activity studies

By using a procedure similar to a previous study [10], the
peroxidase activity of cyt b5 H39S (5 μM) in the absence or
presence of one to five equivalents of UO2

2+ was estimated
in Bis-Tris buffer (2 mL, 50 mM, pH 7.0) at 25 °C, with
guaiacol (10 mM) as a substrate. The reaction was initiated
by the addition of hydrogen peroxide (final concentration
10 mM) to the starting mixtures and followed by
monitoring the change in absorbance (for 30 min with 6 s
intervals) of the product, tetraguaiacol, at 470 nm using an
extinction coefficient of ε470=26.6 mM−1·cm−1 [19].
Control experiments were carried out for cyt b5 by
following the same procedure, in the absence and presence
of five equivalents of UO2

2+ in solution.

Results and discussion

Uranyl ion binding from UV-vis studies

Heme proteins are characterized by a Soret band around
400 nm, and the α-, β-bands around 500–600 nm in
electronic absorption spectroscopy in the ultraviolet and
visible region (UV-vis), which are closely linked to the
heme coordination environments and heme iron oxidation
states [20]. To determine if UO2

2+ can bind to cyt b5, we
titrated UO2

2+ into bovine liver microsomal cyt b5 or its
His39Ser variant, cyt b5 H39S, both in the oxidized state, and
monitored the resulting UV-vis spectra. As shown in Fig. 1,
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although only a slight decrease of the Soret band (413 nm)
was observed for cyt b5 upon addition of UO2

2+ up to five
equivalents (Fig. 1a), a dramatic decrease in the Soret band
(405 nm) was observed under the identical conditions for
the cyt b5 H39S variant where the heme group is five-
coordinated by mutating an axial ligand His39 to a Ser39
(Fig. 1b). Concurrently, the 525 nm band decreased in
intensity, and the 625 nm band increased in intensity,
suggesting that the heme coordination state remains the
same, whereas a disturbance of micro-environment occurs
as a result of UO2

2+ binding.
Difference spectra upon UO2

2+ titration of cyt b5 H39S are
shown in Fig. 1c. The changes in the Soret region were fitted
to a double reciprocal plot (inset, top) and a Hill plot (inset,

bottom) with a slope of 1.1, which indicates that there is a
single uranyl-binding site with a KD of 2.5 μM in cyt b5
H39S. Through the loss of one heme axial ligand, His39, cyt
b5 H39S exhibits lower stability compared to native cyt b5
[12]. On the other hand, with the same surface residues as in
cyt b5, the low stability of cyt b5 H39S facilitates probing of
the interactions between UO2

2+ and cyt b5 by producing more
obvious observations in UV-vis spectra upon uranyl ion
titration.

Uranyl ion binding from modeling studies

In order to reveal the uranyl ion binding site in cyt b5
and present a detailed view of the interactions between
UO2

2+ and cyt b5 at an atomic level, we carried out
molecular simulation studies for UO2

2+ binding to cyt b5
and the cyt b5 H39S variant. The in silico approach has
been shown to be capable of providing structural insights
into protein-uranyl interactions that might otherwise be
difficult to obtain experimentally [5]. Based on the crystal
structure of bovine liver microsomal cyt b5 (PDB entry
1CYO) [14], we first modeled a structure of cyt b5 H39S
variant for comparison with the uranyl-bound form. To
search for the UO2

2+ binding site in cyt b5, we performed
a close inspection of the crystal structure and found that
water molecule HOH578 forms hydrogen bonds with
Glu37 and Glu43 simultaneously. From our experiences
in the rational design of metal-binding sites above the
heme group in another heme protein, myoglobin [18, 21,
22], this water site might be a potential metal binding site
for UO2

2+. We thus changed the water to a UO2
2+ ion and

carried out computer modeling for UO2
2+ bound forms of

cyt b5, namely, U-cyt b5 and U-cyt b5 H39S, respectively.
Figure 2a shows the spatial alignment of the crystal

structure of cyt b5 and the simulated structure of U-cyt b5.
A detailed view of the heme group and the UO2

2+ binding
site is presented in Fig. 2b. It can be seen that, in the
presence of a UO2

2+ ion at the water-578 site, Glu37 and
Glu43 coordinate to the U atom via one and two O atoms
with a distance of 2.64 Å, 2.74 Å and 2.82 Å, respectively.
The distances are close to the maximum values reported for
carboxylate monodentate (2.61 Å) and bidentate (2.84 Å)
ligand of uranyl ions in protein crystal structures, respec-
tively [5]. A hydrogen bond is also formed between one
uranyl oxo group and the backbone amide group of Glu37
(3.41 Å). As a consequence, the conformation was changed
slightly in the region of Glu37. Meanwhile, no obvious
alteration occurred to the heme axial ligand His39, in
agreement with UV-vis studies (Fig. 1a).

By contrast, in the case of the cyt b5 H39S variant (Fig. 2c,
d), Ser39 shifts slightly apart from the heme group in U-cyt b5
H39S with respect to cyt b5 H39S, where Glu37 and Glu43
coordinate to the U atom with shorter distances (2.63 Å, 2.69 Å

Fig. 1 UV-vis titration of oxidized cyt b5 (a) and cyt b5 H39S (b) (10
μM) with uranyl ion (UO2

2+) in 50 mM Bis-Tris buffer (pH 7.0) at
25 °C. Difference spectra of uranyl ion binding to cyt b5 H39S (c).
(Inset, top) Double reciprocal plot of the change in UO2

2+ concentra-
tion versus the change in absorbance. (Inset, bottom) Hill plot of the
data
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and 2.73 Å) compared to U-cyt b5. This suggests that UO2
2+

binds tightly to the variant, despite the weakened
hydrogen bonding interaction (3.52 Å). This observation
can be attributed to the elimination of one heme axial
ligand, His39, resulting in a conformation suitable for
UO2

2+ coordination by both Glu37 and Glu43 with slight
conformational changes. Note that beyond obtaining the
basic structural information of uranyl binding, future
simulations should be directed to perform quantitative
free energy calculations to study the binding of UO2

2+ to
cyt b5 as well as its H39S variant by developing
parameters for uranyl ion.

Functional consequences of uranyl ion binding

To further probe the consequences of UO2
2+ binding to cyt

b5 in terms of protein function, we evaluated the peroxidase
activity of cyt b5 H39S [10], as affected by UO2

2+ ion
binding. Peroxidase activity has been shown to be an
efficient tool for studying conformational changes in the
heme active site during folding and unfolding of heme
proteins [23, 24]. As shown in Fig. 3, the initial rate of
guaiacol oxidation decreases from 6.24 μM⋅min−1 of cyt b5
H39S to 2.61 μM⋅min−1 with five equivalents of UO2

2+,
suggesting a disruption of peroxidase activity by partial
dissociation of the heme group from the heme binding domain,

as indicated in UV-vis spectra (Fig. 1b). Meanwhile, in the
presence of one equivalent of UO2

2+, U-cyt b5 H39S exhibits
peroxidase activity (5.98 μM⋅min−1) similar to that of cyt b5
H39S, which agrees with the modeling result indicating that the
heme active site was slightly altered (Fig. 2d), as well as UV-vis
observations at one equivalent of UO2

2+ (Fig. 1b). In control
experiments, it was interesting to observe that U-cyt b5 shows

Fig. 3 Time-dependent guaiacol oxidation with H2O2 catalyzed by cyt
b5 H39S in the presence of 0–5 equivalents of UO2

2+ (arrow) and by cyt
b5 in the absence or presence of 5 equivalents of UO2

2+ (inset)

Fig. 2 Overlay of cyt b5 (cyan)
with simulated U-cyt b5 (ochre)
(a full view, a, and a binding site
view, b), and simulated cyt b5
H39S (lime) with U-cyt b5
H39S (ochre) (a full view, c, and
a binding site view, d). Residues
Glu37 and Glu43, and two heme
axial ligands, His39 and His63,
as well as mutated Ser39, are
highlighted
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a slightly increased peroxidase activity compared to native cyt b5
(0.065 vs. 0.048 μM⋅min−1), due to the alteration of the heme
active site by excess UO2

2+ ions.

Conclusions

In this study, we investigated the interactions of UO2
2+ and cyt

b5 as well as the cyt b5 H39S variant using both experimental
and theoretical methods. Based on experimental observa-
tions, a uranyl ion binding site was proposed in cyt b5 at the
surface residues Glu37 and Glu43 by molecular simulation.
These insights revealed at the atomic level shed light on the
mechanism of uranyl toxicity in general. The impact of UO2

2+

on the structure and function of cyt b5, in turn, may further
interfere with the interactions of cyt b5 and its partners in
biological systems, such as cyt c [25] and cyt P450 [26].
These interactions are currently under investigation.
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Abstract The insertion reactions of the silylenoid H2SiLiF
with SiH3XHn-1 (X=F, Cl, Br, O, N; n=1, 1, 1, 2, 3) have
been studied by DFT calculations. The results indicate that
the insertions proceed in a concerted manner, forming
H3SiSiH2XHn-1 and LiF. The essence of H2SiLiF insertion
into Si-X bonds reactions are the donations of the electrons
of X into the p orbital on the Si atom in H2SiLiF and the σ
electrons on the Si atom in H2SiLiF to the positive SiH3

group. The order of reactivity by H2SiLiF insertion in
vacuum indicates the reaction barriers decrease for the
same-row element X from right to left and the same-family
element X from up down in the periodic table. The
insertion reactions in ether are similar to those in vacuum.
The energy barriers in vacuum are higher than those in
ether. The silylenoid insertions are thermodynamically
exothermic both in vacuum and in ether.

Keywords DFT. Insertion reactions . Silylenoids .

Theoretical study

Introduction

Silylenoids, R2SiMX (X=halogen, M=alkali metal), are
important intermediates in silicon hybrid and organosilicon

chemistry [1, 2]. As a kind of very reactive species, the
preparation of silylenoids is very difficult. In 1995, Tamao
et al. [3] reported the first experimental study of silylenoid
chemistry and detected the existence of [(tert-butoxy)
diphenylsilyl]lithium, Ph2SiLi(OBu-t). Recently, a great
breakthrough has been made in the research of silylenoids.
Lee et al. [4] reported the syntheses of stable halosilyle-
noids (Tsi)X2SiLi (Tsi=C- (SiMe3)3; X=Br, Cl) at room
temperature. In 1980, Clark et al. [5] theoretically studied
the isomers of lithoflurosilylenoid H2SiLiF by ab initio
calculations for the first time. Since 1990s, we have studied
some silylenoids such as R1R2SiMX (R1, R2=H, F, OH,
NH2, Me, Et; X=F, Cl, Br; M=Li, Na, K, etc.) by quantum
chemistry methods. Specifically, we have investigated their
structures, their stability, isomerization, insertion reactions,
and addition reactions [6–10]. Both experimental [3, 4] and
theoretical [5–10] results show that silylenoids have
ambiphilic character, nucleophilicity and electrophilicity,
and can take part in many reactions. Such reactions were
recognized as important and effective methods for prepara-
tion of the new silicon-bonded and heterocyclic silicon
compounds.

For insertion reactions, experimental and theoretical
studies have been concluded on the insertions of silylenoids
into the bonds of H2 [11], C-X (X=F, Cl, Br, O, N) [12]
and Y-H (Y=C, Si, N, P, O, S, and F) [13]. However, the
insertion reactions of silylenoids into Si-X (X=F, Cl, Br, O,
N) have not been systematically reported to our knowledge.
The elucidation of the mechanism of these insertion
reactions can provide a new reaction mode of silicon-
silicon bond formation. Previous calculations have shown
that each silylenoid R2SiMX, which can be regarded as the
complex of the silylene R2Si and the metal halide MX, has
four equilibrium isomers, the p-complex (A), the three-
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membered-ring (B), the σ-complex (C), and the ‘classical’
tetrahedral (D) structures [5, 7, 14–16].

Whether in vacuum or in various solvents, the p-
complex structure has the lowest energy [17]. So the
insertion reactions of the p-complex silylenoid H2SiLiF
with SiH3XHn-1 (X=F, Cl, Br, O, N; n=1, 1, 1, 2, 3) are
invested in this paper.

H2SiLiF +SiH3XHn-1 H3Si Si XHn-1 +LiF

(X=F, Cl, Br, O, N; n=1, 1, 1, 2, 3)

H2

Through this theoretical work, we hope (i) to clarify the
reaction mechanisms and to determine the structures and
energies of all stationary points, (ii) to investigate the
thermodynamics of these insertion reactions, (iii) to
estimate their activation barriers, (iv) to establish general
trends and predictions for the insertion reactions of
silylenoids into Si-X bonds (X=F, Cl, Br, O, N), (v) to
reveal the solvent effects on the insertion reactions of
silylenoids with SiH3XHn-1 (X=F, Cl, Br, O, N; n=1, 1, 1,
2, 3).

Computational methods

Optimized geometries for the stationary points were
obtained at the B3LYP/6-311+G (d, p) [18–20] level.
The corresponding harmonic vibrational frequency cal-
culations were carried out in order to characterize all
stationary points as either local minima (no imaginary
frequencies) or transition states (one imaginary frequen-
cy). Based on the optimized geometries, energies were
obtained and natural bond orbital (NBO) [21–23]
analyses were then used to study the nature of different
interactions between atoms and groups. The reaction
paths were examined by intrinsic reaction coordinate
(IRC) [24] calculations. The solvent effects, which were
simulated using the self-consistent reaction field (SCRF)
method with Tomasi's polarized continuum model
(PCM) [25–33], were investigated at the same level.
Gaussian 03 [34] series of programs were employed in
all calculations.

Results and discussion

As shown in Fig. 1, the p-complex silylenoid H2SiLiF (A)
can be regarded as a singlet complex in which electrons
from the F in LiF are donated into the unoccupied p orbital
of the Si atom in H2Si. For the convenience of expression,
the Si atom in A is marked as Si1.

The molecular electrostatic potentials of H2SiLiF (A)
and SiH3XHn-1 are shown in Fig. 2. There are three maxima
in the electrostatic potential of H2SiLiF, which are situated
on the F atom, Si atom (negative) and on the Li atom
(positive), respectively. For the conditions of X=F, Cl and
Br, there are two maxima in the molecular electrostatic
potential of SiH3XHn-1, located on the X atoms (negative)
and the Si atom (negative), respectively. In the molecular
electrostatic potentials of SiH3OH and SiH3NH2, both the
negative and positive maxima lie on the O atom and N
atom, respectively. So the calculated electrostatic potentials
indicate that the Si atom in H2SiLiF, X and Si atoms in
SiH3XHn-1, are active atoms in interacting with other
molecules.

When SiH3XHn-1 approaches H2SiLiF with the X and
SiH3 ends of SiH3XHn-1 attacking the p orbital and the
σlone pair electrons of Si1 atom respectively, (see (B) in
Fig. 1), insertion reactions take place. Figures 3 and 4
show the structures of some stationary points, and
Supporting information lists orthogonal coordinates for
others. The total energies together with the zero-point
energies (ZPEs) and relative energies (relative to the
corresponding reactants) of all stationary points are
described by Table 1.

Insertion reaction of A into Si-Cl

When SiH3Cl approaches A, the initial formation of the
precursor complex ClM1 is facilitated by the interaction
between the p orbital on Si1 and the negative Cl atom of
SiH3Cl. Compared with the structures of SiH3Cl and A
molecules, the SiH3Cl and A moieties in ClM1 changes
little. The long Si1-Cl length (4.157Å) in ClM1 and the
small relative energy of ClM1 (−1.5 kJ mol-1) indicate that
the Si1…Cl interaction is very weak.
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Fig. 1 The p-complex H2SiLiF
(a) and its insertion (b)
reaction paths with SiH3XHn-1

(X=F, Cl, Br, O, N; n=1, 1, 1,
2, 3)
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Fig. 2 Molecular electrostatic potential of H2SiLiF and SiH3XHn-1 (X=F, Cl, Br, O, N; n=1, 1, 1, 2, 3) at the B3LYP/6-311+G (d, p) level. Blue
denotes maximal molecular electrostatic potential, which is labeled by black arrows; red denotes negative molecular electrostatic potential



As shown in Fig. 1, two electron donation effects
contribute to the proceeding of the insertion reaction. One
is the donation of the electrons of Cl into the p orbital on
the Si1 atom. The other is the donation of the σ electrons on
the Si1 atom to the positive SiH3 group. The electron
donations make the formation of the transition state ClTS,
whose only one imaginary frequency is 173.6i cm-1. In
ClTS, the natural charge of the Si1 atom is 0.195 higher than
that in ClM1(0.517), while the natural charge of the SiH3Cl
moiety decrease from the positive charge (0.005) in ClM1 to
the negative charge (−0.398) in ClTS. This suggests that the
Si1 atom has denoted electrons to the SiH3Cl moiety. The
insertion reaction path was also fully confirmed by the IRC
computations (see Fig. 5). It is obvious that the bond lengths,
Si1-Si, Si1-Cl, and Si-Cl, change strongly in the course of the
reaction. The Si1-Si and Si1-Cl bonds rapidly shorten from
the reactant side. The Si-Cl bond lengthens. The relative
energy of ClTS is 53.3 kJ mol-1.

After getting over the transition state ClTS, ClM2 are
gradually formed with the LiF moiety leaving from the Si1

atom. In fact, ClM2 is a complex of H3SiSiH2Cl and LiF.
The energy of ClM2 is 44.7 kJ mol-1 lower than the sum of
the energies of H3SiSiH2Cl and LiF molecules.

As shown in Table 1, the insertion reaction is exothermic
by 38.6 kJ mol-1 for the A+SiH3Cl system.

Insertion reactions of A into Si-X (X=F, Br, O, N)

The insertion processes of A and SiH3XHn-1 (X=F, Br, O,
N; n=1, 1, 2, 3) are similar to that of A and SiH3Cl.

In the precursor complex XM1, the Si1-X distances are
3.251 (X=F), 3.916 (X=Br), 2.817 (X=O), and 2.877Å (X=
N), respectively. The energies of XM1 are lower than their
corresponding reactants by 2.1 (X=F), 1.2 (X=Br), 0.9 (X=
O), and 1.5 kJ mol-1 (X=N), respectively. The long Si1-X
distances and the small stability energies of XM1 indicate
that there is only weak interaction between the Si atom and
the X atom in XM1, and XM1 is instable.

The transition states XTS are confirmed by calculation
of the energy Hessian. The model calculations estimate that

Fig. 3 The B3LYP/6-311+G
(d, p) geometries (in Å and
(˚)) for the stationary points in
the insertion reaction of H2SiLiF
with SiH3Cl
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the relative energies of FTS, BrTS, OTS, and NTS are
56.9, 47.0, 58.1, and 78.7 kJ mol-1, respectively. That is,
the reaction barriers of the insertions into Si-X bonds
decrease for the same-row element X from right to left and
the same-family element X from up down in the periodic
table.

The intermediate XM2 can further decompose to
substituted silane H3SiSiH2XHn-1 and LiF. The energies of
XM2 are below the sum of the energies of H3SiSiH2XHn-1

and LiF by 51.9 (X=F), 45.5 (X=Br), 38.5 (X=O), and
37.0 kJ mol-1 (X=N), respectively.

It is apparent that the reaction enthalpy for the A
insertions are 34.6 (Si-F), 39.9 (Si-Br), 35.1 (Si-O), and
34.5 kJ mol-1 (Si-N), respectively.

The silylenoid insertions into Si-X (X=F, Cl, Br, O, N)
bonds are similar to silylenoid insertions into C-X [12] in the
reaction processes and mechanisms. The calculated reaction
barriers for the C-X insertions at the B3LYP/6-311+G (d, p)
level are 168.0 (X=F), 181.7 (X=Cl), 171.7 (X=Br), 183.8
(X=O) and 219.4 kJ mol-1 (X=N), respectively. So the
insertions into Si-X bonds are easier than the corresponding
insertions into C-X bonds.

Solvent effects on the insertion reactions

Silylenoid reactions often take place in solvents, so
solvent effects on the reactions are conducted. Ether is
chosen as the solvent. Calculation results can be summed
as follows.

First, the insertion processes in solvents are same to that
in vacuum, which is concerted reactions, involving the
formation of precursor complexes, transition states and
insertion products. The geometry structures (see Supporting
information) of stationary points in solvents (ether, THF
and acetone, respectively) are correspondingly similar to
those in vacuum. Whether in ether or in vacuum, the
essence of these reactions are the donations of the electrons
of X into the p orbital on the Si1 atom and the σ electrons
on the Si1 atom to the positive SiH3 group.

Second, calculated energies of the stationary points are
listed in Table 1. Several conclusions can be drawn from
these calculations. (1) Energies of all stationary points are
in the order of Eether<Evacuum, indicating that the thermal
stabilities of the stationary points are larger in ether than in
vacuum. (2) The insertion barriers for the p-complex
structures are 36.3 (X=F), 38.3(X=Cl), 36.1 (X=Br), 54.5
(X=O), and 73.8 (X=N) kJ mol-1 at the B3LYP/6-311+G
(d, p) level. Compared with those in vacuum, the barrier
heights in vacuum are higher than those in ether, showing
insertion reactions are easy to occur in ether. For the X=F,
Cl, Br conditions, the energy barriers change very little
(the maximum difference is 2.2 kJ mol-1, which is between
the cases of CH3Cl and CH3Br) in ether, whereas, the
reaction barriers in vacuum decrease for the same-family
element X from up down in the periodic table. For the X=
F, O, and N cases both in ether and in vacuum, there is a
very clear trend for the same-row element X from right to
left in the periodical table. (3) Same with those in vacuum,

Fig. 4 The B3LYP/6-311+G
(d, p) geometries (in Å and
(˚)) for the transition states XTS
of in the insertion reactions of
H2SiLiF with SiH3XHn-1 (X=F,
Br, O, N; n=1, 1, 2, 3)
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H3SiSiH2XHn-1 and LiF are expected final products for the
insertion reactions in ether. (4) It is apparent that all the
silylenoid insertions in ether are thermodynamically
exothermic.

Concluding remarks

In the present work, we have studied the reaction
mechanisms of silylenoid H2SiLiF insertions with
SiH3XHn-1 (X=F, Cl, Br, O, N; n=1, 1, 1, 2, 3) by DFT
theory. It should be mentioned that this study has provided
the first theoretical demonstration about the reaction
trajectory and theoretical estimation of the activation energy
and reaction enthalpy for those processes.

(1) The theoretical results indicate that the insertion
reactions of H2SiLiF with SiH3XHn-1 occur in a
concerted manner, forming silanes H3SiSiH2XHn-1

and LiF.
(2) The essence of H2SiLiF insertion into Si-X bonds,

reactions are the donations of the electrons of X into
the p orbital on the Si atom in H2SiLiF and the σ
electrons on the Si atom in H2SiLiF to the positive
SiH3 group.

(3) For Si-X bonds, the order of reactivity by H2SiLiF
insertion in vacuum indicates the reaction barriers
decrease for the same-row element X from right to left
and the same-family element X from up down in the
periodic table.

Table 1 Total energies (a.u.) and relative energies (kJ mol-1, in
parentheses) for reactants, intermediates, transition states and products
of the insertion reactions at the B3LYP/6-311+G (d, p) level

Molecules Ein vacuum Ein ether

A+SiH3F -789.37817(0.0) -789.40198(0.0)

FM1 -789.37897(−2.1) -789.40033(4.3)

FTS -789.35649(56.9) -789.38816(36.3)

FM2 -789.41111(−86.5) -789.43794(−94.4)
H3SiSiH2F+LiF -789.39136(−34.6) -789.43080(−75.7)
A+SiH3Cl -1149.72103(0.0) -1149.74209(0.0)

ClM1 -1149.72161(−1.5) -1149.74150(1.6)

ClTS -1149.70073(53.3) -1149.72750(38.3)

ClM2 -1149.75278(−83.3) -1149.78057(101.0)

H3SiSiH2Cl+LiF -1149.735734(−38.6) -1042.77334(−82.0)
A+SiH3Br -3263.64087(0.0) -3263.66161(0.0)

BrM1 -3263.64133(−1.2) -3263.66118(1.1)

BrTS -3263.62295(47.0) -3263.64785(36.1)

BrM2 -3263.67340(−85.4) -3263.70146(−104.6)
H3SiSiH2Br+LiF -3263.65608(−39.9) -3263.69345(−83.6)
A+SiH3OH -765.32781(0.0) -765.35382(0.0)

OM1 -765.32816(−0.9) -765.35110(7.2)

OTS -765.30569(58.1) -765.33308(54.5)

OM2 -765.35586(−73.6) -765.38408(−79.4)
H3SiSiH2OH+LiF -765.34120(−35.1) -765.38337(−77.6)
A+SiH3NH2 -745.42727(0.0) -745.45095(0.0)

NM1 -745.42785(−1.5) -745.44961(3.5)

NTS -745.39729(78.7) -745.42283(73.8)

NM2 -745.45449(−71.5) -745.48025(−76.9)
H3SiSiH2NH2+LiF -745.44043(−34.5) -745.48059(−77.8)

Fig. 5 Energy (E) and bond
distance (r) vs. reaction coordi-
nate (S) in the insertion
reaction of H2SiLiF with SiH3Cl
at the B3LYP/6-311+G (d, p)
level. The Si atom in H2SiLiF is
marked as Si1
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(4) The insertion reactions in ether are similar to those in
vacuum. The energy barriers in vacuum are higher
than those in ether, showing insertion reactions are
easy to occur in ether.

(5) The silylenoid insertions are thermodynamically exo-
thermic both in vacuum and in ether.
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Abstract Blockade of the hERG K+ channel has been
identified as the most important mechanism of QT interval
prolongation and thus inducing cardiac risk. In this work,
an ensemble of 3D-QSAR pharmacophore models was
constructed to provide insight into the determinants of the
interactions between the hERG K+ channel and channel
inhibitors. To predict hERG inhibitory activities, the
predicted values from the ensemble of models were
averaged, and the results thus obtained showed that the
predictive ability of the combined 3D-QSAR pharmaco-
phore model was greater that those of the individual
models. Also, using the same training and test sets, a 2D-
QSAR model based on a heuristic machine-learning
method was developed in order to analyze the physico-
chemical characters of hERG inhibitors. The models
indicated that the inhibitors have certain key inhibitory
features in common, including hydrophobicity, aromaticity,
and flexibility. A final model was developed by combining

the combined 3D-QSAR pharmacophore with the 2D-
QSAR model, and this final model outperformed any other
individual model, showing the highest predictive ability and
the lowest deviation. This model can not only predict
hERG inhibitory potency accurately, thus allowing fast
cardiac safety evaluation, but it provides an effective tool
for avoiding hERG inhibitory liability and thus enhanced
cardiac risk in the design and optimization of new chemical
entities.

Keywords 2D-QSAR model . 3D-QSAR pharmacophore
model . Cardiac risk . hERG channel inhibitory potency

Introduction

In recent research, many clinical agents (or agents that are
currently under investigation) from diverse therapeutic
classes have been found to prolong the QT interval,
inducing arrhythmia or even sudden death. Examples
include the GI stimulant cisapride [1] and the antihistamine
terfenadine [2], which have been withdrawn from the
market due to the cardiac risk associated with their use.
Since the blockade of the human ether-à-go-go-related gene
(hERG) K+ channel has been identified as the most
important mechanism of QT interval prolongation at
cellular level [3], assessing hERG inhibitory liability has
become a key action during the early safety screening of
novel pharmaceuticals [4].

hERG encodes the K+ channel responsible for the
cardiac rapidly activating delayed rectifier K+ current
(IKr), which plays a predominant role in mediating
membrane repolarization during the course of the action
potential (AP) in ventricular myocytes, and thus influen-
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ces the duration of the QT interval [5]. The hERG K+

channel is a homotetramer with axial and rotational
symmetry, and consists of four identical subunits each
containing six transmembrane domains (S1–S6). The
amino acids from the domain of S5–S6 along with four
subunits together form the functional pore, which has a
funnelform structure, and is the main region for the
ligand–receptor interaction [6]. However, the crystal
structure of the hERG protein is yet to be determined,
so the mechanism of the ligand–receptor interaction is
still unknown. On the other hand, mutation experiments
have proven that most hERG inhibitors mainly interact
with the aromatic residues Y652 and/or F656 within the
pore, through hydrophobic effects and/or cation–π or π
stacking interactions. Residues T623, S624 and V625,
which are adjacent to the selectivity filter, are also
involved in some instances. In addition to the fact that
this channel has a larger inner cavity than other K+

channels, it can accommodate a broad spectrum of
compounds [7–9]. The hERG K+ channel also presents
distinctive dynamic behavior involving slow activation
and deactivation but rapid inactivation [10] in order to
exert its regulating action, and thus exhibits a highly
flexible structure with symmetry. This suggests that the
hERG protein and the inhibitors of this channel are likely
to adopt distributed sites and various modes of interaction
[11], which was also confirmed in recent modeling and
docking research by Zachariae et al. [12].

There are currently many biological measurements that
can be employed for hERG inhibition assays; for example,
the patch-clamp technique is the “gold standard” [13].
However, they are all expensive and time-consuming, so it
is more economical and convenient to develop in silico
models that possess high predictive abilities. Many studies
employing various computational techniques have been
developed for the prediction of hERG inhibitory potency,
such as ligand-based approaches that include common
pharmacophore [14–16], two-dimensional quantitative
structure–activity relationship (2D-QSAR) [17–19], and
three-dimensional quantitative structure–activity relation-
ship (3D-QSAR) [20] approaches, as well as structure-
based approaches involving homology modeling and dock-
ing [21, 22]. Although these models are different, they
share key features, and have all been shown to be feasible.

Several hERG pharmacophore models have already been
generated, including one created in our laboratory in an
earlier study [23], and different interaction modes have
been proposed. Traditionally, the rigid model with the best
performance was identified and then applied to predict
hERG inhibitory potency. However, since hERG inhibitors
are highly diverse in terms of structure and pharmacology,

and the hERG protein is a highly flexible homotetramer, the
mechanism of the ligand–protein interaction is so compli-
cated that single, rigid models cannot sufficiently elucidate
it [24]. Therefore, in this study, an ensemble of 3D-QSAR
pharmacophore models was constructed in order to sum-
marize and combine the possible interaction modes more
completely. The PHASE program in the Maestro package
[25–27] was employed, which was shown by Evans et al. to
give very robust performance [24]. This model ensemble
included five different but representative 3D-QSAR phar-
macophore models that gave the best performances and
high predictive abilities. When applying this ensemble of
models to predict hERG inhibitory activity—in order to
incorporate more interaction modes and obtain more
reliable results than just one rigid model—the average
was calculated when combining the predicted values from
the ensemble of models [28]. The results thus obtained
suggest that the predictive ability of the combined 3D-
QSAR pharmacophore model is better than those of the
individual models. Moreover, a 2D-QSAR approach was
also applied to further analyze the physicochemical char-
acters of hERG inhibitors, and a heuristic machine-learning
method was employed in this case using the CODESSA
software package [29, 30]. The same training set and test
set were used for all of the models, allowing us to compare
the results from the different models. In this parallel
evaluation, it was apparent that the combined 3D-QSAR
pharmacophore model was better at classifying active
compounds, while the 2D-QSAR model was better at
classifying inactive compounds. Given the complementary
characteristics of the two approaches, we then decided to
combine these two models. The resulting final model—a
combination of both the combined 3D-QSAR pharmaco-
phore model and the 2D-QSAR model—outperforms any
single model, exhibiting the best predictive ability, the
lowest mean absolute error (MAE) value of 0.45, the
highest Rtest

2 of 0.75, and the highest classification
accuracy of 83.33% for the test set. The combined model,
with its clearly enhanced predictive ability, also demon-
strated that combining model results through averaging is a
very feasible and practicable approach. Meanwhile, the key
features of hERG inhibitors that were highlighted by the
models are consistent, correlating with the crucial interac-
tion residues Y652 and F656 from the hERG protein.

The final model combining both the combined 3D-QSAR
pharmacophore model and 2D-QSAR model is the most
rational and presents the best predictive ability; it can not only
predict hERG inhibitory potency accurately for early cardiac
safety screening, but it provides an effective tool for avoiding
hERG inhibitory liability and thus enhanced cardiac risk in the
design and optimization of new chemical entities.
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Materials and methods

Dataset preparation

In the dataset, compounds were collected from published
biological studies, taking into account a diversity and broad
range of biological activities. Only biological studies using
whole-cell patch-clamp measurements and mammalian cell
lines of HEK or CHO were considered, to maintain the
variety and consistency of the data set [31]. One hundred
thirteen diverse compounds were collected (see Table 1),
with a broad range of hERG inhibitory activities (in vitro
IC50), spanning from 0.0009 to 4400μM. The IC50 values
were converted to pIC50 values using the formula −log
(IC50).

The dataset was split into a training set and a test set. All
of the compounds were classified into seven classes
according to the order of magnitude of the IC50 value,
and then 53 training compounds were selected on the basis
of structural diversity and wide coverage of the activity. The
remaining 60 compounds were used as the test set.

In the SYBYL package [95], the molecules were
constructed, hydrogens were added, and the energy of each
molecule was minimized to obtain the optimized structure.
When calculating the optimized geometry, the MMFF94s
force field and MMFF94 charges were applied, with a
gradient of 0.001 kcal mol−1Å−1. The chirality of some
molecules such as levacetylmethadol was also examined
carefully, based on the information on PubChem.

Development of the 3D-QSAR pharmacophore models

The common pharmacophore approach can be used to find
the 3D structural characteristics of hERG inhibitors that are
required for them to interact with the target. Considering
that hERG inhibitors are highly diverse in terms of structure
and pharmacology, and the hERG protein is a rather flexible
homotetramer, there are likely to be various sites and modes
of interaction, making the mechanism of ligand–protein
interaction so complicated that a single, rigid pharmaco-
phore model cannot elucidate it sufficiently. Accordingly, an
ensemble of 3D-QSAR pharmacophore models was con-
structed in order to summarize the possible interaction
modes more completely, and thus to achieve more reliable
predictions than a single, rigid model can.

The PHASE program in the Maestro package (software
for pharmacophore perception, structure alignment, activity
prediction and 3D database creation and searches) was
employed to develop the 3D-QSAR pharmacophore mod-
els. PHASE utilizes fine-grained conformational sampling
and a range of scoring techniques to identify a common

pharmacophore hypothesis, which is then combined with
known activity data to generate a 3D-QSAR model
which identifies aspects of the molecular structure that
govern activity. Using PHASE, a number of steps are
performed (Prepare Ligands, Create Sites, Find Common
Pharmacophores, Score Hypotheses and Build QSAR
Model), during which many parameters can be adjusted,
allowing flexibility and versatility.

The dataset was first imported into the PHASE program,
and then conformational ensembles were generated. During
conformational sampling, the MacroModel torsional sam-
pling method of ConfGen was used, with the MMFFs force
field and the distance-dependent dielectric used as the
solvation treatment. In order to eliminate high-energy or
redundant conformers, the maximum relative energy differ-
ence was set to 10.0 kcal mol−1, and the cutoff root mean
square deviation (RMSD) was 1Å. In addition, the
maximum number of conformers for each structure was
set to 1000, while the number of conformers for each
rotatable bond was set to 100. In the training set,
compounds with pIC50≥0 were designated the most active
compounds and those with pIC50≤−2 were designated
inactive compounds by changing the Pharm Set parameter.

During pharmacophore site creation, all available phar-
macophore features were included in the conformational set
for each compound: H-bond donor (labeled D), H-bond
acceptor (labeled A), hydrophobic group (labeled H),
aromatic ring (labeled R), and positively (labeled P) and
negatively (labeled as N) charged groups. For hydrophobic
group (H) and aromatic ring (R) features, the definition
term of default_aromatic_surface was also included by
clearing the Ignore check box; other feature definitions
were set to their defaults.

Common pharmacophores were then identified based on
the most active compounds by grouping similar pharmaco-
phores according to their intersite distances using a tree-
based partitioning technique. Here, the minimum intersite
distance was set to 2Å, and the maximum tree depth was 5.
Initially, the number of matching active compounds (nact)
was equal to the total number of most active compounds
(nact_tot) in the training set, but because of the high diversity
of hERG inhibitors, and even with a minimum number of
pharmacophore sites (nsites) of 3, there was no common
pharmacophore that could match all of the most active
compounds. Therefore, nsites was set to 4, and nact was reset
by decreasing nact_tot one by one until hypotheses were
found and scored successfully. Finally, nact was set to 12.

Afterwards, the generated pharmacophore hypotheses
were initially scored based on the most active compounds
in order to identify the pharmacophores that yielded the
best alignment with the actives from each surviving n-

J Mol Model (2012) 18:1023–1036 1025



Table 1 The dataset of hERG inhibitors collected from the literature

Number a Molecule name pIC50 Reference Number a Molecule name pIC50 Reference

1 Astemizole 3.04 [32] 58* Cibenzoline −0.57 [67]

2* Desmethylastemizole 3.00 [32] 59* Granisetron −0.57 [68]

3 Clemastine 2.92 [33] 60* Sibutramine −0.58 [59]

4 Pimozide 2.82 [34] 61 Loratadine −0.59 [34]

5 Chlorobutanol 2.36 [35] 62 Flecainide −0.59 [69]

6* Flunarizine 2.24 [36] 63* Propranolol −0.59 [70]

7 Terfenadine 2.15 [34] 64* Citalopram −0.60 [71]

8 Bepridil 1.64 [34] 65 Cocaine −0.64 [58]

9 Haloperidol 1.60 [34] 66 Pentamidine −0.71 [72]

10 Cisapride 1.59 [34] 67* Maprotiline −0.72 [73]

11* Norastemizole 1.56 [32] 68* Metoclopramide −0.73 [74]

12* Droperidol 1.49 [37] 69* Quetiapine −0.76 [44]

13 Lidoflazine 1.43 [38] 70* Dolasetron −0.78 [68]

14 Halofantrine 1.40 [39] 71 Pyrilamine −0.78 [38]

15 Dronedarone 1.23 [40] 72* Desloratidine −0.80 [43]

16 Amiodarone 1.15 [40] 73* Doxepin −0.81 [75]

17* N−desbutylhalofantrine 1.14 [41] 74 Lovastatin −0.85 [38]

18* Pergolide 0.92 [42] 75* Disopyramide −0.86 [76]

19 Ketanserin 0.89 [34] 76* Diltiazem −0.87 [59]

20* Domperidone 0.80 [43] 77 Buprenorphine −0.88 [62]

21* Risperidone 0.78 [44] 78* Perhexiline −0.89 [77]

22* Clomiphene 0.74 [45] 79 Methadone −0.99 [62]

23 Amsacrine 0.69 [46] 80* Amitriptyline −1.00 [60]

24 Sertindole 0.68 [38] 81* Levobupivacaine −1.01 [78]

25 Ziprasidone 0.62 [47] 82 Digitoxin −1.05 [79]

26* Doxazosin 0.49 [48] 83 Chlorpheniramine −1.11 [38]

27 Thioridazine 0.41 [38] 84* Mianserin −1.17 [80]

28 Verapamil 0.35 [34] 85 Terazosin −1.25 [61]

29* Cyamemazine 0.33 [49] 86* Bupivacaine −1.26 [78]

30* Mesoridazine 0.26 [50] 87* Sparfloxacin −1.26 [81]

31* Azimilide 0.25 [51] 88* Ropivacaine −1.31 [78]

32 Prenylamine 0.23 [38] 89 Pilsicainide −1.31 [82]

33* Clebopride 0.21 [52] 90* Spironolactone −1.36 [83]

34 Fluoxetine 0.15 [34] 91* Grepafloxacin −1.44 [84]

35 Orphenadrine 0.07 [53] 92 Sildenafil −1.52 [85]

36 Quinidine 0.05 [34] 93* Roxithromycin −1.56 [86]

37* Brompheniramine 0.05 [54] 94* Digoxin −1.73 [79]

38* Perphenazine 0.00 [55] 95 Moxifloxacin −1.87 [87]

39* Ajmaline −0.02 [56] 96 Meperidine −1.88 [62]

40 Vesnarinone −0.04 [57] 97* Ciprofloxacin −2.00 [84]

41* Cocaethylene −0.08 [58] 98 Telithromycin −2.00 [88]

42* Imipramine −0.08 [59] 99* Canrenoic acid −2.02 [83]

43* Trifluoperazine −0.15 [55] 100* Procainamide −2.14 [89]

44* Chlorpromazine −0.17 [60] 101* Metoprolol −2.16 [70]

45* Prazosin −0.2 [61] 102* Clarithromycin −2.23 [90]

46 Fentanyl −0.26 [62] 103 Methylecgonidine −2.23 [58]

47 Propafenone −0.30 [38] 104* Articaine −2.35 [91]

48* Olanzapine −0.30 [59] 105 Lamotrigine −2.36 [92]

49* Levacetylmethadol −0.34 [62] 106 Phenytoin −2.38 [93]
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dimensional box. The hypotheses were then scored using
the inactive compounds, to assign restrictive scores in order
to distinguish inappropriate pharmacophores that could also
align with inactives. When ranking the scores, the larger the
difference between the scores of the actives and inactives,
the better the hypothesis for discriminating them. All terms
were included and the default weights were used in the
score formula.

In the end, after the compounds had been aligned with
the successfully generated and scored hypotheses (model
and non-model ligand alignment), all of the hypotheses
were submitted to the final stage of 3D-QSAR model
construction. During the stage of 3D-QSAR model
generation, the partial least squares (PLS) method was
used to build the correlation between hERG inhibitory
activity and grid locations that divide the space occupied
by the molecules and the aligned pharmacophore hy-
pothesis into uniformly sized 3D cubes. Here, 53 training
compounds and 60 test compounds were defined by
changing the QSAR Set parameter, and then a series of
atom based 3D-QSAR pharmacophore models were
generated with a random seed of 0, a grid spacing of 1
Å, and PLS factors of 1–4.

Development of the 2D-QSAR model

The 2D-QSAR approach was employed to further analyze
the physicochemical characters of hERG inhibitors. The
same training set as used for the 3D-QSAR pharmacophore
models was employed to develop a regression model that
could quantitatively correlate the target inhibitory activity
with features of hERG inhibitors by learning from the
calculated molecular descriptors.

The CODESSA software package was used for this task,
as over 450 molecular descriptors could be calculated using
this software, including constitutional descriptors, topolog-
ical descriptors, geometric descriptors, electrostatic descrip-
tors, quantum-chemical descriptors, and thermodynamic
descriptors. The optimized structures in the dataset were

additionally calculated by the MOPAC package to provide
quantum-mechanical data for computing quantum-chemical
descriptors and thermodynamic descriptors, and the AM1
semiempirical parameter was used in the calculation.

After loading the dataset into the CODESSA program,
all available descriptors were calculated. A heuristic
statistical method (HM) was then applied, which involves
the stepwise selection of the best multiple linear
regression model with the most significant molecular
descriptors. The advantage of using a heuristic method in
CODESSA is that it is then possible to automatically
search and find the most significant but lowly inter-
correlated descriptors for the best regression model at
high computational speed. In the calculation, the descrip-
tors were preselected in advance. Descriptors that have
unavailable or constant values were discarded to ensure
that the values of each descriptor are useable and
variable. After that, one-parameter correlations for each
descriptor were computed, and descriptors that were less
significant than the preset statistical criteria were elimi-
nated. Next, two-parameter correlations were computed
for each pair of descriptors, and descriptors that showed
intercorrelation that was above a significant intercorrela-
tion level (rsig) were discarded in order to avoid over-
fitting. Here, the value of rsig was set to 0.7, and the other
parameters remained at their default settings. Finally,
among the top ten correlations with the highest F values,
the correlation with the highest R2 value (correlation
coefficient) was considered to be the optimal one.

Generally, the statistical parameters R2, Rcv
2 and F are

used to evaluate a 2D-QSAR model; these represent the
correlation coefficient of the regression, the average of the
leave-one-out cross-validated correlation coefficient, and
the Fisher F criterion value, respectively. When the
maximum number of descriptors (NDmax) in the regression
equation increases, the statistical parameters will improve
concomitantly until overfitting occurs, so the predictive
reliability decreases [96]. It has been suggested that the
ratio between NDmax and the number of training com-

Table 1 (continued)

Number a Molecule name pIC50 Reference Number a Molecule name pIC50 Reference

50* Norfluoxetine −0.36 [63] 107 Codeine −2.48 [62]

51* Chloroquine −0.40 [39] 108* Oleandomycin −2.53 [86]

52* Clozapine −0.40 [64] 109 Sotalol −2.91 [34]

53* Mefloquine −0.42 [39] 110 Morphine −3.00 [62]

54 Diphenhydramine −0.42 [34] 111 Erythromycin −3.15 [34]

55 Trazodone −0.46 [65] 112 Phenobarbital −3.48 [93]

56 Berberine −0.49 [66] 113 4-Aminopyridine −3.64 [94]

57* Ambasilide −0.56 [51]

a Compounds in the test set are labeled with asterisks
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pounds is about 1:5. In addition, among models with good
performances, the simplest model with the least descriptors
will be the best choice. Therefore, a series of models were
built in advance by varying NDmax by one each time (from
3 to 10). Upon increasing one descriptor, the optimum
number was achieved when the value of R2 did not improve
significantly or the value of Rcv

2 decreased; this corre-
sponded to the best 2D-QSAR model.

Results and discussion

3D-QSAR pharmacophore models

A total of 47 3D-QSAR pharmacophore models were
successfully constructed using the PHASE program. In
PHASE, the performances of the 3D-QSAR pharmaco-
phore models were evaluated using a series of statistical
parameters, as summarized in Table 2 (the specific
formulae used are shown in the “Electronic supplementary
material”). The values of the SD, R2, F and P were used to
evaluate the training set predictions, while the values of
the RMSE, Q2 and Pearson’s R were used for the test set
predictions. Generally, models with lower values of the SD
and RMSE and higher values of R2, Q2 and Pearson’s R
give the best performance. In addition, a high value of F
indicates statistical significance for a model, while a low
value of P indicates a high degree of confidence. The
accuracy of the 3D-QSAR pharmacophore model
improves as the number of PLS factors increases, until
overfitting occurs. For example, if IC50 values are accurate
to a multiplicative factor of 2, the corresponding −log
[IC50] values are only accurate to log(2). Accordingly, if
the SD is smaller than this experimental uncertainty, then
the data are clearly overfitted. Here, models containing
three or more PLS factors tended to fit the pIC50 values
beyond their experimental uncertainty, so only one- and
two-factor models were considered.

The generated 3D-QSAR pharmacophore models were
categorized into five clusters based on the combination
and the spatial arrangement of pharmacophore features.
In each cluster, the models were ranked according to the
statistical parameters, and then the model with the best
performance (lowest values of the SD, RMSE and P,
highest values of R2, F, Q2 and Pearson’s R) was selected.
Finally, the five most representative models were included
in the 3D-QSAR pharmacophore model ensemble, which
thus summarizes as many of the interaction modes as
possible. The models and the corresponding statistical
results are listed in Table 2.

The model ensemble exhibited good performance, with
values of R2 ranging from 0.9137 to 0.9410, SDs of
between 0.3318 and 0.4077, and RMSEs of <1.0. The
HHHP.67 model gave the highest R2 value (0.9410), the
highest F value (327.0) and the highest Pearson’s R value
(0.6525), while the HHHR.967 model gave the lowest
RMSE value (0.8131) and the highest Q2 value (0.3701).
The predictions for the training compounds were relatively
precise, and the deviations between the experimental and
predicted pIC50 values were within one log unit.

Three kinds of chemical features were included in the
pharmacophore hypotheses: hydrophobic (H), aromatic ring
(R) and positively charged (P) groups. The hydrophobic
group (H) feature was present in all of the hypotheses, but
its spatial arrangement varied somewhat. The pharmaco-
phores are shown in Fig. 1, where they are aligned with
highly active compounds. The HHHP.67 (see Fig. 1a) and
HHHP.726 (see Fig. 1b) hypotheses incorporate the same
chemical features, including one positively charged group
(P) at the center that is flanked by three hydrophobic groups
(H), but the spatial arrangements of these features are
different for the two hypotheses. Compounds aligned with
the HHHP.726 pharmacophore exhibit mildly twisted con-
formers, while in the HHHP.67 hypothesis, the distances
between the three hydrophobic groups (H) are smaller, and
this hypothesis is usually aligned to a more curved and

Table 2 The statistical results obtained when evaluating the 3D-QSAR pharmacophore model ensemble

Pharmacophore features SD R2 F P RMSE Q2 Pearson R

HHHP.67 0.3318 0.9410 327.0 6.325E-26 0.8670 0.2836 0.6525

HHHP.726 0.4077 0.9137 185.4 2.381E-19 0.9423 0.2966 0.5718

HHPR.281 0.3637 0.9343 234.8 3.056E-20 0.9185 0.2801 0.5338

HHHR.967 0.3404 0.9392 309.2 4.692E-25 0.8131 0.3701 0.6404

HHHH.2085 0.3990 0.9180 218.4 6.544E-22 0.8567 0.2832 0.5838

SD standard deviation of the regression, R2 square of the correlation coefficient of the regression, F ratio of the model’s variance to the variance in
observed activity for the regression, P significance level of F, RMSE root mean square error in the test set predictions, Q2 square of the correlation
coefficient between the predicted and observed activities in the test set predictions, Pearson R Pearson’s R value for the correlation between the
predicted and observed activities in the test set predictions
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twisted conformer or just an area of the compound. The
spatial arrangement of the chemical features in the
HHPR.281 hypothesis (see Fig. 1c) is similar to that for
the HHHP.726 hypothesis, but one hydrophobic group
feature is replaced with an aromatic ring feature. The
HHHH.2085 (see Fig. 1e) and HHHR.967 (see Fig. 1d)
hypotheses lack a positively charged group (P) feature and
contain hydrophobic groups (H) only or with an aromatic
ring (R). This is mainly because some of the uncharged
hERG inhibitors lack a basic nitrogen center, suggesting
that the basic nitrogen center is contributing but not crucial
to hERG inhibition. As a whole, when aligned with the
hypotheses, compounds with high inhibitory activity such
as astemizole and terfenadine commonly exhibit more or
less curved conformers. The two adjacent hydrophobic
groups (H) (a hydrophobic group and an aromatic ring in
the HHHR.967 hypothesis) are rather close—2.686Å to
3.654Å apart—most of which is occupied by the two
connected components. For example, in the alignment of
terfenadine with the HHHP.726 hypothesis, the benzene
ring segment and the tert-butyl segment are aligned with
the hydrophobic group (H) features.

For the inhibitors, the hydrophobic group (H) is usually
occupied by an aliphatic carbon chain, an aromatic ring or a
halogen atom (mostly a Cl atom), which interacts with the
hERG protein through a hydrophobic effect and/or a π
stacking interaction. The positively charged group (P)

mostly corresponds to a tertiary amine group, and some-
times a secondary amine group, and these interact with the
hERG protein by a cation–π interaction, improving the
inhibitory potency. The pharmacophore features of the
models are similar, and correlate with the crucial interaction
residues Y652 and F656 from the hERG protein, although
the spatial arrangements are different for different models.
According to the literature, the hERG K+ channel shows
distinctive dynamic behavior of slow activation and
deactivation but rapid inactivation, so it exhibits a highly
flexible conformation. In addition, the hERG protein
consists of four identical subunits with axial and rotational
symmetry, but the inhibitors do not necessarily interact with
the aromatic residues from each of the subunits equally
[97], providing a clue that the ligand–protein interactions
are flexible and asymmetric. Like the hypotheses, the
components of different inhibitors may interact with
adjacent residues that are separated by only a small
distance, or with residues that are much further apart. The
hypotheses further prove that hydrophobic group (H) and
aromatic ring (R) features are the molecular characters that
are crucial to hERG inhibitors, and that the hERG protein
and inhibitors can adopt flexible modes for interaction, so
the flexibility of the inhibitors is advantageous to inhibition.

The 3D-QSAR pharmacophore models can also be
visualized as 3D cube plots. Such plots showing the effect
of hydrophobic/nonpolar (H) features are displayed in

Fig. 1 a–e Pharmacophore hypotheses aligned with highly active
inhibitors. Pharmacophore features are denoted by color: green
hydrophobic group (H), blue positively charged group (P), orange
aromatic ring (R). Corresponding 3D-QSAR pharmacophore model
plots (coefficient threshold=0) that depict the hydrophobic/nonpolar
(H) effect are also displayed on the right; blue cubes indicate positive

correlation, while red cubes show negative correlation. a HHHP.67
hypothesis aligned with astemizole (pIC50=3.04). b HHHP.726
hypothesis aligned with terfenadine (pIC50=2.15). c HHPR.281
hypothesis aligned with pimozide (pIC50=2.82). d HHHR.967
hypothesis aligned with halofantrine (pIC50=1.40). e HHHH.2085
hypothesis aligned with clemastine (pIC50=2.92)
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Fig. 1, in which the blue-colored cubes show positive
correlation (indicating an increase in inhibitory activity),
while the red cubes show negative correlation (indicating a
decrease in inhibitory activity). This allows us to determine
which parts of a compound make positive or negative
contributions to its inhibitory potency.

Evaluation of the 3D-QSAR pharmacophore models

In order to further evaluate the quality and predictive ability
of the 3D-QSAR pharmacophore model ensemble, the test
set containing 60 compounds was applied. However,
several of the compounds in the test set did not align with
the corresponding pharmacophore hypothesis (there was no
match to at least three pharmacophore features, and the
fitness value was poor). These compounds were therefore
considered inactive compounds (designated pIC50≤−2
previously), and in the subsequent statistical calculation,
the predicted pIC50 values were set to −2. For the test
compounds, the predicted pIC50 values from each model
and the experimental values are listed in Table 3. In
addition, the mean absolute error (MAE) for each predic-
tion set was calculated. The formula is

MAE ¼ 1

k

Xk
j¼1

byj � yj
�� ��; ð1Þ

where k refers to the number of molecules in the test set, yj
refers to the experimental activity for test molecule j, and ŷj
is the predicted activity for test molecule j. Rtest

2 ,
representing the square of the correlation coefficient
between the experimental pIC50 and the predicted pIC50

in the test compound predictions, was also calculated for
each model.

MAE values were found to lie between 0.64 and 0.75,
but the values of Rtest

2 were low (0.28~0.48), indicating
that it is difficult to obtain satisfactory predicted results
with the single, rigid model, and the prediction of
structurally diverse hERG inhibitors appeared to be a
rather complicated task.

To get more reliable predicted results and reduce the
uncertainty associated with single, rigid model prediction, a
compromise method involving averaging was used to
generate a combined 3D-QSAR pharmacophore model.
For each compound in the test set, the average of the pIC50

values predicted by all individual models was calculated.
The same weight was used for all models, as it was not
clear which model is most accurate for an unknown
compound. The formula for calculating the average is

average ¼ 1

k

Xk
j¼1

byj; ð2Þ

where k refers to the number of models and ŷj refers to the
predicted value from model j.

Finally, the combined 3D-QSAR pharmacophore model
was found to yield the lowest MAE value of 0.53 and the
highest Rtest

2 value of 0.64 (see Table 3), suggesting that the
predictive ability of this combination of 3D-QSAR phar-
macophore models is significantly better than those of the
individual models.

According to previously published studies, the classic
hERG pharmacophore model basically contains a basic
nitrogen center flanked by hydrophobic or aromatic groups
connected by flexible linkers, as generated using the
HypoGen module in the Catalyst program. Meantime,
Kramer et al. developed a composite model to predict
hERG inhibitory activity based on different QSAR models
identified by preliminary pharmacophore scanning [14].
Also, Aronov developed a pharmacophore model in the
MOE software package for neutral hERG inhibitors that
contain hydrophobic/aromatic features and hydrogen bond
acceptors but lack the basic nitrogen center [98]. In the
model developed by Garg et al., an aromatic group, a
hydrophobic group and a hydrogen bond acceptor group
were included, based on training molecules with low IC50

values (less than 10μM) [99]. The pharmacophore model
published recently by Durdagi et al. contains aromatic
group, hydrogen bond acceptor and hydrogen bond donor
features, and was produced with the PHASE program.
[100]. However, generally, the rigid pharmacophore model
with the best performance is applied in order to predict
hERG inhibitory potency.

In our study, we employed the PHASE program, in
which structure alignment is performed based on the
generated common pharmacophore, and activity prediction
incorporates the grid technique of 3D-QSAR. In the
pharmacophores, the hydrophobic and aromatic features
were still found to be predominant, and while it seems that
the basic nitrogen center is not a crucial feature, it may
enhance the potency of hERG inhibitors. Moreover, due to
the high diversity of hERG inhibitors and the flexibility and
symmetry of the hERG protein, they are likely to adopt
distributed sites and flexible modes for interaction. Thus,
the mechanism of ligand–protein interaction is so compli-
cated that a single, rigid model cannot sufficiently elucidate
it. Therefore, the combination of the representative 3D-
QSAR pharmacophore models was calculated, as this
incorporated as many interaction modes as possible, thus
giving more reliable predicted results. This model is able to
consider the particular interactions between the hERG K+

channel and its inhibitors in more depth, and resulting
improved predictive ability of the combined 3D-QSAR
pharmacophore model indicates that calculating the average
result from a combination of models is a very feasible and
practicable approach.
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Table 3 The predicted pIC50 values of all the models versus the experimental pIC50 values for the test set

Molecule name Exp.
pIC50

Pred. pIC50 of 3D-QSAR pharmacophore model ensemble Pred.
pIC50

of
2D-
QSAR
model

Combination of
combined 3D-QSAR
pharmacophore model
and 2D-QSAR model

HHHP.67 HHHP.726 HHPR.281 HHHR.967 HHHH.2085 Combined
model

Desmethylastemizole 3.00 3.00 2.12 1.57 2.69 2.77 2.43 1.86 2.14

Flunarizine 2.24 0.34 0.11 1.12 0.17 0.24 0.40 1.54 0.97

Norastemizole 1.56 1.39 −0.41 0.15 0.59 0.82 0.51 0.41 0.46

Droperidol 1.49 0.95 1.57 0.66 0.72 −0.10 0.76 0.57 0.66

N−desbutylhalofantrine 1.14 0.67 0.25 −0.20 0.10 0.75 0.31 2.20 1.26

Pergolide 0.92 0.13 0.56 −0.15 −0.35 0.29 0.10 −0.84 −0.37
Domperidone 0.80 0.60 1.48 0.64 0.85 −0.15 0.68 0.63 0.65

Risperidone 0.78 0.51 0.62 0.34 −0.03 0.01 0.29 0.91 0.60

Clomiphene 0.75 0.21 −0.17 −1.23 −0.44 0.33 −0.26 2.38 1.06

Doxazosin 0.49 −1.06 0.88 −0.86 0.31 −1.07 −0.36 0.69 0.17

Cyamemazine 0.33 0.53 ≤ −2 ≤ −2 0.01 0.21 −0.65 −0.36 −0.51
Mesoridazine 0.26 0.53 −0.15 −0.17 −0.13 0.60 0.14 0.15 0.14

Azimilide 0.25 0.92 0.30 0.13 0.56 0.39 0.46 0.49 0.48

Clebopride 0.21 0.47 0.40 0.80 1.10 −0.57 0.44 0.97 0.70

Brompheniramine 0.05 −0.22 −0.03 0.17 0.01 0.05 0.00 −0.83 −0.42
Perphenazine 0.00 0.21 −0.60 0.16 −0.41 −0.59 −0.25 1.66 0.71

Ajmaline −0.02 ≤ −2 −0.34 −0.42 −0.31 ≤ −2 −1.01 −1.24 −1.13
Cocaethylene −0.08 −0.42 ≤ −2 −0.18 −0.01 −0.17 −0.56 −0.21 −0.38
Imipramine −0.08 −0.07 −0.83 −1.10 −0.46 0.07 −0.48 −0.37 −0.42
Trifluoperazine −0.15 0.15 −0.47 0.35 −0.08 −0.61 −0.13 0.87 0.37

Chlorpromazine −0.17 −0.01 −0.01 0.42 −0.67 −0.19 −0.09 1.27 0.59

Prazosin −0.20 −1.04 −0.20 −0.76 −0.79 −0.88 −0.73 −1.75 −1.24
Olanzapine −0.30 0.58 −0.69 −0.31 0.34 0.62 0.11 0.09 0.10

Levacetylmethadol −0.34 0.08 ≤ −2 −1.03 −0.62 0.71 −0.57 −0.84 −0.71
Norfluoxetine −0.36 0.09 −0.88 −0.46 −0.54 0.28 −0.30 0.34 0.02

Chloroquine −0.40 −0.02 0.25 0.11 −0.11 −0.31 −0.02 −0.46 −0.24
Clozapine −0.40 −0.28 −0.47 −0.22 −0.15 −0.40 −0.30 0.60 0.15

Mefloquine −0.42 −0.16 −0.71 −0.87 −0.02 −0.11 −0.37 −0.79 −0.58
Ambasilide −0.56 0.27 0.90 −0.10 −0.22 0.57 0.28 −0.50 −0.11
Cibenzoline −0.57 −1.15 ≤ −2 ≤ −2 −0.38 −0.35 −1.18 −1.06 −1.12
Granisetron −0.57 −0.60 −0.24 −0.83 0.08 −0.50 −0.42 −0.91 −0.66
Sibutramine −0.58 −0.14 −0.46 −0.15 0.04 0.26 −0.09 −1.10 −0.59
Propranolol −0.59 −0.37 −0.65 −0.42 ≤ −2 ≤ −2 −1.09 −1.41 −1.25
Citalopram −0.60 0.71 −0.36 0.05 −0.14 0.48 0.15 0.17 0.16

Maprotiline −0.72 −0.24 −0.65 −1.16 −0.53 −0.25 −0.57 −0.47 −0.52
Metoclopramide −0.73 −0.31 −0.29 0.36 −0.10 −0.83 −0.23 −1.64 −0.94
Quetiapine −0.76 0.36 ≤ −2 0.05 0.02 0.19 −0.28 0.27 0.00

Dolasetron −0.78 −0.56 −0.57 −0.54 0.74 −0.60 −0.31 −0.62 −0.46
Desloratidine −0.80 −0.30 −0.19 −0.32 −0.59 −0.26 −0.33 −1.47 −0.90
Doxepin −0.81 −0.10 ≤ −2 ≤ −2 −0.5 0.38 −0.84 0.11 −0.37
Disopyramide −0.86 0.11 ≤ −2 ≤ −2 −0.18 −0.38 −0.89 −1.48 −1.18
Diltiazem −0.87 0.04 −0.56 ≤ −2 −0.60 −0.11 −0.65 0.19 −0.23
Perhexiline −0.89 −0.73 ≤ −2 ≤ −2 0.23 0.13 −0.87 −2.02 −1.45
Amitriptyline −1.00 0.04 −0.24 −0.78 ≤ −2 −0.56 −0.71 −0.88 −0.80
Levobupivacaine −1.01 0.37 −0.2 −0.37 0.19 −0.42 −0.09 −1.78 −0.93
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The 2D-QSAR model

In the CODESSA program, a total of 293 molecular
descriptors were successfully calculated for the dataset.
The same training set as used in the 3D-QSAR
pharmacophore model was employed here; a heuristic
statistical method was employed to develop the regres-
sion model that presents the correlation between hERG
inhibitory activity and the most significant molecular
descriptors.

Generally, in a predictive model, the conditions R2>
0.6 and Rcv

2>0.5 for the training set and Rtest
2>0.5 for the

test set should be satisfied, while a high F test value
indicates that the model is statistically significant. When
determining the optimum number of descriptors to
include in the model, a series of models with from 3
to 10 descriptors were built, and the influence of the
number of descriptors on the values of R2 and Rcv

2 is
shown in Fig. 2. Seven descriptors appeared to be optimal
for the model, including two constitutional descriptors
(X1 and X2), one topological descriptor (X4), three
electrostatic descriptors (X3, X5 and X7), and one
quantum-chemical descriptor (X6). The corresponding

multiple linear regression equation and the values of the
descriptors included in it are presented in Table 4. This
model exhibits good performance (as summarized in
Table 5), with satisfactory statistical parameters: R2 =
0.9121, Rcv

2 = 0.8724, and F = 66.67.

Table 3 (continued)

Molecule name Exp.
pIC50

Pred. pIC50 of 3D-QSAR pharmacophore model ensemble Pred.
pIC50

of
2D-
QSAR
model

Combination of
combined 3D-QSAR
pharmacophore model
and 2D-QSAR model

HHHP.67 HHHP.726 HHPR.281 HHHR.967 HHHH.2085 Combined
model

Mianserin −1.17 0.70 ≤ −2 ≤ −2 −0.93 −0.30 −0.91 −0.60 −0.75
Bupivacaine −1.26 −0.29 −0.62 0.16 0.01 −0.32 −0.21 −1.81 −1.01
Sparfloxacin −1.26 −0.10 −1.06 −1.52 −0.44 −0.49 −0.72 −2.10 −1.41
Ropivacaine −1.31 0.25 −1.01 ≤ −2 −0.18 −0.67 −0.72 −1.93 −1.33
Spironolactone −1.36 −0.36 ≤ −2 ≤ −2 ≤ −2 −0.07 −1.29 −2.00 −1.64
Grepafloxacin −1.44 −0.36 −1.46 −0.64 −0.07 0.38 −0.43 −1.36 −0.90
Roxithromycin −1.56 −0.57 0.74 ≤ −2 −0.78 0.32 −0.46 −3.03 −1.74
Digoxin −1.73 −0.76 −1.10 ≤ −2 −1.47 −1.20 −1.31 −2.23 −1.77
Ciprofloxacin −2.00 ≤ −2 ≤ −2 −0.93 −0.49 ≤ −2 −1.48 −1.22 −1.35
Canrenoic acid −2.02 ≤ −2 ≤ −2 ≤ −2 ≤ −2 ≤ −2 −2.00 −2.72 −2.36
Procainamide −2.14 −0.59 −0.18 ≤ −2 −0.79 −1.08 −0.93 −2.90 −1.92
Metoprolol −2.16 −0.17 −0.41 −0.15 ≤ −2 ≤ −2 −0.95 −2.48 −1.71
Clarithromycin −2.23 ≤ −2 ≤ −2 ≤ −2 ≤ −2 ≤ −2 −2.00 −2.74 −2.37
Articaine −2.35 −1.03 −0.39 −0.53 −0.57 −1.00 −0.70 −2.70 −1.70
Oleandomycin −2.53 ≤ −2 0.03 −0.06 ≤ −2 ≤ −2 −1.21 −2.29 −1.75
MAE 0.68 0.75 0.75 0.64 0.69 0.53 0.69 0.45

Rtest
2 0.46 0.28 0.34 0.48 0.41 0.64 0.64 0.75

Fig. 2 Number of descriptors versus R2 or Rcv
2 for the 2D-QSAR

model
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Four classes of descriptors are included in the 2D-QSAR
model. First of all, constitutional descriptors of the
aromatic ring (X1) and Cl atom (X2) features are the most
representative; these have the highest t-test values. These
features are all positively correlated with the value of
pIC50, meaning that higher values will lead to higher
inhibitory potency. Topological descriptors describe the
atomic connectivity of the molecule, and the Balaban index
descriptor—which describes the rigidity (molecules with
more or longer flexible carbon chains have lower Balaban
index values)—is included among these. This is negatively
correlated with the value of pIC50, indicating that higher
flexibility is advantageous to inhibitory potency. These
features are consistent with those in the 3D-QSAR pharma-
cophore models, and further confirm that the hydrophobic
group, the aromatic ring and flexibility are the crucial
characteristics of hERG inhibitors.

Another class of attribute is represented by the electro-
static descriptors, which reflect the charge distribution
characteristics of the molecules (responsible for polar
interactions), and they are all negatively correlated with
the value of pIC50. Here, the minimum partial charge
descriptor has a high t-test value. The charged partial
surface area (CSPA) descriptor of FPSA-3 represents the
proportion of the surface area of the whole molecule that is
positively charged, and the HACA descriptor represents
hydrogen acceptor features. Finally, there is a quantum-
chemical descriptor of the maximum valency of a C atom
(which is negatively correlated with pIC50). This valency-
related descriptor represents the strength of intramolecular

bonding interactions, the stability and flexibility of the
molecules, and other valency-related properties.

The same test set was also applied to evaluate the 2D-
QSAR model, and the results were compared with those for
the 3D-QSAR pharmacophore models. The predicted
values are listed in Table 3. On the whole, the MAE value
from the 2D-QSAR model is higher (MAE=0.69) than that
from the combined 3D-QSAR pharmacophore model
(MAE=0.53), but the models give the same Rtest

2, 0.64.
Although several compounds with moderate activities
were not predicted as well by the 2D-QSAR model as
the combined 3D-QSAR pharmacophore model, most of
the compounds were predicted accurately, especially the
inactive compounds.

This different 2D-QSAR approach has the same key
inhibitory features as the 3D-QSAR pharmacophore
models, and shows robust performance and predictive
ability, making it an effective tool for predicting hERG
inhibitory potency, and one that is complementary to the
combined 3D-QSAR pharmacophore model.

Combination of the combined 3D-QSAR pharmacophore
model and the 2D-QSAR model

When analyzing and comparing the test set predictions
from the combined 3D-QSAR pharmacophore model and
the 2D-QSAR model, an additional statistic—predictive
accuracy—was evaluated, which represented the percentage
of correctly classified compounds. Using a threshold of
pIC50=−1, we determined the ability of each model to
classify the compounds into two classes: active compounds
(with pIC50>−1) and inactive compounds (with pIC50≤−1).
The results are summarized in Table 6. The formulae for
predictive accuracy are

Total accuracy ¼ nTP þ nTN
nP þ nN

ð3Þ

Descriptor Coefficient t-test

Intercept 265.53 4.5635

Number of aromatic bonds (X1) 0.16675 9.0751

Relative number of Cl atoms (X2) 28.104 8.9682

Minimum partial charge (Qmin) (X3) −22.864 -6.6925

Balaban index (X4) −1.6285 −8.2991
FPSA-3 (fractional PPSA; PPSA-3/TMSA; Zefirov’s PC) (X5) −173.75 −5.5304
Maximum valency of a C atom (X6) −67.109 −4.5558
HACA-1/TMSA (Zefirov’s PC) (X7) −55.214 −3.6681

Table 4 Values of the descrip-
tors in the regression equation
for the 2D-QSAR model
( pIC50 ¼ 265:53þ
0:16675X1þ 28:104X2�
22:864X3� 1:6285X4�
173:75X5 � 67:109X6�
55:214X7)

Table 5 Statistical parameters of the 2D-QSAR model

Number of
descriptors

R2 F Rcv
2 S2 RMSE

7 0.9121 66.67 0.8724 0.2827 0.4899
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Accuracy for actives ¼ nTP
nP

ð4Þ

Accuracy for inactives ¼ nTN
nN

; ð5Þ

where nP refers to the number of active compounds with
experimental pIC50>−1, nN refers to the number of inactive
compounds with experimental pIC50≤−1, while nTP refers
to the number of true positive predictions, and nTN refers to
the number of true negative predictions.

Both of the models exhibited good classification
abilities; however, the combined 3D-QSAR pharmacophore
model was better at classifying active compounds, while the
2D-QSAR model was better at classifying inactive com-
pounds. Due to the complementary nature of the two
approaches, we decided to combine these two models by
averaging the predicted results from them, in order to
enhance the reliability of predictions of hERG inhibitory
activity. We found that this final combined model
exhibited the highest and most robust predictive ability
of any of the models we considered in our study (see

Table 3), with the lowest MAE value of 0.45 and the highest
Rtest

2 of 0.75 (as shown in Fig. 3). Active compounds and
inactive compounds were largely distinguished accurately by
this model, with a predictive accuracy of 83.33% (see
Table 6), thus indicating high predictive ability during safety
screening.

Conclusions

In this study, we have developed robust models for the
prediction of hERG channel inhibitory potency, based on
the application of two different and complementary
ligand-based approaches: 3D-QSAR pharmacophore and
2D-QSAR. All models exhibited good performance, with
the values of R2 ranging from 0.9121 to 0.9410 for the
training set. The final model, which combined both the
combined 3D-QSAR pharmacophore model and the 2D-
QSAR model, was the most rational and predictive, as it
had the lowest MAE value of 0.45, the highest Rtest

2 value
of 0.75, and the highest classification accuracy of 83.33%
for the test set. On the other hand, the key inhibitory
features were shared by all of the models. The hydropho-
bic feature, which is usually an aliphatic carbon chain, an
aromatic ring or a halogen atom, is the most significant
and crucial character, further confirming that the aromatic
residues F652 and Y656 within the pore play a crucial role
in the hERG inhibitory interaction. The other crucial
feature is the flexibility of the inhibitors, as this allows
them to adopt compatible modes for interaction with such
a flexible and symmetrical protein. The final model
combining both the combined 3D-QSAR pharmacophore
model and the 2D-QSAR model is able to not only predict
hERG inhibitory potency accurately for early cardiac
safety screening, but it can also provide further insight
into the particular interaction modes that occur between
the hERG protein and its inhibitors. Meanwhile, based on
our findings, we also expect this final model to provide an
effective tool for avoiding hERG inhibitory liability and
thus enhanced cardiac risk in the design and optimization
of new chemical entities.

Fig. 3 Experimental pIC50 values for the test set versus predicted
pIC50 values obtained with the combination of the combined 3D-
QSAR pharmacophore model and the 2D-QSAR model

Table 6 The predictive accuracies of the combined 3D-QSAR pharmacophore model, the 2D-QSAR model, and the combination of these two
models

Thresholds Predictive accuracy Combined 3D-QSAR
pharmacophore model

2D-QSAR model Combination of the
two models

pIC50=−1 Total accuracy 76.67% 81.67% 83.33%

Accuracy for actives (pIC50>−1) 93.02% 79.07% 86.07%

Accuracy for inactives (pIC50≤−1) 35.29% 88.24% 76.47%
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Abstract Molecular docking and structural analysis of the
cofactor-protein interaction between NAD+ and human (h)
or mouse (m) 11β-hydroxysteroid dehydrogenase type 2
(11βHSD2) were performed with the molecular operating
environment (MOE). 11βHSD1 (PDB code: 3HFG) was
selected as a template for the 3D structure modeling of
11βHSD2. The MOE docking (MOE-dock) and the alpha
sphere and excluded volume-based ligand-protein docking
(ASE-dock) showed that both NAD+-h11βHSD2 and

NAD+-m11βHSD2models have a similar binding orientation
to the template cofactor-protein model. Our present study also
revealed that Asp91, Phe94, Tyr232 and Thr267 could be of
importance in the interaction between NAD+ and 11βHSD2.
NADP+ was incapable of entering into the cofactor-binding
site of the 11βHSD2 models. The present study proposes the
latest models for 11βHSD2 and its cofactor NAD+, and to
the best of our knowledge, this is the first report of a
m11βHSD2 model with NAD+.

Keywords 11βHSD2 . Anticancer drug . ASE-dock .

Cofactor-protein interactions . MOE

Abbreviations
11βHSD 11β-hydroxysteroid dehydrogenase
ASE-dock Alpha sphere and excluded

volume-based ligand-protein docking
HTS High throughput screening
LBS Ligand-binding site
MOE Molecular operating environment
MOE-dock Molecular operating environment docking
VS Virtual screening

Introduction

Molecular modeling has found widespread utility in the
field of drug development [1–3]. Various computational
approaches are employed, and they have the ability to
search large compound databases in silico and select a
limited number of candidate molecules for in vitro testing
to identify biologically desirable novel chemicals [4].
Virtual screening (VS) can be applied to search for potential
active hits from a virtual library that represents an existing
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compound library. It can also be used to estimate
absorption, distribution, metabolism and excretion (ADME)
parameters, drug-likeness and toxicity [2, 3, 5–8]. VS may
sometimes have advantages over high throughput screening
(HTS) in some applications. For example, HTS of 400,000
compounds resulted in 85 hits with IC50 values<100 μM,
while biological testing of 365 proposed compounds
derived by molecular docking returned 127 hits with IC50

values<100 μM [9].
Glucocorticoids and mineralocorticoids induce a variety

of physiological or pharmacological responses in cells,
including proliferation, differentiation and apoptosis via the
classic nuclear glucocorticoid and mineralocorticoid recep-
tors (GR and MR) [10–12]. To activate the receptors, the
amount of glucocorticoids and mineralocorticoids is depen-
dent on both the circulating levels and the prereceptor
metabolism catalyzed by 11β-hydroxysteroid dehydro-
genases (11βHSDs) in the cells [13]. 11βHSD type 1
(11βHSD1) is NADPH-preferring and has been shown to
have prominently reductase activity [14–16]. In contrast,
11βHSD type 2 (11βHSD2) is NAD+-requiring and shows
only dehydrogenase activity for endogenous glucocorti-
coids [17–19].

Our previous study revealed that glycyrrhetinic acid
(GA), an 11βHSD2 inhibitor, was selectively toxic
toward central nervous system-derived tumor cells [20],
which suggests that targeting 11βHSD2 with highly
selective inhibitors could be utilized for controlling the
development and progression of cancer. Furthermore, in
light of the advancement of in silico molecular modeling,
structural analysis of 11βHSD2 with its possible ligands
could be of importance for successful antitumor drug
development. Although a few 11βHSD2 models have
been reported [21–23], better and the latest models still
need to be developed with the advancement of in silico
modeling. Our strategy for the in silico approaches works

in three steps. The first step was to develop a model for
11βHSD2, which has been achieved recently [23]. The
second step is to analyze the cofactor-protein interaction
between NAD+ and 11βHSD2. The third step will be,
utilizing the results of the second step, to propose an
antitumor compound that strongly inhibits 11βHSD2. In
the present study, we will report the second step, the
molecular docking and structural analysis of the cofactor-
protein interaction between NAD+ and 11βHSD2 by a
highly sophisticated software package, the Molecular
Operating Environment (MOE) 2009.10 (Chemical Com-
puting Group Inc., Montreal, Canada).

Computational methods

Structural comparisons of the 11βHSD1 models

The crystal structure coordinates of 11βHSD1 (PDB code:
1XU7 [24], 1XU9 [24], 2BEL [25] and 3HFG [26]) were
loaded into the MOE for the in silico analysis of the
cofactor-protein interaction between NADP+ and 11βHSD1.

Homology modeling of 11βHSD2

Homology modeling of 11βHSD2 was executed as
previously reported [23]. In brief, the human (h)
11βHSD2 (NCBI reference sequence: NM_000196.3)
[27] and mouse (m) 11βHSD2 (NCBI reference sequence:
NM_008289.2) [28] sequences and the crystal structure
coordinates of h11βHSD1 (PDB code: 3HFG) [26] were
loaded into the MOE. The primary structures of
h11βHSD1, h11βHSD2 and m11βHSD2 were aligned,
carefully checked to avoid deletions or insertions in
conserved regions and corrected wherever necessary. A
series of h11βHSD2 and m11βHSD2 models were

Fig. 1 The structures of the 11βHSD1 models. The crystal structure
coordinates of h11βHSD1 (PDB code: (a) 1XU7, (b) 1XU9, (c) 2BEL
and (d) 3HFG) were loaded into the MOE and each model was

independently reconstructed. NADP+ in the h11βHSD1 models is
located in the LBS near the cofactor-binding motif and the catalytic
activity-related Ser170, Tyr183 and Lys187 triad

1038 J Mol Model (2012) 18:1037–1048



Fig. 2 RMSD values between the main chain atoms of the (a)
h11βHSD1 vs h11βHSD2, (b) h11βHSD1 vs m11βHSD2 and (c)
h11βHSD2 vs m11βHSD2 after main chain fit. RMSD values for
h11βHSD1 vs h11βHSD2, h11βHSD1 vs m11βHSD2 and
h11βHSD2 vs m11βHSD2 are 1.19, 1.03 and 2.62 Å, respectively.
The positions of the amino acid residues are shown on the x-axis,

while the RMSD values are shown on the y-axis. The RMSD values
for the residues located in the LBS near the cofactor-binding motif and
the catalytic activity-related triad are always less than 2 Å. (d) A
superimposition of the template h11βHSD1 (dark-gray), h11βHSD2
(green) and m11βHSD2 (red) models reveals that the three models
exhibit significant 3D similarities
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independently constructed with the MOE using a
Boltzmann-weighted randomized procedure [29] com-
bined with specialized logic for the handling of sequence
insertions and deletions [30]. The models with the best
packing quality function were selected for full energy
minimization and further inspection.

Binding site selection and exploration

The binding site selection and exploration for 11βHSD2
was executed as previously reported [23]. In brief, the Site
Finder module of the MOE was used to identify possible
substrate-binding pockets within the newly generated 3D
structures of 11βHSD2. Hydrophobic or hydrophilic
alpha spheres served as probes denoting zones of tight
atom packing. These alpha spheres were utilized to
define potential ligand-binding sites (LBSs) and as
centroids for the creation of dummy ligand atoms [31,
32]. The dummy atoms were matched to the corresponding
alpha spheres during the characterization of the LBSs in
h11βHSD2 and m11βHSD2. This method generates
bound conformations that approach crystallographic
resolutions [33].

MOE docking (MOE-dock)

The docking and analysis of the cofactor-protein
interaction between NAD+ and 11βHSD2 were per-
formed with the MOE-dock system along with the
simulated annealing method as a starter system [34].
The simulated annealing is a global optimization tech-
nique that is based on the Monte Carlo method [35]. It
explores various states of a configuration space by

generating small random changes in the current state
and then accepting or rejecting each new state according
to the Metropolis criterion [36]. An LBS was identified
by a cluster of hydrophobic and hydrophilic alpha spheres
and ligand atoms were matched to the corresponding
alpha spheres during the docking process. The ligand,
NAD+ in the present study, explored the conformational
space to locate the most favorable binding orientation and
conformation by aligning and matching all triangles of the
template points with compatible geometry. A total of 30
possible ligand poses were generated for h11βHSD2 or
m11βHSD2, and an affinity scoring function, ΔG, was
employed to rank candidate poses. Poses for the ligand
were also scored based on complementarity with binding
pocket alpha spheres.

Fig. 4 Docking simulations of NADP+ to 11βHSD2. (a) ASE-dock
for h11βHSD2. (b) ASE-dock for m11βHSD2. The cofactor NADP+

is incapable of entering into the cofactor-binding site of 11βHSD2.
The capability of NAD+ (Fig. 3a–d) and incapability of NADP+

(Fig. 4a and b) entering into the cofactor-binding site of the 11βHSD2
models support the previously reported in vivo function of 11βHSD2
as a NAD+-dependent dehydrogenase

Fig. 3 Docking simulations of NAD+ to 11βHSD2. The MOE-dock
and ASE-dock were performed to evaluate the present docking
simulation. (a) MOE-dock for h11βHSD2. (b) ASE-dock for
h11βHSD2. (c) MOE-dock for m11βHSD2. (d) ASE-dock for
m11βHSD2. Both simulations show that the cofactor NAD+ has
similar binding orientation to the Rossmann fold in the h11βHSD2

and m11βHSD2 models. The similarity between the docked NAD+-
11βHSD2 poses (Fig. 3a–d) and the NADP+-11βHSD1 models
(Fig. 1a–d) suggests that the present methods are capable of
generating the NAD+-11βHSD2 models similar to the reported near-
native 11βHSD1 complex
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Alpha sphere and excluded volume-based ligand-protein
docking (ASE-dock)

The docking and analysis of the cofactor-protein interaction
between NAD+ (or NADP+) and 11βHSD2 were also

performed with ASE-dock in the MOE [37]. In the ASE-
dock module, ligand atoms have alpha spheres within 1 Å.
Based on this property, concave models are created and
ligand atoms from a large number of conformations
generated by superimposition with these points can be
evaluated and scored by maximum overlap with alpha
spheres and minimum overlap with the receptor atoms. The
scoring function used by ASE-dock is based on ligand-protein
interaction energies and the score is expressed as a Utotal value.
The ligand conformations were subjected to energy minimi-
zation using the MMF94S force field [38], and 500
conformations were generated using the default systematic
search parameters. Five thousand poses per conformation
were randomly placed onto the alpha spheres located within
the LBS in 11βHSD2. From the resulting 500,000 poses, the
200 poses with the lowest Utotal values were selected for
further optimization with the MMF94S force field. During the
refinement step, the ligand was free to move within the
binding pocket.

Results and discussion

Structural comparisons of the 11βHSD1 models

The crystal structure coordinates of 11βHSD1 (PDB code:
1XU7 [24], 1XU9 [24], 2BEL [25] and 3HFG [26]) were
loaded into the MOE and each model was independently
reconstructed (Fig. 1a–d). The crystal structure resolution
for 1XU7, 1XU9, 2BEL and 3HFG were 1.8, 1.55, 2.11 and
2.3 Å, respectively. The cofactor-binding motif of Gly41-
XXX-Gly45-X-Gly47 [39–42] was conserved in all of the
11βHSD1 models. The secondary structures of all the
models exhibited a central 6- or 7-stranded all-parallel
β-sheet sandwich-like structure, flanked on both sides by
3-helices, and the models also exhibited similar 3D
structures. It has been proposed that Ser170 is associated
with catalysis by stabilizing the reaction intermediates,

Fig. 6 Structural comparison of
the 11βHSD2 models at their
LBSs. (a) Superimposition of
the h11βHSD2 (green) and
m11βHSD2 (magenta) models.
The LBSs are enclosed in a
yellow rectangle. (b) The LBSs
of the h11βHSD2 (green) and
m11βHSD2 (magenta) models.
Ser219, Tyr232 and Lys236 are
shown as stick models. Both
models exhibit similar structures
at their LBSs

Fig. 5 Analysis of the molecular surfaces of the LBSs. The molecular
surfaces of the LBSs (4.5 Å from NAD+) for the (a) h11βHSD2 and
(b) m11βHSD2 models were analyzed. The hydrogen-bond (sky-
blue), hydrophobic (light-brown) and hydrophilic (gray) regions in the
LBSs of 11βHSD2 reveal that the adenosine part of NAD+ is
somewhat surrounded by the hydrophobic regions (the close-up view,
middle and lower panels)
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that the Tyr183 hydroxyl group is the proton donor
involved in the electrophilic attack on the substrate
carboxyl group in a reduction reaction, and that Lys187
facilitates the proton transfer from the hydroxyl oxygen
of Tyr183 to the substrate [42]. NADP+ in the 11βHSD1
models was located in the LBS near the cofactor-binding
motif and the catalytic activity-related Ser170, Tyr183 and
Lys187 triad [39–42].

Homology modeling of the 11βHSD2 structures

11βHSD1 (PDB code: 3HFG) was selected as a template
(Fig. 1d) for the present 3D structure modeling of 11βHSD2
because of its good crystal structure resolution (2.3 Å) and its
information was the latest (from 2009) [26] among the
11βHSD1 models (Fig. 1a–d). The sequence alignment of
11βHSD1 and 11βHSD2 has previously been reported [23].

Fig. 7 Cofactor-protein
interaction between NAD+ and
11βHSD2. (a) A superimposi-
tion of the h11βHSD2 (green)
and m11βHSD2 (red) models
with NAD+. The two models
exhibit significant 3D
similarities. (b) The cofactor-
protein interaction plots for
NAD+-h11βHSD2 (green) or
NAD+-m11βHSD2 (red). The
bound conformation of NAD+

present in the LBS suggests that
NAD+ can form a strong
hydrogen bond with Asp91,
Phe94, Tyr232 and Thr267.
Apart from these common and
important interactions for the
cofactor NAD+, Ala168 and
His170 (for h11βHSD2) and
Lys141, Asn167, Gly169 and
Thr271 (for m11βHSD2) reveal
possible interactions with the
cofactor
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The % sequence identity between h11βHSD1 and h11βHSD2
was 21.4%, and that between h11βHSD1 andm11βHSD2was
23.7%. For the construction of the 11βHSD2 models, 100
independent models of the target proteins were built using a
Boltzmann-weighted randomized modeling procedure in the
MOE that was adapted from reports by Levitt [29] and
Fechteler et al. [30]. The intermediate models were evaluated
by a residue packing quality function, which is sensitive to the

degrees to which non-polar side-chain groups are buried and
hydrogen bonding opportunities are satisfied. The 11βHSD2
models with the best packing quality function and full energy
minimization were utilized in the present study. The secondary
structures of the 11βHSD2 models exhibited a central 6-
stranded all-parallel β-sheet sandwich-like structure, flanked
on both sides by 3-helices, which was also found in the
11βHSD1 models. The stereochemical qualities of the

Fig. 8 Cofactor-residue interac-
tion energies between the co-
factor and 11βHSD2. The
cofactor-residue interaction en-
ergies between (a) NAD+ and
h11βHSD2, (b) NAD+ and
m11βHSD2, (c) NADP+ and
h11βHSD2 and (d) NADP+ and
m11βHSD2 were calculated by
the methods of Labute [33]
using the MOE, assigning ener-
gy terms in kcal mol−1 for each
residue. Generally, a negative
value indicates that the residue
attracts the cofactor, while the
residue with a positive value
repels the cofactor. Gly89,
Gly93 and Gly95 in h and
m11βHSD2 appear to attract
NAD+. Ser219 and Lys236 in
h11βHSD2 and Tyr232 in
m11βHSD2 can also attract
NAD+ (Fig. 8a and b). In con-
trast, although the catalytic triad
in 11βHSD2 seem to attract
NADP+, the cofactor-binding
motif shows very little NADP+

attracting energies (Fig. 8c and
d), which supports the results in
Fig. 4 that NADP+ could not fit
into the LBS in 11βHSD2
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h11βHSD2 and m11βHSD2 models were assessed by
Ramachandran plots, and only 1.9% for h11βHSD2 [23] and
1.1% for m11βHSD2 were in the disfavored region, which
indicates that the phi and psi backbone dihedral angles in the
h11βHSD2 and m11βHSD2 models were reasonably accu-
rate. Root mean square deviation (RMSD) values between the
main chain atoms of the h11βHSD1 (3HFG) vs h11βHSD2
(Fig. 2a), h11βHSD1 vs m11βHSD2 (Fig. 2b) and
h11βHSD2 vs m11βHSD2 (Fig. 2c) after main chain fit
were 1.19, 1.03 and 2.62 Å, respectively. RMSD values for
each residue were also analyzed. The RMSD values for the
residues located in the LBS near the cofactor-binding motif
and the catalytic activity-related triad were always less than
2 Å (Fig. 2a–c). A superimposition of the template
h11βHSD1 (dark-gray), h11βHSD2 (green) and m11βHSD2
(red) models revealed that the three models exhibited
significant 3D similarities (Fig. 2d).

Docking simulations of NAD+ to 11βHSD2

The MOE-dock and ASE-dock were performed to evaluate
the present docking simulation. Both simulations showed
that the cofactor NAD+ had a similar binding orientation to
the Rossmann fold in the h11βHSD2 and m11βHSD2

models (Fig. 3a–d). The cofactor orientation in 11βHSD2
was also similar to that in 11βHSD1 (Fig. 1a–d). The
similarity between the present docked NAD+-11βHSD2
poses (especially with the ASE-dock simulations) and the
11βHSD1 models suggests that the present methods are
capable of generating the NAD+-11βHSD2 models similar
to the reported near-native 11βHSD1 complex. Thus, the
ASE-dock simulations were used in the subsequent docking
analyses. NADP+ was incapable of entering into the
cofactor-binding site of 11βHSD2 (Fig. 4a and b). Activity
of 11βHSD1 is NADP(H)-dependent and bi-directional
possessing both dehydrogenase and reductase activity, but
in vivo the enzyme appears to function almost exclusively
as a reductase [14–16]. By contrast, 11βHSD2 utilizes
NAD+, functions as a dehydrogenase and serves to protect
the MR from corticoids excess [17–19]. Our in silico results
in the present study showed the capability of NAD+ and
incapability of NADP+ entering into the cofactor-binding
site of the 11βHSD2 models, which supports the previously
reported in vivo function of 11βHSD2 as a NAD+-
dependent dehydrogenase.

The 11βHSD2 models also presented similar structures
of their LBSs and the molecular surfaces of the LBSs
(Fig. 5a and b). The hydrogen-bond (sky-blue), hydropho-

Fig. 9 Predicted interatomic
distances between the cofactor
and the catalytic triad. (a) NAD+

and h11βHSD2. (b) NADP+ and
h11βHSD2. (c) NAD+ and
m11βHSD2. (d) NADP+ and
m11βHSD2. For h11βHSD2,
the shortest distance between the
C4 atom of NAD+ and Tyr232 is
5.22 Å (Fig. 9a), while that
between NADP+ and Tyr232 is
7.98 Å (Fig. 9b). For
m11βHSD2, the distance
between NAD+ and Ser219 is
4.76 Å (Fig. 9c), while that
between NADP+ and Tyr232 is
7.56 Å (Fig. 9d). NADP+ is
always farther from the
catalytic triad
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bic (light-brown) and hydrophilic (gray) regions in the
LBSs of 11βHSD2 revealed that the adenosine part of
NAD+ was somewhat surrounded by the hydrophobic
regions (Fig. 5a and b; the close-up view, middle and lower
panels). This result is supported by the previous report by
Vincent et al. [43].

Cofactor-protein interaction between NAD+ and 11βHSD2

First, structural comparisons of the 11βHSD2 models
without NAD+ in the LBSs were executed. A superimpo-
sition of the h11βHSD2 (green) and m11βHSD2 (magenta)
models is shown in Fig. 6a. The two models exhibited
significant 3D similarities. They also presented similar

structures of their LBSs (Fig. 6b). A superimposition of
the h11βHSD2 (green) and m11βHSD2 (red) models with
NAD+ also demonstrated that the two models exhibited
significant 3D similarities (Fig. 7a). Furthermore, to
create the cofactor-protein interaction plots for NAD+-
11βHSD2, the Ligand Interactions module of the MOE
was used, which provided a clearer arrangement of
putative key intermolecular interactions that aid in
interpretation of the 3D juxtaposition of the cofactor and
the LBS in 11βHSD2 (Fig. 7b). Asp91 has been reported
to play an important role in the binding of the cofactor in
h11βHSD2 models [21, 44], and our present results
exhibited that Asp91, Phe94, Tyr232 and Thr267 could
be of importance in both the h11βHSD2 and m11βHSD2

Fig. 10 Docking simulation of
NAD+ to 11βHSD1 and
interaction between them. (a)
ASE-dock. (b) Cofactor-residue
interaction energies. (c)
Predicted interatomic distances.
NAD+ has a similar binding
orientation to the Rossmann fold
(Fig. 10a) in the h11βHSD1-
NADP+ model (PDB code:
3HFG). The conserved cofactor-
binding motif (Gly41, Gly45
and Gly47) and the catalytic
triad (Ser170, Tyr183 and
Lys187) could attract NAD+

(Fig. 10b). However, the
distance between NAD+ and the
catalytic triad in h11βHSD1 is
rather far (6.44 Å; Fig. 10c)
compared to the h11βHSD2-
NAD+ model (5.22 Å; Fig. 9a)
and the m11βHSD2-NAD+

model (4.76 Å; Fig. 9c), which
may be the reason why
11βHSD1 is NADPH-preferring
(not NAD+) [14–16] and
11βHSD2 is NAD+-requiring
[17–19]
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models. The bound conformation of NAD+ present in the
LBS suggests that NAD+ can form a strong hydrogen
bond with Asp91, Phe94, Tyr232 and Thr267. Apart from
these common and important interactions for the cofactor
NAD+, Ala168 and His170 (for h11βHSD2) and
Lys141, Asn167, Gly169 and Thr271 (for m11βHSD2)
revealed possible interactions with the cofactor. The
pentose bound to the nicotinamide part of NAD+ had
two interactions (Ala168 and Tyr232 for h11βHSD2;
Asn167 and Tyr 232 for m11βHSD2) with 11βHSD2.
The pentose in the adenosine part of NAD+ had two
interactions (Asp91 and Asp91 for h11βHSD2; Asp91 and
Gly169 for m11βHSD2) with 11βHSD2. Further, the
phosphoric acid part of NAD+ had two interactions
(His170 and Thr267 for h11βHSD2; Phe94 and Thr271
for m11βHSD2) with 11βHSD2. These interactions
perhaps contribute to the stable binding of NAD+ to
11βHSD2. Only Lys141 in m11βHSD2 was found to have
an interaction with the N1 position of the adenosine part
of NAD+. An interaction with the N1 position of
adenosine can be found in the famous Watson-Crick
DNA base pairing, and the NAD+-Lys141 interaction
may function as a further stabilizer of the NAD+-
m11βHSD2 binding.

Cofactor-residue interaction energies between NAD+

and 11βHSD2

Further, the cofactor-residue interaction energies were
calculated by the methods of Labute [33] using the MOE,
assigning energy terms in kcal mol−1 for each residue.
Generally, a negative value indicated that the residue
attracted the cofactor, while the residue with a positive
value repelled the cofactor. Among the conserved cofactor-
binding motif of Gly89-XXX-Gly93-X-Gly95 and the
Ser219, Tyr232 and Lys236 catalytic triad, Gly89, Gly93
and Gly95 in h and m11βHSD2 appeared to attract NAD+.
Ser219 and Lys236 in h11βHSD2 and Tyr232 in
m11βHSD2 could also attract NAD+ (Fig. 8a and b). In
contrast, although the catalytic triad in 11βHSD2 seemed to
attract NADP+, the cofactor-binding motif showed very
little NADP+ attracting energies (Fig. 8c and d), which
supports the results in Fig. 4 that NADP+ could not fit into
the LBS in 11βHSD2. These results were also supported by
the analysis of the distances between the C4 atom of NAD+

(or NADP+) and the nearest atom in the catalytic triad
(Fig. 9a–d). For h11βHSD2, the shortest distance between
NAD+ and Tyr232 was 5.22 Å (Fig. 9a), while that
between NADP+ and Tyr232 was 7.98 Å (Fig. 9b). For
m11βHSD2, the distance between NAD+ and Ser219 was
4.76 Å (Fig. 9c), while that between NADP+ and Tyr232
was 7.56 Å (Fig. 9d). NADP+ was always farther from the
catalytic triad.

Docking simulation of NAD+ to 11βHSD1 and interaction
between them

ASE-dock was performed to examine if NAD+ can fit into
the LBS in h11βHSD1. Interestingly, the simulation

Fig. 11 Docking simulation of a GA derivative and 11βHSD2. The
analyses of the ligand-receptor docking between a GA derivative
(Compound 31; OH at C3 of GA was replaced by NH2 [45].) and the
modeled 11βHSD2 (or 11βHSD1) were performed. (a) Compound 31
and h11βHSD2. (b) Compound 31 and m11βHSD2. (c) Compound
31 and h11βHSD1. The docking simulation shows that the compound
31 has a similar binding orientation to the LBS (Fig. 11a–c) in the
reported 11βHSD1-compound 31 complex [45]. This result suggests
that the homology modeling of 11βHSD2 and the docking simulations
in the present study are performed reasonably well
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showed that NAD+ had a similar binding orientation to the
Rossmann fold (Fig. 10a) in the h11βHSD1-NADP+ model
(PDB code: 3HFG). The cofactor-residue interaction
energies revealed that the conserved cofactor-binding
motif (Gly41, Gly45 and Gly47) and the catalytic triad
(Ser170, Tyr183 and Lys187) could attract NAD+

(Fig. 10b). However, the distance between NAD+ and the
catalytic triad in h11βHSD1 was rather far (6.44 Å;
Fig. 10c) compared to the h11βHSD2-NAD+ model
(5.22 Å; Fig. 9a) and the m11βHSD2-NAD+ model
(4.76 Å; Fig. 9c), which may be the reason why 11βHSD1
is NADPH-preferring (not NAD+) [14–16] and 11βHSD2
is NAD+-requiring [17–19].

Docking simulation of a GA derivative and 11βHSD2

The analyses of the ligand-receptor docking between a GA
derivative (Compound 31; OH at C3 of GAwas replaced by
NH2 [45].) and the modeled 11βHSD2 (or 11βHSD1) were
also performed. Compound 31 has been reported to inhibit
both 11βHSD1 and 2 [45]. The docking simulation showed
that compound 31 had a similar binding orientation to the
LBS (Fig. 11a–c) in the reported 11βHSD1-compound 31
complex [45]. This result suggests that the homology
modeling of 11βHSD2 and the docking simulations in the
present study were performed reasonably well.

Conclusions

The analysis of the cofactor-binding region in 11βHSD2
revealed that a subtle change of the NAD+ binding
orientation significantly altered its enzymatic activity [44],
which indicates that the location of the cofactor in the
enzyme is very important. Consequently, the location of the
cofactor possibly influences the physico-chemical proper-
ties of the LBS in the enzyme and has some effects on the
binding of the inhibitor to the enzyme. Thus, detailed
analysis of the cofactor-protein interaction is of great
significance in designing in silico 11βHSD2-inhibiotor
models for successful development of antitumor drugs.
The main objective in the present study was to analyze the
cofactor-protein interaction between NAD+ and 11βHSD2.
Two docking simulations were performed to analyze the
interaction between NAD+ and 11βHSD2. The similarity
between the NAD+-11βHSD2 poses and the previously
reported NADP+-11βHSD1 models suggests that the
present methods are capable of generating the NAD+-
11βHSD2 docking models similar to the near-native
NADP+-11βHSD1 complex. Our present results also
revealed that Asp91, Phe94, Tyr232 and Thr267 could be
of importance in both the NAD+-h11βHSD2 and NAD+-
m11βHSD2 interactions. Consequently, it is proposed that

the h11βHSD2 model, as well as the m11βHSD2 model,
with NAD+ in the present study will be suitable for further
in silico structure-based de novo drug design. Furthermore,
to the best of our knowledge, this is the first report of a
m11βHSD2 model with NAD+.
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Abstract The ReaxFF interatomic potential, used for
organic materials, involves more than 600 adjustable
parameters, the best-fit values of which must be determined
for different materials. A new method of determining the
set of best-fit parameters for specific molecules containing
carbon, hydrogen, nitrogen and oxygen is presented, based
on a parameter reduction technique followed by genetic
algorithm (GA) minimization. This work has two novel
features. The first is the use of a parameter reduction
technique to determine which subset of parameters plays a
significant role for the species of interest; this is necessary
to reduce the optimization space to manageable levels. The
second is the application of the GA technique to a complex
potential (ReaxFF) with a very large number of adjustable
parameters, which implies a large parameter space for
optimization. In this work, GA has been used to optimize
the parameter set to determine best-fit parameters that can
reproduce molecular properties to within a given accuracy.
As a test problem, the use of the algorithm has been
demonstrated for nitromethane and its decomposition
products.

Keywords Genetic algorithm . Force field . Decomposition
products . Potential parameters

PACS numbers 34.20.Cf . 83.10.Mj . 71.15.Pd .

31.50.-x . 33.15.-e

Introduction

Molecular dynamics (MD) simulations involve the use of a
potential function to determine the forces acting on individual
particles. The trajectories of the particles under the influence
of this self-consistent force yield the temporal evolution of the
system [1–4]. MD methods can be divided into ab initio and
classical methods. Ab initio methods, although very accurate
and general, are computationally extremely demanding.
Their application is thus restricted to relatively small systems
and short simulation times [5]. On the other hand, the use of
classical force fields allow the dynamical simulation of
millions of atoms, which makes them applicable to the study
of a wide variety of physical processes (e.g., shock waves,
dislocation dynamics, fracture and oxidation) that require
larger system sizes and simulation times. However, the force
fields are very difficult to develop, and their accuracy must
be established for each application. The main challenge is to
develop methodologies that retain the accuracy of quantum
mechanics while allowing large-scale simulations.

The interaction between atoms in a polyatomic molecule,
or in a solid, can be described in terms of the potential energy
surface (PES). This specifies the potential energy of a system
of atoms in terms of the coordinates of all the atoms. There are
two techniques for obtaining the PES. The first involves the
generation of potential energy data using ab initio electronic
structure methods, followed by a variety of fitting procedures
[6, 7]. The second technique involves fitting a functional
form for the PES to data obtained from high-resolution
spectroscopy [8] or scattering experiments [9, 10], such as
rotational spectra or vibrational energy levels. In the second
technique, it is a major task to gather available information to
construct a functional representation which can be used for
MD simulations [11–13]. Hence, other options have also
been explored, such as neural networks and interpolative
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moving least squares [14–16].The use of genetic algorithms
(GA) for determining best-fit potential parameters for nickel,
by matching solid-state properties, is reported in [17].

For complex, polyatomic molecules, particularly those
involving CHNO atoms, the potentials must allow for bond
formation and breaking, and for the influence of close-
neighbor effects on molecular structures. Potentials that take
these effects into account are called “reactive potentials”—
examples include Tersoff, Brenner, REBO, BEBO, Valbond,
and so on [2, 18–23]. An empirical interatomic potential has
been proposed by Tersoff for covalent systems. This potential
has the form of the Morse pair potential, with the bond
strength parameter depending upon the local environment,
and is the first attempt to explain the structural chemistry of
covalent systems. The Brenner potential [3] is based on the
Tersoff potential, but includes correction terms that account
for the overbinding of radicals and nonlocal effects. Hence, it
can be applied to hydrocarbons, graphite and diamond
lattices [3]. The Brenner potential can describe bond
breaking, but its formalism does not include nonbonding
contributions like Coulomb and van der Waals forces, which
are important in predicting the structures and properties of
many systems. Thus, this potential does not accurately
predict the potential energy curves for hydrocarbons and
graphite. Certain generalized forms of the Brenner potential
include nonbonding forces, but are still not able to accurately
predict the shapes of dissociation and reactive potential
curves [5].

The reactive empirical bond order (REBO) potential [19]
has also been developed by modifying the Tersoff potential.
The initial form of the potential was only dependent on
interatomic distances and did not include any dependence on
molecular shape. A more advanced version has eliminated
this limitation, but it still ignores long-range interactions and
partial charges [24, 25]. The bond energy bond order
(BEBO) [20, 21] and ValBond potentials [22, 23] also suffer
from the limitation that they cannot describe the fully bonded
equilibrium geometries of complex molecules [5].

The reactive force field ReaxFF appears to address all of
these problems; details are available from [5]. It uses a general
relationship between bond distance and bond order on the
one hand, and between bond order and bond energy on the
other. Valence terms, including contributions from torsion and

valence angles, are defined in terms of the same bond orders,
so that all of these terms smoothly go to zero as the bonds
break. ReaxFF has Coulomb and van der Waals potentials to
describe nonbonding interactions. This potential was initially
developed with hydrocarbons in mind, and later extended to
more complex systems consisting of carbon, hydrogen,
nitrogen and oxygen [26]. It requires a total of 611 parameters
for CHNO systems. Best-fit values of these parameters need
to be determined for a particular system of atoms.

We are interested in MD studies of the pressure- and
temperature-induced decompositions of CHNO materials
[27]. Hence, it is necessary to obtain the best-fit parameters
of ReaxFF for representative CHNO materials. That is the
topic of the present work.

In the present work, a best-fit form of the ReaxFF potential
was obtained by attempting to match experimentally known
molecular parameters (such as bond lengths, valence angles
and torsion angles) for the molecular species of interest and
for their decomposition products. This work has two novel
features. The first is the application of the GA minimization
technique to a complex potential (ReaxFF) with a very large
number of adjustable parameters, which implies a large
parameter space for optimization. The second novel feature
is the use of a parameter reduction technique to determine
which subset of the 611 parameters plays a significant role for
the species of interest; this is necessary to reduce the
optimization space to manageable levels.

In the “Computational technique” section, we describe
the principles behind the parameter reduction technique and
the GA algorithm. In “Results for nitromethane and its
decomposition products,” we identify the relevant subset of
ReaxFF parameters for a sample CHNO molecule and its
decomposition products. The “Results based on the genetic
algorithm” section describes the use of a genetic algorithm
to determine the best-fit values for this reduced set of
ReaxFF parameters. The limitations of the GA study are
then summarized, and conclusions are presented.

Computational technique

The ReaxFF potential makes use of more than 600 parameters
for molecules containing C, H, N and O atoms. In the present

Molecular
species

Atom type
and number

Atom type
and number

Atom type
and number

Atom type
and number

Atom type
and number

Atom type
and number

Atom type
and number

CH3N O2 C-1 H-2 H-3 H-4 N-5 O-6 O-7

CH3N O C-1 H-2 H-3 H-4 N-5 O-6

CH2O C-1 H-2 H-3 O-4

OH O-1 H-2

NO N-1 O-2

Table 1 Numbering for the
atoms in the molecular
species considered
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work, our objective is to illustrate a new method for
determining the best-fit values of these parameters for a given
reactive molecule and its decomposition products. In order to
reduce the computational cost, we choose a simple CHNO
molecule: nitromethane (CH3NO2) and its decomposition
products. Table 1 shows the molecular species considered,
and the numbering schemes for the atoms of each of these
molecular species.

Overall procedure

For a given set of ReaxFF parameters, we can perform
geometry optimization separately for each species based on
molecular mechanics (MM). The minimum energy state
yielded by MM gives the geometric properties for a given
species, such as bond lengths, bond energies, and valence
and torsion angles. These properties are then compared with

Table 2 Errors obtained in single parameter optimization. Terr=0.193 when single-parameter optimization was performed with 611 parameters

Name of
species

Property Atom
number

Atom
number

Atom
number

Atom
number

VN VR VM Ei

CH3 NO2 Bond distance 1 2 1.109 1.109 1.095 0.0002

CH3 NO2 Bond distance 1 3 1.108 1.1086 1.0939 0.0002

CH33 NO2 Bond distance 1 4 1.108 1.1086 1.0939 0.0002

CH3 NO2 Bond distance 1 5 1.545 1.5456 2.1954 0.1769

CH3 NO2 Bond distance 5 6 1.209 1.2098 1.2649 0.0021

CH3 NO2 Bond distance 5 7 1.209 1.2098 1.2649 0.0021

CH3 NO2 Valence angle 3 1 2 220.0 110.3 95.8 0.0043

CH3 NO2 Valence angle 4 1 3 218.0 109.8 96.1 0.0040

CH3 NO2 Valence angle 5 1 2 214.0 107.8 116.4 0.0016

CH3 NO2 Valence angle 1 5 6 238.0 119.2 153.2 0.0204

CH3 NO2 Valence angle 1 5 7 238.0 119.2 153.3 0.0204

CH3 NO2 Torsion angle 2 3 1 4 242.0 121.0 96.5 0.0102

CH3 NO2 Torsion angle 3 2 1 5 238.0 119.3 131.6 0.0027

CH3 NO2 Torsion angle 2 1 5 6 178.0 89.9 74.0 0.0079

CH3 NO2 Torsion angle 4 1 5 7 300.0 150.8 169.2 0.0037

CH2O Bond distance 1 2 1.106 1.1061 1.1373 0.0008

CH2O Bond distance 1 3 1.106 1.1061 1.1373 0.0008

CH2 O Bond distance 1 4 1.208 1.208 1.3046 0.0064

CH2O Valence angle 3 1 2 235.0 117.463 105.243 0.0027

CH2O Valence angle 4 1 2 242.5 121.267 127.378 0.0006

CH2O Valence angle 4 1 3 242.5 121.271 127.379 0.0006

CH2O Torsion angle 4 1 3 2 236.0 118.45 107.37 0.0022

CH3NO Bond distance 1 2 1.094 1.094 1.047 0.0018

CH3 NO Bond distance 1 3 1.092 1.092 1.048 0.0016

CH3 NO Bond distance 1 4 1.1101 1.1101 1.0493 0.0030

CH3 NO Bond distance 1 5 1.482 1.482 1.2934 0.0162

CH3 NO Bond distance 6 5 1.211 1.211 2.431 1.0156

CH3 NO Valence angle 4 1 3 218.0 109.3 102.1 0.0011

CH3 NO Valence angle 5 1 2 222.0 111.1 116.5 0.0006

CH3 NO Valence angle 5 1 3 214.0 107.3 115.3 0.0014

CH3 NO Valence angle 6 5 1 226.0 113.3 115.6 0.0001

CH3 NO Valence angle 2 1 3 216.0 108.8 118.4 0.0003

CH3 NO Torsion angle 4 1 3 2 236.0 118.45 107.37 0.0022

CH3 NO Torsion angle 5 1 2 3 230.0 115.75 128.80 0.0032

CH3 NO Torsion angle 6 5 1 2 244.0 122.22 136.50 0.0034

OH Bond distance 1 2 0.9396 0.9396 1.1456 0.0481

NO Bond distance 1 2 1.1223 1.1223 1.2296 0.0091
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the experimentally known (“reference”) values. The error in
each geometrical quantity is defined as

Ei ¼ VR � VMð Þ=VN½ �2; ð1Þ

where VR is the reference value, VM is the value yielded by
energy minimization, and VN is a suitable normalization
factor. The reference values were taken from [28, 29] or
computed using semiempirical molecular orbital calculations
with the MOPAC code [30].

The first two columns of Table 2 list the molecular species
and the geometrical properties that we seek to match by
adjusting values of the ReaxFF parameters. A total of 37
molecular properties, including bond lengths, valence and
torsion angles are taken into account when computing the
deviation. The atoms involved in calculating these 37
properties are also listed in columns 3–6 of the table.

The normalization factors VN are chosen as follows.
According to [5], the allowed deviations in the bond
lengths and angles were 0.01 Å and 2° respectively. Since
bond lengths are of the order of 1 Å, and bond angles are
typically of the order of 100°, this corresponds to allowed
deviations of 1% and 2%, respectively. Hence, in Eq. 1, the
normalizing factor for the bond length is taken to be the
same as its reference value, and as twice its reference value
for bond angles. For the bond energy, the reference value is
taken as VN. The values of VN and VR are given in columns
7 and 8 of Table 2.

Given the error in each geometrical quantity, we define
the overall objective function as:

Terr ¼
XNo

i¼1
Ei

h i
=No

� �1 2=

where No is the total number of properties being matched
and Terr is the function to be minimized.

Determination of significant parameters

The purpose of the present work is to illustrate a new best-fit
procedure by applying it to a single reactive molecule and its
decomposition products. For this restricted group of species, it
is expected that only a subset of the 611 parameters would
play a significant role, with the other parameters playing a
relatively minor role.We first need to determine the significant
parameters, and then to determine their best-fit values. This
identification of significant parameters is performed in two
stages, as described below.

The first stage, which involves preliminary screening, is a
single-parameter search [5]. The parameters are varied one at
a time, with the rest being held constant. Each parameter is
allowed to take on three different values, and the best-fit
value for the parameter is chosen by locating the minimum
of a parabola; this is somewhat similar to Brent’s method.

We observe that there are significant changes in Terr during
optimization with respect to certain parameters, while other
parameters yield relatively small changes. The parameters
that lead to significant changes in Terr can thus be identified.

If the set of parameters identified in this way is still too
large, we resort to a second stage. This involves calculating
the equivalent of the “cross-correlation” between the changes
in each of these input parameters and the resulting changes in
molecular properties. This second stage consists of the
following steps:

1. Start with a nominal set of parameters Pj0.
2. Apply a set of randomly-chosen mutations to this vector,

to generate, say, a set of 20,000 mutated vectors. Mutated
values of each parameter are generated using the relation

Pj ¼ Pj 0 � 1� Aj � Rn

� �
;

where Aj is the amplitude of the perturbation in the j-th
parameter and Rn is a random number lying between 0
and 1. Larger values of Aj give access to a larger search
space around the nominal point. On the other hand,
using very large values of Aj may lead to unphysical
choices of some parameters, especially those that are
used as exponents in the ReaxFF potential. Hence, the
second stage should be repeated for different values of
the amplitude Aj. In principle, the amplitudes Aj could be
different for each parameter. However, since the ampli-
tudes are normalized, we have opted to use one value
(Aj1) for parameters that appear as exponents in ReaxFF,
and another value (Aj2) for all other parameters.

3. Using a process called “mating” in GA theory, generate
combinations of these 20,000 vectors, yielding a total
of 40,000 final vectors. These vectors are stored as a
matrix A with dimensions of 40,000 × number of
parameters. Details of the mating process are explained
in the “Genetic algorithm procedure.”

4. For each of these vectors, perform molecular mechanics
(MM) calculations for nitromethane and its product

 19
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8004000
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Fig. 1 Evolution of Terr during single-parameter optimization with
respect to ReaxFF parameters. Ordinate shows 100×Terr
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species, and obtain the minimum energy state of each
species. This yields the equilibrated values of the
molecular properties listed in Table 2. The corresponding
deviations from the reference values are stored as a
matrix B with dimensions of 40,000 × number of
properties.

Each column in matrix A now contains 40,000 values
of a particular parameter, while each column in matrix B
contains the deviations in one molecular property.

5. Each element aij in a column of matrix A is then
normalized as follows:

anormalized ¼ aij � a

s
;

where a is the arithmetic mean and σ is the standard
deviation of the elements in that column. The same
process is applied to elements in matrix B. This
normalization is required because matrix A, consisting

Table 3 Errors obtained after single-parameter optimization with 190 parameters. Terr=0.0513

Name of
molecule

Property Atom
type

Atom
type

Atom
type

Atom
type

Weight Literature/exp.
value

ReaxFF
computed value

Error

CH3NO2 Bond distance 1 2 1.109 1.109 1.090 0.3×10−3

CH3NO2 Bond distance 1 3 1.108 1.1086 1.089 0.3×10−3

CH3NO2 Bond distance 1 4 1.108 1.1086 1.088 0.3×10−3

CH3NO2 Bond distance 1 5 1.545 1.5456 1.643 0.4×10−2

CH3NO2 Bond distance 5 6 1.209 1.2098 1.233 0.4×10−3

CH3NO2 Bond distance 5 7 1.209 1.2098 1.233 0.4×10−3

CH3NO2 Valence angle 3 1 2 220.0 110.3 95.2 0.47×10−2

CH3NO2 Valence angle 4 1 3 218.0 109.8 95.5 0.43×10−2

CH3NO2 Valence angle 5 1 2 214.0 107.8 120.6 0.36×10−2

CH3NO2 Valence angle 1 5 6 238.0 119.2 153.8 0.211×10−1

CH3NO2 Valence angle 1 5 7 238.0 119.2 152.4 0.193×10−1

CH3NO2 Torsion angle 2 3 1 4 242.0 121.0 95.8 0.109×10−1

CH3NO2 Torsion angle 3 2 1 5 238.0 119.3 131.9 0.28×10−2

CH3NO2 Torsion angle 2 1 5 6 178.0 89.9 93.6 0.4×10−3

CH3NO2 Torsion angle 4 1 5 7 300.0 150.8 155.9 0.3×10−3

CH2O Bond distance 1 2 1.106 1.1061 1.101 0.000

CH2O Bond distance 1 3 1.106 1.1061 1.101 0.000

CH2O Bond distance 1 4 1.208 1.208 1.226 0.2×10−3

CH2O Valence angle 3 1 2 235.0 117.463 113.55 0.3×10−3

CH2O Valence angle 4 1 2 242.5 121.267 123.225 0.1×10−3

CH2O Valence angle 4 1 3 242.5 121.271 123.226 0.1×10−3

CH2O Torsion angle 4 1 3 2 360.0 179.99 180.0 0.000

CH3NO Bond distance 1 2 1.094 1.094 1.148 0.24×10−2

CH3NO Bond distance 1 3 1.092 1.092 1.158 0.36×10−2

CH3NO Bond distance 1 4 1.1101 1.1101 1.143 0.9×10−3

CH3NO Bond distance 1 5 1.482 1.482 1.443 0.2×10−3

CH3NO Bond distance 6 5 1.211 1.211 1.23 0.2×10−3

CH3NO Valence angle 4 1 3 218.0 109.3 102.9 0.8×10−3

CH3NO Valence angle 5 1 2 222.0 111.1 115.4 0.4×10−3

CH3NO Valence angle 5 1 3 214.0 107.3 113.0 0.7×10−3

CH3NO Valence angle 6 5 1 226.0 113.3 125.7 0.3×10−2

CH3NO Valence angle 2 1 3 216.0 108.8 96.4 0.33×10−2

CH3NO Torsion angle 4 1 3 2 236.0 118.45 108.32 0.18×10−2

CH3NO Torsion angle 5 1 2 3 230.0 115.75 119.26 0.2×10−3

CH3NO Torsion angle 6 5 1 2 244.0 122.22 134.98 0.27×10−2

OH Bond distance 1 2 0.9396 0.9396 0.9438 0.000

NO Bond distance 1 2 1.1223 1.1223 1.190 0.37×10−2
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of the input parameters, and matrix B, consisting of
the deviations in the molecular quantities, physically
represent different quantities with very different
numerical values.

6. Compute matrix C, given by:

C ¼ ATB;

where C has the dimensions of number of input
parameters × number of deviations in output properties.

Each row in C corresponds to the cross-correlation
of one parameter with each of the deviations in
molecular properties. If all of the values in a row are
small, it is reasonable to claim that the parameter does
not significantly affect molecular properties.

This method is, in a sense, similar to calculating the
cross-correlation (CC) between two random variables X
and Y [31]. The CC gives an estimate of the linkage
between changes in the two variables. If the two variables
are only weakly coupled to each other, their cross-
correlation is small. Here, instead of X and Y being scalar,
we have vectors with dimensions corresponding to the
number of input parameters and the number of deviations
in output properties, respectively. The peak value of the
CC in a given row is the quantity of interest, since a
parameter must be retained in our optimization if it
significantly affects even one deviation in a molecular
quantity. We specify some cutoff value and select only
those parameters that have a peak CC higher than the
cutoff value. The cutoff must lie between 0 and 1. The
lower the value, the larger the number of parameters that
will be retained, and the greater the cost of subsequent
optimization.

As the value approaches unity, most parameters would
be rejected, which would reduce the optimization cost, but
at the risk of eliminating important physics from the
ReaxFF model. Cutoff values of 0.2, 0.4 and 0.6 have
been examined in this study.

The above procedure yields a subset of ReaxFF
parameters that significantly affect at least one of the
molecular properties listed in Table 2. Following this
parameter reduction, an optimization study is performed
based on GA. The GA procedure is described in the next
subsection.

Genetic algorithm procedure

The concept of genetic algorithms was inspired by Darwin’s
theory of evolution [32]. The idea is to perform natural
selection for some group of parameters G which accurately
describes the real system. The group of parameters are
allowed to breed by mating and mutation, after which
natural selection is carried out. Natural selection kills the
poorest adapted species. The selected species are then
allowed to breed by mating and mutation again, and so on
for each genetic iteration.

GA requires a starting population consisting of a
certain number of parameter vectors, such as 256 or
1024. The starting population is generated as follows.
Half the required number (e.g., 128 or 512) is generated
by adding random fluctuations to the reference vector,
yielding an additional set of 128 (or 512) parameter
vectors. This methodology is adapted from the concept
of mutation in GA. The remaining half is created by
adapting the concept of mating: the parameter vectors
generated above are “cut” at random positions and
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joined to yield a new pair of vectors. The procedure is
best illustrated with an example. Let the starting pair of
vectors be denoted by a1(i) and a2(i), 1≤ i≤51. Suppose
the random position is 20. The new set of vectors b1(i)
and b2(i) is then calculated as follows:

b1ðiÞ ¼ a1ði1 . . . 20Þ þ a2ði21 . . . 51Þ
b2ðiÞ ¼ a2ði1 . . . 20Þ þ a1ði21 . . . 51Þ
For each of the vectors generated above, corresponding

to a parameter set, molecular mechanics simulations are
carried out using the ReaxFF potential for each of the
species listed in Table 1. The steepest descent algorithm

is used to locate the energy minimum for each species.
Once the energy is minimized, we determine the bond
lengths, valence angles and torsion angles for the
molecules in the equilibrium configuration. This then
yields the values of the deviations listed earlier. Finally,
we get a single value of the function Terr for this parameter
set.

Each GA trial thus yields a vector of Terr values, with
each element of the vector corresponding to one parameter
set. Half of the parameter vectors—those that yield the
lowest values of Terr—are then selected for the next GA
trial, with the rest being eliminated.
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Note that, in the first trial, the starting point is a single
reference vector from which the desired population is
generated by a combination of mutation and mating, as
described above. However, in successive trials, 50% of
the vector population is yielded by the last step. For
example, if the total desired population has a size of 256,
the last trial yields 128. The remaining 50% (128
vectors) are generated as follows. We extract half (64)
of the vectors yielded by the last trial—those
corresponding to the lowest Terr values. Sixty-four vectors
are then created by random mutations of these vectors, and
the remaining 64 are created by randomly mating these 64.
Thus, we have a total of 128 vectors obtained from the
previous trial and 128 newly created vectors produced
using the mutation–mating procedure.

Results for nitromethane and its decomposition
products

Single-parameter search for parameter reduction

All 611 parameters of the Reaxff potential are used in this
step. Figure 1 shows the variation of Terr during this
optimization process. Columns 9 and 10 of Table 2 show
the results obtained at the end of this 611-parameter
optimization.

We observe that there are significant changes in Terr with
respect to certain parameters, while other parameters yield
relatively small changes. This study yields a set of 190
parameters which significantly affect Terr. We then repeat the
single-parameter search with this reduced set of 190
parameters, yielding the final result given in Table 3. The

error falls further to 0.05. The 190 parameter values thus
obtained form the starting point for the next stage of
optimization: cross-correlation calculation.

Cross-correlation calculation for parameter reduction

The set of 190 significant parameters identified above still
defines a rather large search space. In order to cut down on
the number of input parameters even further, we need to
calculate the equivalent of “cross-correlation” between each
of these 190 input parameters and the 37 deviations, using
the procedure defined in the “Determination of significant
parameters” section.

Figure 2 shows the variation in the CC of two
parameters with the 37 molecular deviations. The highest
values observed are 0.92 and 0.24 for the 41st and 37th
parameters, respectively. This means that the 41st parameter
is highly significant while the 37th parameter is not. In the
same way, we determine the highest CC for all 190
parameters, which are shown in Fig. 3. Imposing a cutoff
of 0.7 reduces the number of significant parameters to 51.

As explained in the “Determination of significant
parameters” section, cross-correlation results are affected
by three choices:

1. Amplitudes Aj1 and Aj2. In order to determine the
sensitivity of the results, we have examined the sets
(Aj1, Aj2) = (0.05, 0.1), (0.1, 0.2) and (0.4, 0.5),
respectively. For higher amplitudes, many combinations
of parameters are likely to yield unphysical results for
molecular properties. Such parameter sets are rejected
altogether in this study.

Table 4 Cutoff=0.2

No. of
vectors

Amplitude
variation 0.05–0.1

Amplitude
variation 0.1–0.2

Amplitude
variation 0.4–0.5

28 190 190 190

190 48 48 30

380 23 28 0

570 20 24 0

1710 22 22 0

1900 21 22 0

3800 20 23 0

5130 21 23 0

15390 21 23 0

19000 21 23 0

38000 14 23 0

45000 13 23 0
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Fig. 6 Serial numbers of parameters selected for a vector size of 45,000.
Cutoff level is 0.2. Results are shown for two different amplitude levels
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2. The cutoff used for the peak cross-correlation value: we
have examined 0.2, 0.4, 0.6 and 0.7.

3. The number of vectors generated. This sensitivity is
examined below.

The number of vectors should naturally be much larger
than the number of parameters (190) so that we sample
various combinations. The solution is to progressively
increase the number of vectors until the number of parameters
accepted after the cross-correlation study becomes constant.
Hence, we have varied the number of vectors progressively
from 28 (1/7 the number of parameters) to 45,000 (fifty times
the number of parameters).

For an amplitude set of (0.05, 0.1), Figure 4 shows the
maximum number of parameters selected as a function of
the number of vectors. The following points may be noted:

1. As expected, the number of parameters retained is a
sensitive function of the cutoff.

2. For a given cutoff, we would expect the number of
parameters retained to become constant beyond a
certain number of vectors. While this is true up to
19,000 vectors, there is a surprising fall in the number
of parameters retained beyond that point. The probable
explanation for this is that a higher number of vectors

gives access to a larger number of combinations of
ReaxFF parameters. This allows the significances of
parameters to be determined separately. The conclusion
is that a minimum number of vectors is necessary for
the CC study.

Figure 5 shows the same results for an amplitude set of
(0.1, 0.2). The results become constant as we increase the
number of parameter sets beyond 5,000. The results
between 5,000 and 19,000 are close to those in Fig. 4.
However, there is no fall beyond 19,000. This is probably
because, due to the higher-amplitude perturbations, we
require a larger number of vectors to properly sample the
search space.

The conclusion is that for a given perturbation amplitude,
the number of vectors must be progressively increased to a
high enough value until the result becomes constant. Also, the
study must be repeated for different amplitudes to get a
reasonably large search space.

Table 4 shows the number of parameters selected as a
function of the number of vectors for different amplitudes
and for a cutoff level of 0.2. For the case of an amplitude of
0.4–0.5, only the case with 190 vectors leads to the
selection of any parameters. This is because, due to the
large amplitude, most parameter sets lead to unphysical
results, and are thus rejected altogether.

So far, we have seen that using a larger amplitude for a
given cutoff leads to the acceptance of a slightly higher
number of parameters. It is then necessary to check if this
process has converged (i.e., whether the parameters selected
are mostly the same for different amplitudes). Figure 6
shows the results for a fixed cutoff of 0.2 for three
amplitudes. The abscissa lists the serial numbers of the
parameters. We see that amplitude sets of (0.05–0.1) and
(0.1–0.2) lead to the selection of essentially the same
parameters, with only one exception. This shows that the
process has converged.

This result shows that, after convergence, only 5–15
parameters are selected for a cutoff threshold of 0.6. At
this point, it is necessary to make a choice between
different options before starting GA optimization. The
first is to continue with this cutoff threshold and number

Amplitude
variation

No. of significant
parameters for a
cutoff of 0.2

No. of significant
parameters for a
cutoff of 0.4

No. of significant
parameters for a
cutoff of 0.6

No. of significant
parameters for a
cutoff of 0.7

0.05–0.1 190 184 87 51

0.1–0.2 190 188 135 86

0.4–0.5 190 179 82 48

Table 5 Parameter vector
set=28
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of vectors; GA would then proceed with a rather small
number of parameters, which is computationally attrac-
tive but may not yield a good optimum. The second is to
reduce the cutoff, retaining the same number of vectors,
but we might then include parameters that are known to
be irrelevant. The third option is to retain a high cutoff

but reduce the number of vectors. The third option
ensures that only parameters that are highly correlated
are included in GA, although the vector space has not
been adequately sampled.

In the present study, the purpose is to illustrate the
overall technique rather than to make a judgement about the

Table 6 Deviations in molecular quantities corresponding to GA trial 165

Name of
molecule

Property Atom
type

Atom
type

Atom
type

Atom
type

Weight Literature/exp.
value

ReaxFF
computed value

Square error

CH3NO2 Bond distance 1 2 1.109 1.109 1.1055 0.9416×10−5

CH3NO2 Bond distance 1 3 1.108 1.10856 1.10372 0.1905×10−4

CH3NO2 Bond distance 1 4 1.108 1.10862 1.10376 0.1917×10−4

CH3NO2 Bond distance 1 5 1.545 1.5456 1.5446 0.4066×10−6

CH3NO2 Bond distance 5 6 1.209 1.20976 1.2224 0.1093×10−3

CH3NO2 Bond distance 5 7 1.209 1.20976 1.2224 0.1095×10−3

CH3NO2 Valence angle 3 1 2 220.0 110.3 110.1 0.8646×10−6

CH3NO2 Valence angle 4 1 3 218.0 109.8 110.2 0.3124×10−5

CH3NO2 Valence angle 5 1 2 214.0 107.8 108.1 0.1477×10−5

CH3NO2 Valence angle 1 5 6 238.0 119.2 119.2 0.1564×10−6

CH3NO2 Valence angle 1 5 7 238.0 119.2 119.3 0.1407×10−7

CH3NO2 Torsion angle 2 3 1 4 242.0 121.0 121.6 0.5859×10−5

CH3NO2 Torsion angle 3 2 1 5 238.0 119.3 119.2 0.1741×10−6

CH3NO2 Torsion angle 2 1 5 6 178.0 89.9 89.5 0.4585×10−5

CH3NO2 Torsion angle 4 1 5 7 300.0 150.8 151.2811 0.2572×10−5

CH2O Bond distance 1 2 1.106 1.1061 1.09007 0.2078×10−3

CH2O Bond distance 1 3 1.106 1.1061 1.0901 0.2063×10−3

CH2O Bond distance 1 4 1.208 1.208 1.2558 0.1566×10−2

CH2O Valence angle 3 1 2 235.0 117.463 111.034 0.7483×10−3

CH2O Valence angle 4 1 2 242.5 121.267 124.474 0.175×10−3

CH2O Valence angle 4 1 3 242.5 121.271 124.49 0.176×10−3

CH2O Torsion angle 4 1 3 2 360.0 179.99 180.0 0.7714×10−9

CH3NO Bond distance 1 2 1.094 1.094 1.1046 0.9395×10−4

CH3NO Bond distance 1 3 1.092 1.092 1.095 0.9525×10−5

CH3NO Bond distance 1 4 1.1101 1.1101 1.0853 0.4988×10−3

CH3NO Bond distance 1 5 1.482 1.482 1.487 0.9668×10−5

CH3NO Bond distance 6 5 1.211 1.211 1.214 0.7618×10−5

CH3NO Valence angle 4 1 3 218.6 109.3 108.3 0.2128×10−4

CH3NO Valence angle 5 1 2 222.0 111.1 109.9 0.2558×10−4

CH3NO Valence angle 5 1 3 214.0 107.3 113.0 0.7×10−3

CH3NO Valence angle 6 5 1 226.0 113.3 117.7 0.38107 × 10−3

CH3NO Valence angle 2 1 3 216.0 108.8 105.962 0.1726×10−3

CH3NO Torsion angle 4 1 3 2 236.0 118.45 115.34 0.1734×10−3

CH3NO Torsion angle 5 1 2 3 230.0 115.75 118.67 0.1612×10−3

CH3NO Torsion angle 6 5 1 2 244.0 122.22 139.58 0.50626× 10−2

OH Bond distance 1 2 0.9396 0.9396 0.9369 0.2572×10−5

NO Bond distance 1 2 1.1223 1.1223 1.1223 0.3182×10−9

Terr=0.0164
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best choice for CC calculation. Hence, we have chosen to
use the results for the smallest-sized vector set (28), but
with a high cutoff of 0.7. Table 5 shows the CC results. A
cutoff of 0.7 yields 51 useful parameters for an amplitude
set of 0.05–0.1.

This parameter set is used in the next stage: GA
optimization.

Results based on the genetic algorithm

The GA process is now started with the reference vector
yielded by single-parameter optimization, corresponding to
Terr=0.0513, as shown in Table 3. The optimization varies
only the 51 significant parameters determined by the CC
study.

We have performed a large number of GA trials
following the procedure given in the “Genetic algorithm
procedure” section, using a population of 256 vectors. For
the 1st and 165th GA trials, Fig. 7 shows the lowest 128 Terr
values as a function of the vector number. The minimum
Terr value yielded by the first trial is 0.02, and this goes
down to 0.0164 after the 165th trial. The individual
deviations in molecular properties yielded by the 165th
trial are shown in Table 6.

The best vector obtained from 165 trials with a
population size of 256 was then used to initiate a new GA
study, with a population size of 1024. Results are shown in
Fig. 8. After the completion of 74 and 134 GA trials, we
obtain minimum Terr values of 0.01578 and 0.01556,
respectively, indicating that the optimization has
approached its best result.

The best result of 0.015 is obtained after 1250 GA trials.
Table 7 presents the deviations at this point. The individual

deviations are generally below acceptable limits, except for
a torsion angle in CH3NO.

Limitations of this study

1. The literature on genetic algorithms describes a number
of ways of performing mutation and mating operations
[7, 17, 33]. Only one of these schemes has been applied
in this work. A more detailed study, trialing different
schemes, could yield better results.

2. The cross-correlation study yields a reduced parameter
set. The number of parameters in that set depends upon
the amplitudes, cutoff level and the number of vectors
chosen. The final optimization results should be
determined for different choices in the CC process, in
order to increase the probability of finding a “global”
minimum.

3. Chemical reactions such as molecular decomposition
involve transition states far from equilibrium. There-
fore, a reduced parameter set optimized for fits to
equilibrium molecular structures may not necessarily
represent reactions properly. We plan to extend this
methodology to match sections of the potential energy
surface corresponding to distorted/extended states of
these species.

4. The genetic algorithm converges slowly. The RMS
error reduces from 0.02 to 0.0164 in the 165th trial,
and later on reduces to 0.015 after 1250 trials. One
explanation for this slow rate of convergence is that
the present GA algorithm retains the vectors yielding
the lowest values of the objective function. This
means that the vectors get progressively closer to a
single minimum, reducing the rate of convergence
and also restricting the result to a single minimum
which may turn out to be a local minimum. There
are alternate GA schemes where vectors yielding
higher Terr values are also retained, although with a
probability that is inversely related to the value of Terr
[33]. That technique is more likely to locate the global
minimum.

Conclusions

We have obtained a best-fit form of the ReaxFF potential
for nitromethane and its decomposition products by
matching experimentally known molecular parameters,
such as bond lengths, valence angles and torsion angles.
This work has two novel features. The first is the use of
a parameter reduction technique to determine which
subset of the 611 ReaxFF parameters plays a significant
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role for the species of interest; this is necessary to reduce
the optimization space to manageable levels. The second
is the application of GA techniques to a complex
potential (ReaxFF) with a very large number of adjust-
able parameters, which implies a large parameter space
for optimization.

Using a subset of 51 ReaxFF parameters, we have
obtained a reasonably good match to 37 molecular
properties for nitromethane and its decomposition products,
with a root mean square deviation of 1.5%. It is expected
that the use of more sophisticated GA algorithms would
yield an even better match to reference data.

Table 7 Results corresponding to GA trial 1250

Name of
molecule

Property Atom
type

Atom
type

Atom
type

Atom
type

Weight Literature/exp.
value

ReaxFF
computed value

Error

CH3NO2 Bond distance 1 2 1.109 1.109 1.1086 0.9921×10−7

CH3NO2 Bond distance 1 3 1.108 1.10856 1.106 0.5037×10−5

CH3NO2 Bond distance 1 4 1.108 1.10862 1.1063 0.4153×10−5

CH3NO2 Bond distance 1 5 1.545 1.5456 1.538 0.224×10−4

CH3NO2 Bond distance 5 6 1.209 1.20976 1.214 0.1385×10−4

CH3NO2 Bond distance 5 7 1.209 1.20976 1.214 0 0.12335 × 10−4

CH3NO2 Valence angle 3 1 2 220.0 110.3 110.042 0.13647 × 10−5

CH3NO2 Valence angle 4 1 3 218.0 109.8 110.0347 0.11594 × 10−5

CH3NO2 Valence angle 5 1 2 214.0 107.8 108.0077 0.94234 × 10−6

CH3NO2 Valence angle 1 5 6 238.0 119.2 119.2 0.2259×10−8

CH3NO2 Valence angle 1 5 7 238.0 119.2 119.2 0.8956×10−7

CH3NO2 Torsion angle 2 3 1 4 242.0 121.0 121.3 0.22617 × 10−5

CH3NO2 Torsion angle 3 2 1 5 238 0 119.3 119.3 0.434×10−7

CH3NO2 Torsion angle 2 1 5 6 178.0 89.9 89.7 0.18777 × 10−5

CH3NO2 Torsion angle 4 1 5 7 300.0 150.8 151.11 0.1346×10−5

CH2O Bond distance 1 2 1.106 1.1061 1.0961 0.82295 × 10−4

CH2O Bond distance 1 3 1 106 1.1061 1.0961 0.81514 × 10−4

CH2O Bond distance 1 4 1.208 1.208 1.184 0.40849 × 10−3

CH2O Valence angle 3 1 2 235.0 117.463 110.58 0.85778 × 10−3

CH2O Valence angle 4 1 2 242.5 121.267 124.7 0.2004×10−3

CH2O Valence angle 4 1 3 242.5 121.271 124.719 0.2021×10−3

CH2O Torsion angle 4 1 3 2 360.0 179.99 180.0 0.7714×10−9

CH3NO Bond distance 1 2 1 1.094 1.094 1.102 0.5723×10−4

CH3NO Bond distance 1 3 1.092 1.092 1.0954 0.9851×10−5

CH3NO Bond distance 1 4 1.1101 1.1101 1.0803 0.72236 × 10−3

CH3NO Bond distance 1 5 1.482 1.482 1.485 0.50418 × 10−5

CH3NO Bond distance 6 5 1.211 1.211 1.203 0.48259 × 10−4

CH3NO Valence angle 4 1 3 218.6 109.3 109.2 0.166302 × 10−4

CH3NO Valence angle 5 1 2 222.0 111.1 109.2 0.77436 × 10−4

CH3NO Valence angle 5 1 3 214 0 107 3 108 7 0.40815 × 10−4

CH3NO Valence angle 6 5 1 226.0 113.3 118.1 0.45154 × 10−3

CH3NO Valence angle 2 1 3 216.0 108.8 109.2 0.3112×10−5

CH3NO Torsion angle 4 1 3 2 236.0 118.45 115.34 0.1734×10−3

CH3NO Torsion angle 5 1 2 3 230.0 115.75 118.67 0.1612×10−3

CH3NO Torsion angle 6 5 1 2 244.0 122.22 139.58 0.50626 × 10−2

OH Bond distance 1 2 0.9396 0.9396 0.937 0.763739× 10−5

NO Bond distance 1 2 1.1223 1.1223 1.1223 0.2717×10−9

Terr = 0.015
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Abstract Mur ligases are bacterial enzymes involved in the
cytoplasmic steps of peptidoglycan biosynthesis and are
viable targets for antibacterial drug discovery. We have
performed virtual screening for potential ATP-competitive
inhibitors targeting MurC and MurD ligases, using a
protocol of consecutive hierarchical filters. Selected com-
pounds were evaluated for inhibition of MurC and MurD
ligases, and weak inhibitors possessing dual inhibitory
activity have been identified. These compounds represent
new scaffolds for further optimisation towards multiple Mur
ligase inhibitors with improved inhibitory potency.

Keywords ATP. Inhibitor . Multiple ligand .Mur ligase .

Pharmacophore . Virtual screening

Introduction

The increasing emergence of Gram-positive and Gram-
negative bacterial strains resistant to most of the currently
available antibiotics has compromised the treatment of

bacterial infections and led to increased morbidity and
mortality worldwide. In a quest for new antibacterial drugs
for combating bacterial drug-resistance, the biochemical
machinery involved in peptidoglycan biosynthesis remains a
viable source of unexploited targets [1]. Peptidoglycan is an
essential cell-wall polymer unique to prokaryotic cells that
preserves cell integrity by withstanding high internal osmotic
pressure and maintaining a defined cell shape [2, 3]. The
biosynthesis of peptidoglycan is a multi-step process
comprising intracellular assembly of the UDP-MurNAc-
pentapeptide, which is subsequently translocated through
the cytoplasmic membrane and incorporated into the
growing peptidoglycan layer. ATP-dependent Mur ligases
(MurC to MurF) catalyze a series of reactions leading to
UDP-MurNAc-pentapeptide by sequentially adding L-Ala
(MurC), D-Glu (MurD), a diamino acid which is generally L-
Lys in Gram-positive or meso-diaminopimelic acid in Gram-
negative bacteria (MurE) and D-Ala-D-Ala (MurF), to the
starting MurC substrate UDP-MurNAc [4]. Mur ligases are
essential for the survival of bacteria, which makes the
discovery of their inhibitors an important challenge [4, 5].

Mur ligases catalyze the formation of a peptide or amide
bond between the carboxyl group of the UDP-substrate and
the amino group of the condensing amino acid. They
operate by similar chemical mechanisms [6, 7] (Fig. 1) and,
as shown for MurC and MurF, an ordered kinetic
mechanism [8, 9]. The initial step of the enzymatic reaction
is the binding of ATP and the corresponding UDP-substrate
to the free enzyme, which is followed by ATP-promoted
activation of the carboxyl group of the UDP-substrate. The
generated acylphosphate intermediate is then attacked by
the amino group of the incoming amino acid or dipeptide.
The resulting tetrahedral intermediate breaks down with
elimination of inorganic phosphate and concomitant forma-
tion of a peptide or amide bond (Fig. 1).
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It is now widely recognized that multiple ligands –
compounds designed to bind to more than one target – can
be more beneficial therapeutically than highly target-
specific ligands. Design of the multiple ligands is usually
a demanding challenge, with the need to appropriately
balance affinities for different targets while preserving their
drug-like properties [10]. It was shown, using network
models of antibacterial drugs, that multitarget attacks
perturb complex systems more effectively than focused
attacks, even if the number of targeted interactions is the
same [11]. Targeting multiple bacterial enzymes that are
structurally related or recognize common structural motifs
with designed multiple ligands could not only lead to potent
antibacterial activity but also reduce the frequency of target-
mediated resistance to such a compound, since mutations
conferring resistance would have to occur in at least two
different target genes in a single generation [12]. Since Mur
ligases share the same catalytic mechanism and possess
several conserved amino acid residues in their active sites,
it should be possible to design multiple ligands inhibiting
more than one Mur ligase. Multiple inhibition of Mur
ligases could be achieved, either by mimicking the UDP-
MurNAc part of the UDP-substrates or by targeting the
ATP-binding site of the enzymes. We have recently reported
trihydroxybenzylidenethiazolidin-4-ones as multiple Mur
ligase inhibitors and demonstrated by high-resolution NMR
experiments that they interact mainly with the residues
flanking the UDP-MurNAc-L-Ala-binding site of MurD
ligase [13].

ATP-binding pockets of Mur ligases, which appear to
be highly conserved throughout the enzyme family [14–
16], are another possible target for the discovery of
multiple ligands. However, targeting the ATP-binding site
of bacterial enzymes is associated with several problems.
First, an ATP-competitive inhibitor must be able to
compete with the high ATP concentration in the bacterial
cell (0.6 – 18 mM) [17]. This ATP concentration is similar
to that in human cells (1 – 10 mM) [18] and it was shown
successfully with protein kinases that it is possible to
design competitive and selective inhibitors of the ATP-
binding site. Secondly, inhibitor binding to the ATP-
binding site must be selective for the targeted bacterial
enzyme over human ATP-dependent enzymes, particularly
kinases. Nevertheless, recent successful examples of ATP-

competitive bacterial enzyme inhibitors possessing anti-
bacterial activity and displaying good selectivity profiles
with respect to human enzymes show that these challenges
can be overcome [19].

We studied the ATP-binding site of MurD ligase (PDB
entry: 3UAG) [6] using ProBiS [20, 21], a Web server for
detecting protein binding sites based on local structural
alignments, and found that the MurD ATP-binding site is
very similar to those of the other members of the three
substrate amide ligase superfamily (MurC, MurE and
MurF) [15] and that it is not closely related to those of
ATP-utilizing human enzymes [19]. These results make the
ATP-binding site of Mur ligases a promising target for the
design of multiple ligands not interacting with human ATP-
binding enzymes.

Ligand- or structure-based virtual screening (VS),
which involves computational analysis of large libraries
of compounds and subsequent selection of a smaller
subset for biological testing, is an alternative to exper-
imental high-throughput screening (HTS) [22]. VS has
already led to the discovery of Mur ligase inhibitors
designed to target the UDP-substrate-binding site [23, 24].
In the present paper, we describe a VS campaign aimed to
discover the first ATP-competitive multiple Mur ligase
inhibitors. This campaign has identified some compounds
showing weak MurC and MurD inhibitory activity which
feature new scaffolds for the design of ATP-competitive
inhibitors of Mur ligases.

Methods

Sequence alignment

Amino acid sequences of all four Mur ligases from E. coli
were retrieved from the UniProt archive (UniProt accession
numbers: P17952 for MurC, P14900 for MurD, P22188 for
MurE and P11880 for MurF) [25]. The amino acid
sequences were aligned using the Align Multiple Sequences
protocol with slow pair-wise sequence alignment available
in Accelrys Discovery Studio 2.5 [26] running on a
workstation with Intel Core i7 860 CPU processor, 8 GB
RAM, two 750 GB hard drives and an Nvidia GT220 GPU
graphic card, running Centos 5.5.

Fig. 1 Catalytic mechanism of Mur ligases
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Virtual screening

All structural handling was performed using SYBYL
[27] running on a Silicon Graphics O2 (R5000) worksta-
tion. As database engine to perform all initial searches, the
UNITY [28] system of Tripos was used. For all ligands
considered, a 3D structure has been generated from the 2D
chemical formula with the program CORINA [29].
Protonation states have been assumed in the standard
setting as suggested by CORINA. Hot spot analysis was
performed using GRID [30] and graphical display was
achieved by Pymol [31]. Definition of a search pharma-
cophore was accomplished through the facilities imple-
mented in UNITY. Parallel docking was done with FlexX
[32, 33] under the FlexX-Pharm pharmacophore type
constraints running on a cluster of Linux PCs. Final
docking was done with GOLD [34].

Colorimetric enzyme inhibition assay

The target compounds were tested for their ability to inhibit
the addition of L-Ala (d-Glu) to UDP-MurNAc (UDP-
MurNAc-L-Ala) catalyzed by MurC (MurD) from Escher-
ichia coli [35, 36]. Detection of the orthophosphate
generated during the reaction was based on the colorimetric
Malachite green method, as described [37], with slight
modifications. A mixture with a final volume of 50 μL
contained 50 mM Hepes, pH 8.0, 5 mM MgCl2, 10 mM
(NH4)2SO4, 0.01% Triton X-100, 120 μM UDP-MurNAc
(80 μM UDP-MurNAc-L-Ala), 120 μM L-Ala (100 μM D-
Glu), 450 μM ATP (400 μM ATP), purified MurC (MurD)
from E. coli (diluted with 20 mM Hepes, pH 7.2, 1 mM
dithiothreitol), and 500 μM or 250 μM of the tested
compound dissolved in DMSO. The final concentration of
DMSO was 5% (v/v). The reaction mixture was incubated
at 37 °C for 15 min, then quenched with 100 μL Biomol®
reagent. Absorbance at 650 nm was measured after 5 min.
Residual activity (RA) was calculated relative to control
assays without the compounds and with DMSO. Results are
presented as % inhibition, calculated as 100% - RA
(Table 1).

Results and discussion

In our ongoing efforts to discover inhibitors of Mur ligases,
we have already designed several series of inhibitors
targeting the UDP-substrate-binding site of MurD [13, 38,
39]. An alternative strategy to inhibit Mur ligases would be
the rational design of compounds blocking the ATP-binding
site of the enzymes. To this end, we decided to perform
virtual screening to discover multiple Mur ligase inhibitors
binding to the ATP-binding site of two or more Mur
enzymes. First, sequence alignment of MurC-MurF from E.
coli confirmed the existence of several conserved amino
acid residues, particularly in the ATP-binding site [14–16]
(Fig. 2a). Next, the superimposed crystal structures of
Haemophilus influenzae MurC (PDB entry: 1P3D) [40] and
E. coli MurD (PDB entry: 3UAG) [6], co-crystallized with
adenosine 5’-(β,γ-imido)triphosphate (AMPPNP), a non-
hydrolysable ATP analogue, and ADP, respectively, revealed
almost identical conformations of the AMPPNP and ADP
and similar interactions with the ATP-binding site residues
(Fig. 2b). Superposition of the crystal structures of MurC
[41], MurD [6], MurE [42] and MurF [43] ligases from E.
coli and visual inspection of their ATP-binding sites,
especially with respect to amino acid residues interacting
with the ATP molecule in the E. coli MurD, revealed that
these common features for the binding of the ATP molecule
(Fig. 2b) are also characteristic for the E. coli MurC, MurE
and MurF. In detail, the adenine ring atoms N-6 and N-7 of
ATP form two hydrogen bonds with the side chain
carboxamide group of an asparagine residue (Asn295 in
H. influenzae MurC, Asn271 in E. coli MurD), which
anchor the adenine moiety in its central domain pocket.
According to the sequence alignment, the same hydrogen
bonds are also formed in the case of E. coli MurE and
MurF, which indicates that the interaction of the Asn
residue with the N-6 and N-7 of the adenine ring is highly
conserved in Mur ligases. Furthermore, the hydroxyl
groups of the ribose moiety are in contact with Asp or
Glu residues (Glu352 in H. influenzae MurC, Asp317 in E.
coli MurD), while the ATP phosphate groups interact with
P-loop residues comprising Gly-Lys-Thr/Ser-Thr. These
observations led to a good prospect for the design of
multiple ATP-binding site targeting inhibitors of Mur
ligases.

First, we systematically analyzed the ATP-binding
pocket with the following probe functional groups using
GRID [30], to analyze those areas of the MurC and MurD
ATP-binding sites, where a putative ligand functional group
can favorably interact with the active site residues: (i) an
amide NH group as a typical hydrogen bond donor group,
(ii) carbonyl as a hydrogen bond acceptor group and (iii)
DRY probe to describe hydrophobic interactions. The
results of this analysis for MurD (Fig. 3) show the binding

Table 1 MurC and MurD inhibitory potencies of inhibitors discov-
ered by VS

Compd. c [μM] MurC MurD
% inhibition % inhibition

1 500 26 50

2 250 7 29

3 250 32 11

4 500 30 33

5 500 36 30
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mode of ADP, together with contour maps for hydrogen
bond donor and acceptor groups and hydrophobic moieties.
The diphosphate-binding pocket is a favorable region for
binding both the hydrogen bond acceptor and hydrogen
bond donor groups. The ribose-binding pocket particularly
favors hydrogen bond donor groups of the ligand, while the

adenine-binding pocket can accommodate both the hydro-
gen bond donor groups in the area occupied by the N-6
amino group and the hydrogen bond acceptor groups in the
area around the N-7 atom.

Considering similar ATP conformation and interaction
pattern in the active sites of Mur ligases (Fig. 2b), together

Fig. 2 (a) Sequence alignment of MurC-MurF from E. coli. Residues
marked red form hydrogen bonds with ADP according to the crystal
structure of MurD-ADP complex (PDB entry: 3UAG). (b) Common

amino acid residues involved in the binding of ADP in the binding
sites of MurC, MurD, MurE and MurF
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with similar results from the GRID analyses of MurC and
MurD ATP-binding sites, the crystal structure of E. coli
MurD was selected as a target protein for VS in which we
applied a protocol of consecutive hierarchical filters that
were selected to find compounds binding to the ATP-
binding pocket of MurC and MurD ligases (Fig. 4). The
initial database contained a subset of about 2,000,000
compounds from the ZINC drug-like database [44], pre-
filtered by Lipinski’s rule of five [45]. In the first step, the
database was reduced to approximately 234,000 molecules
(Fig. 4a) by selecting compounds matching a 3D pharma-
cophore based on GRID analysis of the MurD ATP-binding
site and on the binding conformation of ADP in the MurD
active site (Fig. 5). In detail, the database was filtered using
a 3D flexible search, as available in UNITY, for compounds
containing one aromatic feature (corresponding to the
adenine ring), one hydrogen-bond acceptor (corresponding
to the adenine ring N-7 amino group) and two hydrogen-
bond donors (corresponding to the adenine N-6 group and
the ribose 3’-hydroxyl group) with their positions defined
in space as in the ADP-bound conformation in MurD active
site, but with up to 2.0Å tolerance.

In the following selection step, the remaining putative
ligands were docked flexibly into the binding site of MurD
considering the pharmacophore-type constraints, using

FlexX. The pharmacophore was again defined based on
the GRID analysis (Fig. 3), using the FlexX-Pharm module
and following pharmacophore constraints: (i) formation of
two hydrogen bonds with the carboxamide side chain group
of Asn271 (selecting ligands containing one hydrogen bond
acceptor and one hydrogen bond donor), and (ii) formation
of one of the two defined hydrogen bonds with the side
chain carboxylate group of Asp317. Docking conforma-
tions of about 12,600 compounds matched this pharmaco-
phore constraint.

The database of putative binders was further reduced
to 800 by employing additional pharmacophore-type
constraints imposed by GRID analysis of the active site:
(i) aromatic/hydrophobic moiety in the adenine-binding
pocket, and (ii) formation of hydrogen bonds with amino
acid residues interacting with phosphate groups of ADP,
namely Gly114, Lys115, Ser116 and Thr117. The remain-
ing 800 molecules were re-docked into the MurD ATP-
binding site using GOLD, a genetic algorithm-based
docking program, without applying a predefined pharma-
cophore, to study whether the FlexX pharmacophore-
guided binding conformation could be reproduced. Dock-
ing solutions were ranked by the scoring function GOLD-
score [46] scoring function and only the top five ranked
docking solutions of each compound were considered

Fig. 3 Hot spots of binding in
the MurD ATP-binding site.
GRID maps using (a) amide NH
as a hydrogen bond donor probe
(in blue); (b) carbonyl group as
a hydrogen bond acceptor probe
(in red); (c) hydrophobic DRY
probe (in grey)
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further in the validation step. This step was used to assess
whether the best-ranked GOLD-calculated poses accom-
modate the candidate molecules in a way such that the
previously defined pharmacophore hypothesis could be
satisfied. Again, a reduced UNITY pharmacophore com-
prising an aromatic moiety with hydrogen bond acceptor

and donor groups interacting with the Asn271 side chain
were considered. This search resulted in 83 candidate
molecules which, in the next step, were docked into the
MurC ATP-binding pocket by GOLD, since our goal was
identification of inhibitors targeting MurC and MurD. The
calculated conformations of the putative dual inhibitors in
both, the MurC and MurD ATP-binding sites, were scored
with DrugScore [47] and then inspected visually. The
selection of candidates for biological testing was based on
their DrugScore predicted binding affinity and, warranted
by our multi-target approach, on the similarity of their
binding modes in the active sites of MurC and MurD.
Following this protocol, 18 compounds (structures not
shown) were selected for experimental evaluation of their
inhibition of MurC and MurD ligases from E. coli.

Inhibitory activity of the tested compounds was
monitored using the colorimetric Malachite green assay
for detection of orthophosphate generated during the
enzymatic reaction. To exclude possible non-specific
(promiscuous) inhibition due to aggregate formation,
the compounds were tested in the presence of detergent
(Triton X-100, 0.01%). Only compounds 1 and 2
exhibited weak inhibition of Mur ligases (Table 1): 1,3,5-
triazine-based compound 1 (Fig. 6) displayed 26%
inhibition of MurC and 50% inhibition of MurD at
500 μM, while quinolin-2(1H)-one-based compound 2
(Fig. 6) showed 29% inhibition of MurD at 250 μM but
did not inhibit MurC.

Fig. 5 UNITY 3D pharmacophore based on the binding conformation
of ADP in the active site of E. coli MurD (PDB entry: 3UAG)

Fig. 4 The protocols of consec-
utive filters applied in virtual
screening
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The quinolin-2(1H)-one moiety of compound 2 forms
putative hydrogen bonds with the side chain of Asn296 (E.
coli MurC) or Asn271 (E. coli MurD), while the oxygen
atom of the furanyl ring forms two hydrogen bonds with
the guanidino group of Arg327 in MurC or with the
backbone NH groups of Lys115 and Ser116 in the MurD
diphosphate-binding pockets (Fig. 7b).

1,3,5-Triazine-based inhibitors of MurF ligase have
already been discovered by virtual screening [23] and by
subsequent optimization of the VS hit [48]. Moreover, the
1,3,5-triazine ring present in compound 1 has also been
described to bind to the ATP-binding pocket of DNA
gyrase, where it occupies the part of the binding site usually
accommodated by the adenine ring [49]. Such a binding
mode of the 1,3,5-triazine ring is in agreement with our
docked geometry of 1, where the NH group of the
ethylamino substituent and the ring nitrogen atom between
the ethylamino and (S)-butan-2-amino groups of the 1,3,5-
triazine moiety interact with Asn296 and Asn271 in the
adenine-binding pockets of E. coli MurC and MurD ligases,
respectively, while the 2-chloroaniline ring points towards
the diphosphate-binding pocket (Fig. 7a). Since compound
1 was the only weak dual inhibitor identified from the
selected 18 compounds, we decided to extract all 1,3,5-
triazine-based compounds present in the database matching
the first UNITY pharmacophore (Fig. 5), aiming to find
among them compounds with improved potency (Fig. 4b).

The 2579 1,3,5-triazines obtained were docked into the
MurC and MurD active sites using the above-described
FlexX-Pharm pharmacophore constraints. The best ranked
docking solutions of 247 compounds matching the phar-
macophore were scored with DrugScore, then inspected
visually, and four candidates selected for biological testing.
Two of them inhibited MurC and MurD (compounds 4 and
5), and one only MurC (compound 3) (Fig. 6). However,
the inhibitory potency of the dual acting compounds 4 and
5 was not superior to that of 1 (Table 1). The predicted
binding modes of the 1,3,5-triazine ring of compounds 3–5
in the adenine-binding pockets of MurC and MurD ligases
are similar to that of inhibitor 1 (Fig. 7). In detail, two
putative hydrogen bonds are formed with the side chain of
Asn296 in MurC or Asn271 in the MurD active site, which
is in agreement with the pharmacophore model. In the case
of compound 3, additional hydrogen bonds can possibly be
formed with the amide NH group of Gly129 and the side
chains of His292 and Arg327 in the MurC active site, while
in the MurD active site putative hydrogen bonds are formed
with the backbone NH groups of Gly114 and Lys115 and
the side chains of Asn268 and Lys319 (Fig 7c). Compound
4 could further interact with the amide NH group of Gly129
and the side chain of Asn293 in MurC or the amide NH
group of Gly114 and the side chain of Asn268 in the MurD
active site. In the active site of MurC ligase, additional
hydrogen bonds with the side chain of Arg327 are also

Fig. 6 Structures of the discovered inhibitors of MurC and MurD
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possible (Fig. 7d). The calculated binding mode of the dual
inhibitor 5 predicts the formation of one additional
hydrogen bond with the amide NH group of Gly129 in
the MurC active site, while two possible hydrogen bonds
could be formed with the backbone NH groups of Gly114
and Gly324 in the MurD active site (Fig. 7e). In general,
differences in the MurC and MurD inhibitory activities of
compounds 1–5 cannot be well rationalized by the
calculated binding modes, since similar interactions are
predicted to be formed in the case of both enzymes.

Conclusions

We have performed a virtual screening study enumerating
the ZINC drug-like database for potential ATP-competitive
Mur ligase inhibitors possessing multitarget activity, using a
protocol of consecutive hierarchical filters. Selected candi-
dates were tested for MurC and MurD inhibition, but only
weak dual MurC and MurD inhibitors were identified.
There may be several reasons for the low hit rate. First, the
analysis of the chemical properties of known antibacterial

Fig. 7 Superposition of the
ADP (from PDB code: 3UAG,
in yellow lines) and the best-
ranked docking pose of inhibitor
(a) 1; (b) 2; (c) 3; (d) 4; (e) 5 in
the E. coli MurC active site in
dark grey sticks and in the E.
coli MurD active site in light
grey sticks. For clarity, only
active site residues interacting
with the inhibitors are shown
(MurC active site residues in
blue lines, PDB code: 2F00, and
MurD active site residues in
green lines, PDB code: 3UAG).
Potential hydrogen bonds be-
tween enzyme active site resi-
dues and inhibitors are shown as
dashed lines
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drugs shows that they populate a unique property space that
is different from that of the drugs in other therapeutic areas
[50], which makes the use of compound libraries designed
to target eukaryotic enzymes difficult. Supposedly, chemical
libraries that are better suited for finding antibacterial
compounds are thus needed. Further, only a few com-
pounds were evaluated in the Mur ligase inhibition assays.
Even in HTS campaigns, where large collections of
compounds were evaluated, only a few or no hits were
discovered against several bacterial targets [51]. Neverthe-
less, the new scaffolds for the design of multiple Mur ligase
inhibitors targeting the ATP-binding site, that were discov-
ered in the present VS, provide starting points for further
optimization.
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Abstract The serotonin (5-HT) transporter (SERT) plays
an important role in the termination of 5-HT-mediated
neurotransmission by transporting 5-HT away from the
synaptic cleft and into the presynaptic neuron. In addition,
SERT is the main target for antidepressant drugs, including
the selective serotonin reuptake inhibitors (SSRIs). The
three-dimensional (3D) structure of SERT has not yet been
determined, and little is known about the molecular
mechanisms of substrate binding and transport, though
such information is very important for the development of
new antidepressant drugs. In this study, a homology model
of SERT was constructed based on the 3D structure of a
prokaryotic homologous leucine transporter (LeuT) (PDB
id: 2A65). Eleven tryptamine derivates (including 5-HT)
and the SSRI (S)-citalopram were docked into the putative
substrate binding site, and two possible binding modes of
the ligands were found. To study the conformational effect
that ligand binding may have on SERT, two SERT–5-HT
and two SERT–(S)-citalopram complexes, as well as the
SERT apo structure, were embedded in POPC lipid bilayers
and comparative molecular dynamics (MD) simulations
were performed. Our results show that 5-HT in the SERT–
5-HTB complex induced larger conformational changes in
the cytoplasmic parts of the transmembrane helices of
SERT than any of the other ligands. Based on these results,
we suggest that the formation and breakage of ionic
interactions with amino acids in transmembrane helices 6

and 8 and intracellular loop 1 may be of importance for
substrate translocation.

Keywords SERT. Homology modeling . (S)-citalopram
binding . Substrate binding .Molecular dynamics . Substrate
transport

Introduction

The serotonin [5-hydroxytryptamine (5-HT)] transporter
(SERT) is located in the membrane of presynaptic
neurons and plays an important role in the termination
of serotonergic neurotransmission by transporting 5-HT
from the synaptic cleft into the presynaptic neuron. SERT,
and the closely related dopamine and noradrenaline (norepi-
nephrine) transporters (DAT and NET, respectively), are
located in limbic areas of the CNS that are involved in mood,
emotion and reward processes, and are important targets of
therapeutic drugs as well as psychoactive illicit drugs. Among
the compounds that act on SERT are drugs belonging to the
two main groups of antidepressants—the classic tricyclic
antidepressants (TCAs) and the newer selective serotonin
reuptake inhibitors (SSRIs)—and well-known drugs of abuse
such as cocaine and amphetamines, including 3,4-methylene-
dioxy-N-methamphetamine (MDMA, commonly known as
“ecstasy”).

SERT, DAT and NET belong to the neurotransmitter/
sodium symporter (NSS) transporter family (Transporter
Classification code 2.A.22 [1]), also known as the SLC6
family [2]. This transporter family constitutes a large
number of secondary transporters that use Na+ electro-
chemical gradients to transport extracellular solutes across
membranes. At least 177 eukaryotic and 167 prokaryotic
transporters have been classified as belonging to this family
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[3], transporting a large number of solutes. In addition to
the biogenic amines, amino acids such as γ-aminobutyric
acid (GABA), glycine, tryptophan, tyrosine and leucine
(the GAT-1, GlyT, TnT, Tyt1 and LeuT transporters,
respectively) are transported by NSS transporters [1].

The three-dimensional (3D) structure of SERT (or, indeed,
that of any eukaryotic NSS family member) has not been
experimentally determined; however, the first X-ray crystal
structure of a prokaryotic NSS family member, the Aquifex
aeolicus leucine transporter (LeuT), was published in 2005
[4]. Since then, several crystal structures of LeuT have been
published, and 3D structures of LeuT in an occluded
conformation [5–7] and in an outward-facing conformation
[8] are now available. These crystal structures can be used as
templates for the generation of 3D models of SERT and other
NSS transporters using the homology modeling approach,
taking advantage of the fact that 3D structure is more
conserved than the sequence [9]. Several SERT models have
been generated based on the occluded LeuT crystal structure
[10–12] and a published comprehensive alignment of NSS
family members by Beuming et al. [3].

In 1966, transporter proteins were suggested to operate
through an alternating-access mechanism [13] in which a
central substrate binding site is alternately exposed to either
the extracellular environment or the cytoplasm through
conformational changes of the protein. The 3D crystal
structures of LeuT thus fit this proposed transport mecha-
nism, as they are in open-to-out and occluded conforma-
tions [4–8]. In the latter conformation, leucine is bound in
the substrate binding site of LeuT, and the side chains of
two phenylalanine residues (corresponding to Y176 and
F335 in SERT) and one arginine and glutamate residue
(corresponding to R104 and E493 in SERT) block access
from the extracellular environment to the substrate binding
site [4–7]. In the outward-facing conformation, the com-
petitive inhibitor L-tryptophan displaces leucine from the
substrate binding site and causes LeuT to stabilize in an
outward-facing conformation, where the distance between
the side chains of Y176 and F335 increases [8]. In all of the
LeuT 3D structures, however, approximately 20 Å of
tightly packed helical regions effectively separate the
substrate binding site from the cytoplasmic environment
[4–8]. Thus, neither the crystal structures of LeuT nor the
SERT homology models based on these structures reveal
much information about how substrates are transported
from the extracellular environment into the interiors of the
cells. One possible way to gain more insight into the
conformational mechanisms that take place in a transporter
following the binding of either substrate or inhibitor may be
by performing long molecular dynamics (MD) simulations.

To study ligand binding and SERT conformational
changes upon ligand binding, the LeuT occluded structure
(PDB id 2A65) [4] was used to generate a homology model

of SERT, and 5-HT and ten other tryptamine derivatives, as
well as the SSRI (S)-citalopram, were docked into the
putative substrate binding pocket detected in the SERT
model. Analysis of the docking results revealed two
putative binding modes of the tryptamine derivatives and
(S)-citalopram in SERT. Based on these docking results, one
representative complex of SERT and 5-HT and (S)-citalo-
pram in both binding modes was selected for MD
simulations, in addition to the apo-SERT. The MD
simulations were performed after embedding the SERT–
ligand complexes in palmitoyloleoyl-phosphatidylcholine
(POPC) lipid bilayers. The results from the MD simulations
of the five SERT–(ligand)–POPC complexes showed that
the putative substrate binding site had started to extend
towards the intracellular parts of SERT during the MD
simulation in one of the SERT–5-HT complexes (namely,
the SERT–5-HTB complex). In the same complex, a
vestibule extending from the cytoplasm towards the
substrate binding site had started to form. Based on these
results, we identified several amino acids that may play a
role in the opening and closing of a vestibule reaching from
the substrate binding site to the cytoplasm.

Methods

Homology modeling of SERT

The SERT (UniProtKB/Swiss-Prot accession number
P31645 [14]) and the LeuT (PDB id 2A65) [4] amino acid
sequences were aligned using ICM software (version 3.5)
[15], and the alignment was adjusted to fit the published
comprehensive alignment of NSS family members [3].
Based on this alignment, the homology model of SERT was
constructed using the BuildModel macro of ICM [15]. The
macro constructs the backbone of the target protein using
the backbone conformation of the template in the aligned
regions using core sections defined by the average Cα atom
positions in these regions. The conformations of the side
chains of amino acids that were identical for the template
and the target structures were then transferred from the
template to the target, whereas nonidentical side chains
were assigned their most likely rotamer. For the loops with
insertions or deletions between the template and target
sequences, the macro performs a loop search of the PDB
database, selecting loops with matching loop ends and a
loop sequence that is as closed as possible. The loops are
inserted into the model and the side chains are modified
according to the model sequence and steric interactions
with the surroundings of the model.

The SERT amino acids E78-T192 and W220-I608 were
included in the homology model. These amino acids comprise
the 12 putative transmembrane helices (TMs) and the
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intracellular and extracellular loops (ILs and ELs, respectively)
connecting the transmembrane helices, except for parts of
the large EL2 (amino acids 193–219). This loop segment
was not included in the model as it is lacking in the
LeuT template. Amino acids corresponding to the N-
terminal (amino acids 1–77) and C-terminal (amino acids
609–630) regions of SERT were also not included in the
model for the same reason.

The two sodium ion binding sites and one chloride
binding site in the LeuT crystal structure [4] were copied to
SERT after superimposing the LeuT crystal structure and the
SERT model. A chloride ion was also added to the SERT
homology model such that it occupied a position
corresponding to the carboxylate carbon coordinates of
LeuT glutamic acid at position 290 (corresponding to S372
in SERT), as suggested by Forrest [11] and Zomot [16].

Energy refinement of the SERT homology model was
performed using the ICM RefineModel macro. This three-
step macro performs (1) a side-chain conformational
sampling using “Montecarlo fast” [17], (2) iterative
annealing with tethers provided, and (3) a second side-
chain sampling. The program module Montecarlo fast [17]
samples the conformational space by performing iterations
that consist of a random move followed by a local energy
minimization. The complete energy is then calculated, and
the iteration is accepted or rejected based on the energy and
the temperature. In the annealing of the backbone (step 2),
the tethers included are harmonic restraints that pull an
atom in the model to a static point in space represented by a
corresponding atom in the template.

The energy-refined SERT homology model was
uploaded to the SAVES server for a structure quality check
(http://nihserver.mbi.ucla.edu/Saves_3/). The Ramachan-
dran plot provided by Procheck showed that the SERT
homology model was a good-quality model; 96.6% of the
non-glycine and non-proline amino acids were in the
favored regions, whereas 3.4% (12 amino acids) were in
additional allowed regions. Of these 12 amino acids, one
amino acid, D98, was located in the putative substrate
binding area. This amino acid is important for substrate
and inhibitor binding to SERT [10, 12, 18–20], and was
located in an unwound region of TM1. However, this
location gives D98 more freedom to rotate, and hence
explains its location in additionally allowed regions of the
Ramachandran plot.

Ligand docking

To detect possible binding pockets in the SERT structure,
the ICM PocketFinder macro was used (default tolerance
level of 4.6). The algorithm uses a transformation of the
Lennard–Jones potential calculated from a three-dimensional
protein structure and does not require any knowledge about a

potential ligand molecule; i.e., it is based solely on protein
structure [21].

5-HT and ten other tryptamine derivatives (tryptamine,
4-hydroxytryptamine (4-HT), 7-methyltryptamine (7-MT),
2-methylserotonin (2-MT), 5-methoxy-3-(1,2,5,6-tetrahy-
dro-4-pyridinyl)-1 H-indole (RU24969), N-isopropyltrypt-
amine (NIT), 5-methoxy-N-isopropyltryptamine (5MNIT),
7-benzyloxytryptamine (7-BT), 5,6,7-trihydroxytryptamine
and serotonin o-sulfate (Table 1) were constructed using the
ChemDraw option of ICM. Default ECEPP/3 partial
charges were assigned to the protonated forms of the
ligands [22], and the compounds were docked using the
batch docking method of ICM. RU24969 was also docked in
its unprotonated state. The SSRI [(S)-1-[3-(dimethylamino)
propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5 car-
bonitrile; (S)-citalopram] (Table 1) was constructed using
ChemDraw and docked into the same binding site as the
tryptamine derivatives, as experimental studies indicate that
(S)-citalopram is a competitive 5-HT inhibitor [18]. The
ligands were docked using a semi-flexible docking protocol
where SERT was kept rigid but the ligands flexible.

The poses of each ligand were clustered and compared
with the clusters of the other ligands. This analysis led to
the identification of two putative ligand positions for
both the tryptamine derivatives and (S)-citalopram. One
representative from each of the two clusters of 5-HT
(representing the tryptamine derivatives) and (S)-citalopram
were selected for MD simulations.

Molecular dynamics simulation

The automated CHARMM-GUI membrane builder tool
[23] was used for the generation of a palmitoyloleoylphos-
phatidylcholine (POPC) lipid bilayer around the five
SERT–(ligand) complexes selected after docking. The pre-
orientated LeuT structure [4] from the Orientations of
Proteins in Membranes (OPM) database [24] was used to
orient the SERT model in the membrane by superimposing
the LeuT and SERT. An unequilibrated lipid bilayer was
generated using the replacement method, in which SERT
was packed with lipid-like spheres whose positions then
were used to place randomly chosen POPC lipid
molecules from a lipid library composed of 2000
different conformations of lipids generated by MD
simulations of pure lipid bilayers. The dimensions of
the entire SERT–(ligand)–POPC molecular system was
approximately 100×100×100 Å, including 1 Å extra
added in each direction in order to introduce space
between the boundary of the system and the boundary
atoms of the simulation cell. One hundred fifteen lipids
were included in the outer bilayer and 121 in the inner
bilayer. Water molecules (TIP3) and K+ and Cl− ions
were then added by the membrane builder tool to fully
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solvate the system. In total, each of the five complexes
consisted of approximately 98,000 atoms.

The NAMD scalableMD simulator (versions 2.6 and 2.7b1)
[25] was used to equilibrate the systems and perform
the production runs. The MD simulations were run
using 64 processors on the Stallo supercomputer at the
University of Tromsø, Norway, using Chemistry at HARvard
Molecular Mechanics (CHARMM) force fields. The
CHARMM par_all27_prot_lipidNBFIX parameter file,
which includes the CHARMM22/CMAP force field [26, 27]

for the protein and the CHARMM27 force field [28, 29] for
lipids, was used. For the complexes containing 5-HT or (S)-
citalopram, the CHARMM36 general force field for small
molecule drug design (CGenFF v. 2a3 [30]) was included,
manually adding force field angle and dihedral parameters
that are not included in CGenFF v. 2a3 [30]. To allow the
large volume fluctuations that are typical of the initial
dynamics of a new system in an NPT ensemble, a margin of
5 was used during the equilibration steps, which was reduced
to 2 during the production runs [25]. During the simulations,

Table 1 The structures of tryptamine derivatives and (S)-citalopram docked into the putative substrate binding site in SERT. Positions of
substitutions in the tryptamine derivatives are shown
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Nosé–Hoover–Langevin dynamics were used to simulate the
NPT ensemble. This method combines the Nosé–Hoover
constant pressure method with piston fluctuation control
implemented using Langevin dynamics by coupling the
piston to a heat bath. A damping constant of 10/
langevinPistonDecay was used during the equilibration
steps, which was reduced to 1/langevinPistonDecay
during the production runs. The langevinPistonDecay
(50 fs) was set to be smaller than langevinPistonPeriod
(200 fs) to ensure that harmonic oscillations in the
periodic cell were overdamped. The target pressure was
set at 1.01325 bar (atmospheric pressure at sea level), and
group-based pressure (useGroupPressure) was used to control
the periodic cell fluctuations, as the atom-based pressure has
more high-frequency noise. In addition, a flexible cell
(useFlexibleCell) was used, allowing the height, length, and
width of the cell to fluctuate independently during the
simulation, which is very useful for anisotropic systems such
as membranes.

The equilibration of the five SERT–(ligand)–POPC
complexes consisted of three steps during which the system
was gradually released. During steps (1) and (2), harmonic
constraints of 1 kcal mol−1 Å−2 were specified in the PDB
beta field of each atom to be constrained. In order to induce
the appropriate order of the fluid-like bilayer, all atoms
except the lipid tail atoms were constrained during step (1),
and lipids, water and ions were permitted to adapt to the
structure of the protein. During step (2), only protein atoms
were constrained, whereas the whole system was released
during step (3). During step (1), 10,000 steps of conjugate
gradient energy minimization were performed, followed by
10,000 steps (10 ps) of system heating to 300 K under
constant temperature control and 500,000 steps (0.5 ns) of
MD. During steps (2) and (3), only 10,000 steps of
conjugate gradient minimization followed by 500,000 steps
(0.5 ns) of MD were performed. In total, 30,000 steps of
conjugate gradient minimization, 10 ps of heating and
1.5 ns of MD simulations were run to equilibrate the
system. To confirm that the systems stabilized during
equilibration, the RMSD from the starting structure was
monitored during each simulation using the molecular
dynamics (VMD) viewer version 1.8.6 [31]. Finally, the
equilibration phases of the SERT–5-HT binding modes A
and B and the (S)-citalopram binding modes A and B, as
well as SERT alone, were followed by 22, 21, 32, 23 and
25 ns MD simulations, respectively. The production
simulations were performed at 300 K. Following the
production runs, VMD [31] was used to generate average
structures of each complex based on the last 10 ns of each
simulation, and ICM PocketFinder [21] was used to detect
possible pockets in the average structures. Based on the
these analyses, the SERT–5-HTB complex MD simulation
was prolonged to 49 ns.

Results

Homology modeling

The constructed homology model consisted of 12 TMs,
among which TMs 1–5 and 6–10 were arranged with a
pseudo-twofold axis in the membrane plane, as for LeuT
[4]. Three possible binding pockets were identified by
ICM PocketFinder in the SERT homology model: one in
the region corresponding to the LeuT substrate binding
site, and two extracellular pockets which were separated
from the putative substrate binding pocket by the side
chains of Y176 and F335, the aromatic amino acids of the
extracellular gate. In LeuT [4], only one pocket was
detected in this extracellular region, as EL4 in LeuT is
missing three amino acids at the tip of EL4 as compared to
SERT [3] (results not shown).

ICM PocketFinder [21] identified a binding pocket
that corresponded to the substrate binding site of LeuT
[4]. Experimental data on SERT and the X-ray structure
of LeuT also suggest that the substrate binding site of
SERT and LeuT are in the same region [10, 12, 20, 32–
34], halfway across the membrane bilayer within the
TMs. This location is also consisted with the alternate
access theory [13]. Amino acids from four TMs
contribute to the binding pocket detected by ICM
PocketFinder, namely from TM1 (Y95, D98, G100),
TM3 (I172, A173, Y176), TM6 (F335, S336, G338,
F341, V343) and TM8 (S438, T439, G442). An
important feature of the detected binding pocket is the
deviation from regular helical structure in the unwound
regions of TM1 (A96–D98) and TM6 (G338–G342). A
similar deviation is observed in corresponding regions
of the X-ray structure of LeuT. In the unwound regions,
the main-chain carbonyl oxygen and amide nitrogen
atoms are exposed such that they can easily take part in
direct hydrogen-bonding interactions with ligands and
coordinate ions.

The substrate binding pocket detected by ICM Pocket-
Finder could be divided into three subpockets based on
the main properties of amino acids involved. The first
subpocket, the hydrophobic subpocket, was located
towards the intracellular end of the binding site and
was surrounded by the side chains of A169 (TM3), A173
(TM3), V343 (TM6), and G442 (TM8). The side chain
of I172 (TM3) was positioned such that it could participate
in forming the hydrophobic subpocket but also separate the
hydrophobic subpocket from an aromatic. The aromatic
subpocket consisted of the side chains of the two aromatic
amino acids of the extracellular gate, Y176 (TM3) and
F335, and F341 located in the unwound region of TM6. The
third subpocket, the ionic subpocket, was located in the
vicinity of D98 (TM1).
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Analysis of the docking results

The docking of 5-HT and ten other tryptamine derivatives
and (S)-citalopram indicated two possible binding modes of
the compounds, designated SERT–5-HTA, SERT–5-HTB,
SERT–(S)-citalopramA and SERT–(S)-citalopramB, respec-
tively (Fig. 1). The SERT–5-HT binding modes represent
the binding poses of all tryptamine derivatives. In both the
SERT–5-HTA and SERT–5-HTB binding modes, 5-HT
occupied the ionic and hydrophobic—but not the aromat-
ic—subpockets of the binding site. The protonated amine
of 5-HT was located near the D98 carboxyl side chain in
both modes, which is in accordance with experimental

data [10, 12, 19, 20]. The two binding modes of 5-HT
differ in the orientation of the indole ring nitrogen and the
orientation of the 5 position (Fig. 1). In the SERT–5-HTA

binding mode, the indole ring nitrogen was found between
Y95 and F341, whereas the 5 position was pointing
towards Y176, S438 and T439. In the SERT–5-HTB

binding mode, however, the indole ring was flipped 180°
compared to binding mode A, and the indole nitrogen
group was pointing towards the aromatic side chains of
Y176 and S438, and the 5 position towards A169 and
F341 (Fig. 1). Interestingly, similar binding modes of 5-
HT to the SERT–5-HTA and SERT–5-HTB binding modes
have also been described by other groups [10, 12, 35].

Fig. 1 Ligand binding modes detected through docking. a SERT–5-
HTA binding mode, b SERT–5-HTB binding mode, c SERT–(S)-
citalopramA binding mode, and d SERT–(S)-citalopramB binding mode.
The side chains of amino acids Y95, D98 and I172 and the binding

pocket detected by ICM PocketFinder (red wire representation) are
shown. Color coding of atoms in amino acids: red oxygen, blue
nitrogen, gray carbon and hydrogen. Color coding of ligands: red
oxygen, blue nitrogen, yellow carbon, gray hydrogen
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Predictions of the 5-HT–SERT binding energies for the two
binding modes using the calcBindingEnergy macro of ICM
[36] showed that the poses represented by the SERT–5-
HTA complex had binding energies in the range −5.7 to
−13.8 kcal mol−1 (average −10.0 kcal mol−1), while poses
represented by the SERT–5-HTB complex had binding
energies in the range −4.8 to −10.7 kcal mol−1 (average
−8.1 kcal mol−1).

In the SERT–(S)-citalopramA binding mode (Fig. 1), (S)-
citalopram occupied all three subpockets of the putative
substrate binding site. The amine moiety of (S)-citalopram
was located in the ionic subpocket close to D98, whereas
the cyanophthalane and fluorophenyl moieties were located
in the hydrophobic (in close proximity to A169, A173,
V343 and G442) and aromatic subpockets (pointing
towards F335), respectively. The oxygen moiety of (S)-
citalopram was pointing in the direction of Y95 (Fig. 1). In
comparison, the cyanophthalane and amine moieties of (S)-
citalopram in the SERT–(S)-citalopramB binding mode
were also found in the hydrophobic and ionic subpockets,
respectively, in a very similar location to that in the SERT–
(S)-citalopramA binding mode. However, the fluorophenyl
moiety of (S)-citalopram in this binding mode was found to
be juxtaposed in-between the side chains of Y95 and S438,
and the oxygen moiety was pointing in the direction of
Y176 (Fig. 1). The prediction of binding energies using the
calcBindingEnergy macro of ICM [36] showed that poses
represented by the SERT–(S)-citalopramA complex had
binding energies in the range −7.4 to −19.1 kcal mol−1

(average −14.7 kcal mol−1), while those represented by the
SERT–(S)-citalopramB complex had binding energies in the
range −12.7 to −19.7 kcal mol−1 (average −16.4 kcal mol−1).

Molecular dynamics simulations

In order to study possible conformational changes of SERT
upon the binding of 5-HT (substrate) and (S)-citalopram
(inhibitor), more than 20 ns of MD simulations were
performed for each system: one representative SERT–ligand
complex from each of the binding modes detected as well
as apo-SERT were embedded in POPC lipid bilayers,
followed by system equilibration and longer MD simula-
tions. The average structures of each of the five complexes
were then generated based on the last 10 ns of the production
runs, and ICM PocketFinder was used to detect possible
pockets that had formed in SERT during the production runs.

Interestingly, in the average structure of the SERT–5-HTB

binding mode, the substrate binding pocket began to
elongate towards the cytoplasm, and another pocket started
to form that extended from the cytoplasm up towards the
elongated substrate binding pocket during the MD simula-
tion (Fig. 2). Our results showed that in the average structure
of SERT–5-HTB, only a narrow stretch of TMs 6 and 8, in
addition to intracellular loop 1 (IL1), separated the two pockets
and prevented access from the substrate binding site to
cytoplasm (Fig. 3). The other simulations also changed the
size of the substrate binding site and induced other pockets to
form; however, intracellular vestibules similar to that gener-
ated in the SERT–5-HTB complex were not observed in any
of the other average structures (results not shown). Based on
these observations, the simulation of the SERT–5-HTB

complex was prolonged to 49 ns. The prolongation indicated
that the pocket extending from the cytoplasm up towards the
elongated substrate binding pocket was also maintained
during 21 to 49 ns of the MD simulation.

Fig. 2 SERT structures. a Initial
SERT structure and b the
average SERT–5-HTB structure
generated based on the last
10 ns of the MD simulation.
“Intra-structural” pockets
detected by ICM PocketFinder
are shown. The putative
substrate binding pocket is
represented as red wire
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The 5-HT in the average SERT–5-HTB structure (12–21 ns)
was slightly shifted compared with the initial structure
(Fig. 4). Superimposition of the structure of SERT prior to
MD and the average structure of the SERT–5-HTB complex
showed that the hydroxyl oxygen atom of 5-HT was located
closer to the Y95 (TM1) hydroxyl group. The distance before
MD was 4.1 Å, while the distance in the average structure
was 3.4 Å (range 1.9–5.5 Å). 5-HT was also located 1.7 Å
closer to the cytoplasmic side than before MD. The distance
between the G338 (TM6) backbone oxygen and the Y95
(TM1) hydroxyl group also increased slightly, from 1.8 Å to
2.1 Å in the average structure (range 2.0–3.0 Å), indicating
that TMs 1 and 6 had begun to move further apart as well
(Fig. 4). Prolongation of the MD indicated that these distances
did not change much during 21–49 ns of MD. The distance
between the 5-HT hydroxyl group and the hydroxyl group of
Y95 varied between 2.3 and 5.3 Å, while the distance
between the G388 backbone oxygen and the Y95 hydroxyl
group varied between 1.8 and 2.7 Å.

The observation that only some residues block the access
from the putative substrate binding site to the cytoplasm
prompted us to look for amino acids in the unwound region
of TM6, in TM8, and in IL1 of SERT that may have
interacted with amino acids in other regions of SERT and
contributed to the formation of the emerging vestibule.
We found G340 in TM6 and E444, D452 and E453 in
TM8, as well as R152 and K153 in IL1 very interesting

1.8

1.7

2.1

3.4

4.1

1.7

Fig. 4 Comparison of the 5-HT binding mode in the initial SERT–5-
HTB complex (gray) and that in the average SERT–5-HTB structure
generated based on the last 10 ns of MD (orange). Atomic distances
(Å) are shown as dotted lines. For clarity, selected hydroxyl oxygen
atoms on 5-HT, Y95 and G338 are colored red

Fig. 3 a Intracellular view of the average SERT–5-HTB structure.
SERT Cα carbon atoms are shown in gray cylindrical representation.
For clarity, amino acids 148–160, 338–350 and 444–453 are shown in
blue. The putative substrate binding site is displayed as red wire.
Amino acids that are proposed to play a role in the opening of a
vestibule extending from the putative substrate binding site (red wire
representation) to the cytoplasm are shown as xstick. b Close-up of a
with residues in xstick. Green lines show interactions formed during
the simulation; red line shows an interaction broken during simulation
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in this respect. The distances between these residues and
their interaction partners in the structure of SERT before
the MD simulations and in the average structures
generated following the MD simulations were thus measured
and compared (Table 2).

We also noted that the cytoplasmic part of TM3
(K159–I168) had unwound during the MD simulation
and had thus become more flexible. The unwinding may
have played a role in the opening of the vestibule;
however, this unwinding was seen in all average
structures and may be an artifact of poor force field
representation of protein–protein, protein–solvent and
solvent–lipid interactions. Using CHARMM force fields
and NPT for simulations in a tensionless ensemble may
lead to the condensation of the bilayer to a near gel-like
state, which may influence the protein structure and
result in incorrect predictions if the lateral density of
lipids increases beyond a liquid crystalline state [37]. The
unwinding may also be a result of structural differences
between SERT and LeuT in this region [3].

Structural differences between SERT and LeuT in IL1 may
explain the unwinding of the α-helical structure in IL1 that
was present in the initial structure of SERT, just as in LeuT [4],
but not in any of the average structures generated following
the MD simulations. The homology between SERT and LeuT
in this region is very low, with only one identical amino acid
(I154, SERT numbering) [3], and the presence of an α-
helical structure in IL1 of SERT is thus questionable.

Discussion

Homology modeling and docking

The homology modeling approach is a valuable tool for
investigating protein structures when experimental structures
are lacking. Homologymodels are useful for predicting ligand
potency and specificity through the use of different docking
approaches, and high-quality homology models have also
been used in the study of conformational changes using MD

simulations [38]. In the present study, 5-HT and ten other
tryptamine derivatives (SERT substrates) and the SSRI (S)-
citalopram were docked into the putative substrate binding
site of a SERT homology model, and possible conforma-
tional changes of SERT upon ligand binding were studied by
MD simulations.

The accuracy of homology models depends on three
factors: the sequence identity and functional similarity
between the template and target proteins; the amino acid
sequence alignments between the template and the targets;
and the resolution at which the crystal structure of the
template protein was resolved. For membrane proteins in
general, sequence identities between template and target
proteins of 50% have been found to yield membrane
homology models with a Cα-RMSD of approximately 1 Å
from the template structure in the transmembrane regions,
assuming that the template structure has been solved at a
resolution of 3.5 Å or better [39]. Sequence identities of
30% or more are, for most membrane proteins, predicted to
yield acceptable homology models with a Cα-RMSD of
approximately 2 Å in the TM regions [39].

The sequence identity between LeuT and SERT is approx-
imately 50% in the putative substrate binding site detected by
the ICM PocketFinder. In contrast, the overall sequence
identity between the transporters is less than 20%, but it rises
to approximately 35% in TMs that are predicted to be directly
involved in substrate binding (i.e., TMs 1, 3, 6 and 8). LeuT is
considered a good template for generating homology
models of SERT that can be used for ligand docking and
molecular dynamics. Actually, due to the topological
restrictions provided by the hydrophobic membrane
environment surroundings, membrane proteins such as
SERT actually have more limited ways of folding than
water-soluble proteins, which may suggest that mem-
brane protein homology models are more accurate than
homology models of water-soluble proteins at the same
level of sequence identity [39]. This also thus supports the
generation of acceptable homology models of not only the
SERT substrate binding site but the whole structure using
LeuT as a template.

Table 2 Atomic distances [Å] between amino acids that were proposed to play a role in the opening of a vestibule from the SERT substrate
binding site to the cytoplasm. Locations of amino acids are shown in parentheses

Distance [location] Initial SERT SERT (no ligand) SERT–5-HTA SERT–5-HTB SERT–(S)-citalopramA SERT–(S)-citalopramB

E78–R144 [N-terminus:
TM2/IL1]

7.0 9.3 13.7 1.9 14.6 6.3

R79–D452 [N-terminus: TM8] 1.7 1.7 1.7 6.1 1.8 8.2

R152–E453 [IL1–TM8] 1.7 4.3 1.8 9.0 3.0 2.0

R152–E508 [IL1–TM10] 17.2 11.5 8.6 2.7 11.4 14.7

E136–G340 [TM2–TM6] 1.8 2.7 1.8 1.9 2.1 1.9

E444–R462 [TM8–TM9] 6.6 1.7 1.7 1.7 1.7 1.8
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Our docking results suggest two different ways 5-HT
and the other tryptamine derivatives may bind in SERT:
the SERT–5-HTA and SERT–5-HTB binding modes
(Fig. 1). In both of these binding modes, the positively
charged amine moiety of 5-HT was in the vicinity of the
negatively charged D98 side chain, and the C6 position of
the indole ring was located close to A173 at the other end
of the molecule; however, the indole nitrogen moiety
pointed in different directions in the two binding modes.
Interestingly, similar binding modes of 5-HT to the SERT–
5-HTA and SERT–5-HTB binding modes have also been
obtained through docking and experimental studies by
other groups [10, 12, 35]. Celik et al. [10] found that the
C5 and C7 positions of 5-HT should be located in
hydrophilic and hydrophobic pockets of SERT, and
that the 5 hydroxyl moiety of 5-HT was in the vicinity
of T439 (TM8) [10]. Though the C5 and C7 moieties of
5-HT in both the SERT–5-HTA and SERT–5-HTB binding
modes described here are located in such regions, only
the localization of C5 of 5-HT in the SERT–5-HTA

binding mode was found in the vicinity of T439. In
another study, however, 5-HT in a similar binding mode
to the SERT–5-HTB binding mode showed good correla-
tion with experimental data and was also found to best
describe the cross-species sensitivities reported in sup-
port vector machine (SVM) sensitivity maps generated
for the human and Drosophila melanogaster serotonin
transporters [12]. This binding mode was also suggested
by Jørgensen et al. [35].

Our results show that the size of the putative substrate
binding site detected in this structure of SERTwas relatively
small and not optimal for the docking of larger compounds
such as (S)-citalopram. Nonetheless, the binding mode of (S)-
citalopram has recently been studied by docking into
occluded SERT homology models and by experimental
site-directed mutagenesis [18]. Andersen et al. [18] found
that the fluorophenyl moiety of (S)-citalopram was located
near I172, A173 and N177, whereas the cyanophthalane
moiety was in proximity to V343. Though the cyanoph-
thalane moiety of (S)-citalopram in both binding modes in
the present study was in the vicinity of V343, only the
fluorophenyl of (S)-citalopram in the SERT–(S)-citalo-
pramA binding mode was in the vicinity of I172 (Fig. 1). A
similar (S)-citalopram binding mode to the SERT–(S)-
citalopramA binding mode has also been used as initial
binding mode in another MD study in SERT [35].

Our docking indicated that the tryptamine derivatives do
not interact with SERT in the aromatic subpocket of the
binding pocket, whereas (S)-citalopram does. A possible
mechanism of action of inhibition by (S)-citalopram may
therefore be that (S)-citalopram interferes with the closure
of the extracellular gating residues Y176 and F335,
stabilizing SERT in an outward-facing conformation,

thereby hindering conformational changes needed for
transport to occur. A similar mechanism of inhibition has
recently been suggested for TCAs [40].

Molecular dynamics simulations

In order to gain insights into SERT conformational changes
that may take place upon ligand binding, one representative
ligand orientation from each of the two possible binding
modes of 5-HT (representing the tryptamine derivatives)
and (S)-citalopram, as well as the apo-SERT structure, were
selected for MD simulations in POPC lipid bilayers. The
simulations were run for 22 ns (SERT–5-HTA), 49 ns
(SERT–5-HTB), 32 ns (SERT–(S)-citalopramA), 23 ns
(SERT–(S)-citalopramB) and 25 ns (apo-SERT), and aver-
age structures of each of the five MD simulations were
generated and used to analyze the results. Average
structures may represent unphysical states of SERT that
may not exist. However, the present average structures were
based on the last 10 ns of the MD simulation, where
energetically favorable and structural stable SERT–(ligand)–
POPC complexes were obtained. The average structures
used were thus considered to be representative of the
most densely populated conformations during this period
of the simulation.

The substrate 5-HT is expected to cause a different
conformational change of SERT than inhibitors such as (S)-
citalopram, as the former compound is transported whereas
the latter inhibits transport. In order to visualize such
conformational changes, the ICM PocketFinder was used to
detect pockets in the five average structures. In the average
structure from SERT-5HTB binding mode simulation, the
pockets detected showed that a vestibule had started to
emerge that extended from the putative substrate binding
site towards the cytoplasm (Fig. 2). The results suggested
that the continued rearrangement of the unwound regions of
TM6, TM8 and IL1 relative to one another may open a
pathway from the substrate binding site to the cytoplasm
(Fig. 3). A similar vestibule was not observed in any of the
other simulations (results not shown).

A pocket extending from the cytoplasm up towards the
substrate binding pocket was formed during the MD
simulation of the SERT–5-HTB complex. A corresponding
pocket was not formed during MD of the SERT–5-HTA

complex. Based on these observations, we also examined
whether the position of 5-HT changed during the simulation
of the SERT–5-HTB complex. By superimposing the initial
structure of SERT on the average SERT–5-HTB structure
(12–21 ns), we found that the 5-HT hydroxyl group was
located closer to the Y95 (TM1) hydroxyl group at the
cytoplasmic end of the binding pocket in the average
SERT–5-HTB structure. In addition, the atomic distance
between Y95 (TM1) and G338 (TM6) was slightly
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increased (Fig. 4). Prolonging the MD simulation up to
49 ns showed that these distances were maintained between
21 and 49 ns of MD simulation, and additional changes in
SERT structure or in 5-HT position were not seen.

The hydroxyl group of Y95 (TM1) and the backbone
oxygen atom of G338 in the unwound region of TM6 were
within hydrogen-bonding distance in the initial structure of
SERT, and this interaction might play a role in keeping the
translocation pathway closed. Our results thus suggest that
one of the first steps in 5-HT translocation is the formation
of a hydrogen bond between the 5-OH of 5-HT and Y95
(TM1), which may sever the hydrogen bond between
Y95 (TM1) and G338 (TM6). In another study, the
mutation of G338 to cysteine (G338C) was shown to
stabilize SERT in an outward-facing conformation [33].
The transport activity of the G338C mutant was less than
5% of the wild-type transport activity; however, transport
could partially be restored by simultaneously mutating
Y95 to phenylalanine (Y95F), which indicates that Y95
(TM1) and G338 (TM6) cannot be hydrogen bonded for 5-HT
transport to occur [33].

The amino acids in TM6 that separated the putative
substrate binding site from the cytoplasmic vestibule were
located in the unwound region of TM6, which in the initial
SERT structure consisted of G338, P339, G340, F341 and
G342, but in the average SERT–5-HTB structure also
contained two more amino acids, S336 and L337. The
unwinding of the latter amino acids is in agreement with a
study suggesting that amino acids 334–337 in SERT are in
an unwound region based on aqueous accessibility data
[33]. This region contains several glycine residues [3] and
is thus expected to be very flexible: one study shows that
even the conservative mutations of G338 and G342 to
alanine (G338A and G342A, respectively) cause reductions
in 5-HT transport of approximately 28% and 10%,
respectively, as compared to the wild type [33].

The transmembrane helix closest to TM6 in the model was
TM2. Thus, an interaction between the unwound region of
TM6 and amino acids in TM2 might contribute to opening up
the binding site towards the intracellular region by pulling the
flexible unwound part of TM6 towards TM2. We observed
that a hydrogen bond was present between the backbone of
G340 (unwound region of TM6) and the side chain of E136
(TM2), as in LeuT [4]. Our results show that the distance
between the backbone nitrogen of G340 and the E136 side
chain did not change significantly during the MD simulation
of the SERT–5-HTB complex (Table 2); however, super-
imposing the average structure on the initial SERT
structure showed that the G340 backbone nitrogen atom
and the E136 carboxyl carbon atoms shifted 2.5 Å during
the simulation (results not shown). Hence, though the
distance between G340 and E136 remains constant
during the MD simulation, the unwound TM6 region

and TM2 had moved 2.5 Å in the same direction, away
from the putative substrate binding site. An ionic
interaction between another TM2 amino acid, R144,
and E78 in the N-terminus also formed, and may have
contributed to the joint movement of TMs 2 and 6. E136
(TM2) is conserved among the Na+-dependent NSS
transporters [3], and has been shown to be very important
for transport in SERT: a conservative mutation of this
glutamic acid to aspartic acid (E136D) causes a reduction
in SERT transport, and mutations to alanine or glutamine
(E136A, E136Q) inhibit transport [41]. The atomic
distance between R144 (TM2) and E78 (N-terminus)
decreased from 7 Å in the initial structure of SERT to
1.9 Å in the average structure of SERT–5-HTB (Table 2).

In TM8, three amino acids were found to be particularly
interesting with respect to opening an intracellular vestibule
from the putative substrate binding site to the cytoplasm:
namely E444, D452 and E453. E444 (TM8) was located in
close proximity to the substrate binding site, and during all
MD simulations an ionic interaction between E444 (TM8)
and R462 (TM9) was formed (Table 2). D452 and E453
were located at the cytoplasmic end of the TM8. During the
MD simulation of the SERT–5-HTB complex, we observed
that the distance between E453 (TM8) and R152 (IL1)
increased whereas the distance between D452 (TM8) and
K153 (IL1) decreased, thus changing the conformation of
this long loop. The importance of R152 for transport is in
agreement with a recent study in mouse SERT showing that
the G39/K152 phenotype has reduced transport in compar-
ison with the wild type (E39/R152 phenotype) [42].

Very interestingly, we observed that during the MD
simulation of SERT–5-HTB, an interaction between R152
(IL1) and E508 (TM10) developed. In the initial structure
of SERT, the atomic distance between these residues was
>17 Å, while the distance decreased to only 2.7 Å in the
average SERT–5-HTB structure (Table 2). Furthermore,
this interaction was not formed in any of the other MD
simulations (Table 2). E508 is one of a few amino acids
in TM10 that are fully conserved between SERT and
LeuT [3]. Interestingly, E508 (TM10) was also located in
the region of E136 (TM2) in SERT, and it is suggested
that this amino acid interacts with G340 in the unwound
region of TM6 (see above); it is also known to be
important for transport in SERT [41].

Summary

Our MD simulations indicate that the SERT–5-HTB binding
mode and not the SERT–5-HTA binding mode induces
conformational changes in SERT that may be associated
with substrate translocation. The simulations suggest that
substrate translocation may involve forming and breaking
ionic interactions between TM6, TM8 and IL1 and their
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interaction partners. Although our observations are in
agreement with experimental studies, the suggested mech-
anism is hypothetical, as it is based solely upon theoretical
calculations using a homology-based model.

The simulations may indicate that the formation of a
hydrogen bond between Y95 in TM1 and 5-HT causes a
hydrogen bond between Y95 and G338 in TM6 to be broken,
enabling the unwound region of TM6 to move away from the
substrate binding site and transport to begin. The
formation of an ionic interaction between R144 (TM2) and
E78 (N-terminus) and the interaction between G340
(unwound region of TM6) and E136 (TM2) then cause TM6
to move away from the putative substrate binding site. The
movements of E136 (TM2) also affect the nearby amino acid
E508 (TM10), causing it to interact with R152 in IL1, thus
changing the conformation of this loop. Simultaneously, an
ionic interaction between E444 (TM8) and R462 (TM9),
located close to the putative substrate binding site, is formed.
The interaction between E453 in the cytoplasmic part of TM8
and R596 in TM12 may also contribute to relocating TM8
away from the vestibule. The formation of an ionic interaction
between E78 in the N-terminus and R144 in TM2, and the
subsequent movement of TM2, may also weaken the
interaction between the N-terminus and TM8, as illustrated
by the increase in the R79–D452 distance (Table 2).
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Abstract Replica exchange molecular dynamics (REMD)
simulation provides an efficient conformational sampling
tool for the study of protein folding. In this study, we
explore the mechanism directing the structure variation
from α/4β-fold protein to 3α-fold protein after mutation by
conducting REMD simulation on 42 replicas with temper-
atures ranging from 270 K to 710 K. The simulation began
from a protein possessing the primary structure of GA88
but the tertiary structure of GB88, two G proteins with
“high sequence identity.” Albeit the large Cα-root mean
square deviation (RMSD) of the folded protein (4.34 Å at
270 K and 4.75 Å at 304 K), a variation in tertiary structure
was observed. Together with the analysis of secondary
structure assignment, cluster analysis and principal compo-
nent, it provides insights to the folding and unfolding pathway
of 3α-fold protein and α/4β-fold protein respectively paving
the way toward the understanding of the ongoings during
conformational variation.

Keywords Cluster analysis . Conformational variation .

Principal component analysis . Replica exchange molecular
dynamics . Root mean square deviation . Secondary
structure assignment

Introduction

Protein folding intrigues many and this has led to a
multitude of studies, both experimental and theoretical, to
decode the “protein folding problem” [1–4]. Comprehend-
ing and predicting the tertiary structure of proteins from
information encompassed within the primary structure has
been one of the many obstacles faced in structural
biology which a great deal of researchers had tried to
overcome [3, 4]. Rose et al. offered an alternative method
of conquering the folding problem by questioning the
specificity aspect in terms of amino acid compositions
which influences a protein’s propensity for one fold over
the other [5]. This insight had prompted numerous
researchers to engineer a pair of protein with “high amino
acid sequence identity” but different native folds with the
highest sequence identity documented at 95% [2, 4, 6].
The main purpose of designing these proteins is to
determine the minimum number of amino acids responsible
for the protein’s preference to exist in one conformation over
the other. At 95% sequence identity, Alexander et al. (2009)
had established the correlation between single point
mutation and conformational variation [2]. This ability
of protein to undergo variation from one conformation to
the other are keynotes in many research efforts due to vital
associations to the understanding of protein misfolding
which forms the root of numerous diseases such as
Alzheimer’s disease [7–9].
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Efforts to decipher protein folding with the help of
molecular dynamics (MD) simulation had gained a fair
amount of scrutiny since the start of MD study of biological
macromolecules in 1977 [10, 11]. MD simulation provides
a strong platform for the study of protein dynamics and
enables one to apprehend the conformational transforma-
tion leading to the folding or unfolding of the protein of
interest [3, 12, 13]. MD simulations performed to scrutinize
protein folding thus far had reached an accuracy of
<1 Å Ca root mean square deviation (RMSD) relative to
crystal structure which was achieved through a folding
study of villin headpiece subdomain through replica
exchange molecular dynamics (REMD) simulation by
Duan et al. [11].

REMD simulation, compared to regular MD simulation,
is a more efficient conformational sampling method which
allows protein replicas to perform random walks across
temperature space without being trapped in the abundance
of energy local minima at low temperatures [11, 14, 15]. In
this work, our study focuses on the utilization of REMD
simulations to gain insights on the conformational variation
from α/4β-fold protein to 3α-fold protein. Two proteins of
“high sequence identity” but different native folds namely
GA88 and GB88, which have a sequence identity of 88%
through 24 mutations and 17 mutations of the wild-type
proteins respectively, were used for this experiment [4]. The
protein GA88 which has a native 3α-fold configuration
is the main point of our study and GB88 was merely
used as a template for the construction of GA88 with a
non-native α/4β-fold [4]. GA88 is comprised of three α-
helices; H1 (residue 9-23), H2 (residue 27-34), and H3
(residue 39-51) [4]. On the other hand, GB88 comprises of
one α-helix (HB, residue 23-26) and four β-strands (B1,
residue 1-8; B2, residue 13-20; B3, residue 42-46 and B4,
residue 51-55) [4].

REMD simulation was performed to ferret out the
mechanism dictating the folding of GA88 into the 3α-fold
configuration from the α/4β-fold. Instead of the usual ab
initio folding and thermal unfolding studies of proteins, the
REMD simulation was executed starting from α/4β-fold
configuration which was derived from GB88. Even
though the tertiary conformation of the starting structure
is an exact parallel of the tertiary structure of GB88, the
amino acid sequence is analogous to GA88. This is to
ensure unerring conformational transition from a protein
with one α-helix domain and four β-strand domains to a
protein with three α-helix domains thus capacitating the
study of the folding and unfolding mechanism involved
during the conformational variation from α/4β-fold to
3α-fold. In this paper, the protein with the tertiary
structure of GB88 but the primary sequence of GA88
will be coined as α/4β-GA88 and the protein with the
wild-type fold of GA88 as 3α-GA88.

Methodology

REMD simulation of 42 replicas across 42 temperatures
ranging from 270 to 710 K was run using “multisander” in
AMBER 10 simulation package over total simulation time
of 75 ns per replica [16]. Temperature distribution across
the range of 270 to 710 K was carefully selected to attain a
targeted acceptance ratio of 0.20. AMBER03 force field
and generalized Born (GB) model were applied to describe
the protein and the solvation effect respectively [17, 18].
Non-polar solvation term, which is often calculated
proportional to the surface area, was not included because
it is thought to over stabilize β structure in both Poisson-
Boltzmann and generalized Born models [19, 20]. The
starting structure was prepared by obtaining the NMR
structure of GB88 from Protein Data Bank (PDB) with
PDB ID of 2JWU and the following mutations, A24G,
T25I, F30I, Y33I, Y45L, T49I and K50L, were done using
LEaP module in AmberTools 1.2 to obtain the starting
structure for the REMD simulation [4, 21]. The initial
protein structure was minimized with the initial 500 cycles
in steepest descent method and thereafter via conjugate
gradient. The time step applied for the simulation is 2 fs.
SHAKE algorithm was implemented to constrain all bonds
with hydrogen atoms and non-bonded interactions were
curtailed at 12 Å [22]. During the REMD simulation, the
replicas are initially heated for 100 ps to their intended
temperatures using Langevin thermostat with collision
frequency of 4 ps-1 [23]. Replica exchange was attempted
every 10,000 steps.

The calculation of Ca � RMSD with NMR structure of
GA88 (PDB id of 2JWS) as reference and cluster analysis
was carried out using the “ptraj” program in AmberTools
[4]. Similarly, principal components (PCs) were generated
using “ptraj” and each PCs were visualized using Visual
Molecular Dynamics (VMD) with the aid of interactive
essential dynamics (IED) [24, 25].

Results and discussion

From the REMD trajectories, an acceptance ratio of more
than 0.20 were observed indicating the absence of local
energy minima trapping in the system and all the
temperatures were explored numerous times by each
replica during the course of simulation. The trajectories
obtained from the REMD simulation were analyzed to
reveal the mechanism governing the respective folding
and unfolding of 3α-fold protein and α/4β-fold protein
during conformational variation.

To evaluate whether global folding of simulated protein
to a conformation analogous to GA88 had occurred during
the simulation, the disparity in space between the simulated
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structures and the NMR structure of GA88 when aligned
were obtained by the calculation of Ca � RMSD over
residues 9 to 53 (Fig. 1). The eight amino acid residues at
the N terminus and the three amino acid residues at the C
terminus were not included in the calculation as the NMR
ensemble of the structures of GA88, as highlighted by He et
al., are disarrayed at the aforementioned residual positions
[4]. The lowest Ca � RMSD observed was 4.34 Å at 270 K
and as seen from Fig. 1a, the Ca � RMSD calculated for
the simulated structure at 270 K over the 75 ns simulation
displays an overall decrease with time indicating the global
folding of the simulated protein. This is within apprehen-
sion as GA88 had been reported to completely fold at
298 K [26]. A look at the Ca � RMSD calculation at 304 K
showed a similar nonetheless less obvious downhill Ca �
RMSD to that noted for 270 K with best Ca � RMSD of
4.75 Å (Fig. 1a), indicating that folding was still occurring
at this temperature.

Large variations in Ca � RMSD and high probability
distribution at large Ca � RMSDs were also evident in
Fig. 1a. Therefore, to further corroborate the conformational
variation from α/4β-GA88 to 3α-GA88, cluster analysis for
the trajectory at 270 K was carried out to observe the
conformational transformation that occurred during the
75 ns simulation. Based on the five clusters acquired, more
than 50% of the trajectory comprise of structures with the

individual α-helical domains of 3α-GA88 folded (cluster 2, 4
and 5 in Fig. 2), confirming the variation in secondary
structure from β-sheet to α-helix during the simulation.

A closer look at the folded structures at 270 K and 304 K
revealed that additional α-helix were formed at the first
eight residues (TTYKLILN) of the simulated structures
(Fig. 1b and c) [4]. In addition, the first four residues
within H3 (VEGV) forms a random coil instead of α-
helix (Fig. 1b and c) [4]. From the prospect of helix
propensity scale derived by Pace and Scholtz, the supra
observations are valid as the average helical propensity of
the first eight residue is 0.45 kcal mol-1, comparable to
part of H3 which folds into a helix (residue 43-51) with
average helical propensity of 0.44 kcal mol-1 [27].
However, it was highlighted by He et al. that the following
mutations A6I, N7L and S8N which were made when
designing GA88 from the parent protein had led to a net
reduction in the helical propensity of GA88 at residues 6
to 8 which were originally an α-helix in the parent protein,
thus favoring the random coil structure [4]. These contra-
dicting observations imply a possible underlying bias of
the force field toward helical structure. This was supported
by studies conducted by Wang and Wade who underlined
the favoring of AMBER03 force field toward helical
structures upon unfolding of protein with β-sheet domains
[17, 28, 29]. On the other hand, part of H3 which fails to

Fig. 1 (a) Ca � RMSD and probability distribution of Ca � RMSD
of simulated structures (residue 9-53) at 270 K and 304 K. (b) Overlap
between folded simulated structure (yellow) at 270 K and the NMR
structure of GA88 (purple) (PDB id 2JWS) with best Ca � RMSD

(residue 9-53) of 4.34 Å [4]. (b) Overlap between folded simulated
structure (orange) at 304 K and the NMR structure of GA88 (purple)
with best Ca � RMSD (residue 9-53) of 4.75 Å
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fold into a helix (residue 39-42) has an average helical
propensity of 0.65 kcal mol-1 with the presence of glycine
(helix propensity∼1.00 kcal mol-1) highlighting the pro-
pensity of the short sequence to form a random coil
instead of α-helix [27].

It was also apparent that the helix bundle as seen in
GA88 was not accurately aggregated in the folded protein
(Fig. 1b-c). One of the reasons contemplated was, implicit
water solvation was not able to accurately account for the
desolvation of the hydrophobic core [30]. Especially, in this
study, surface area term was not included to avoid the
biasing of β structure. Consequently, entropic cost incurred
during the exclusion of water molecules from the hydro-
phobic core was not fully accounted hence favoring a lower
energy conformation different from that of the native state
[30]. Another is based on observations made by others
which points out the over stabilization of salt bridges
compared to hydrophobic interactions by implicit solvation
model [15, 31, 32]. Based on the folded protein highlighted
in Fig. 1b and c, charged amino acid residues especially
K13 and K46 are observed to be fully exposed to solvent as
opposed to the orderly packing of the aforementioned
residues within the hydrophobic core in the NMR structure
of GA88. Similarly, clusters 4 and 5 (Fig. 2) which
encompassed a total of 43.5% of the trajectory based on
the cluster analysis performed, demonstrated similar bias of
charged residues to be either fully exposed to solvent or
engaged in the formation of salt bridges. As mentioned vide
supra with regards to the folded protein, K13 and K46 of
the representative structures of clusters 4 and 5 alike, are
also fully exposed to solvent (Fig. 3). In addition, salt
bridges formed between K28 and E48 and between K31
and E48 in cluster 5 were also discerned (Fig. 3). These

events possibly impede the aggregation process of the helix
bundle during the simulation. Overestimation of salt
bridges over hydrophobic interactions possibly steered the
formation of these redundant salt bridges between solvent
and charged amino acids and between amino acids [31].
Hydrophobic interactions being key interactions in the
assembly of the helix bundle in GA88 may thus be
underestimated resulting in a folded structure away from
the desired protein ensemble [4, 15, 30–32].

Moreover, Wang and Wade studied the effects various
force fields had on the intermediates observed during the
thermal denaturation of β-sheets [28]. Based on this study,
Wang and Wade concluded that even though biasing of
AMBER03 force field toward helical structures was
observed, the combination of AMBER03 force field with
explicit solvent model permitted the observation of the
unfolding pathway of the β-sheets close to that observed
experimentally and therefore is one of the useful tools in
the study of the unfolding of α-helix and β-sheet structures
in proteins [17, 28]. Explicit solvent model has also been
substantiated to represent the solvation effect of hydrophobic
residues more accurately than implicit solvation by others
ergo being more precise in the modeling of hydrophobic core
[15, 31–33]. Hence, a structure refinement by means of
regular MD simulation of one of the prominent conforma-
tions in the trajectory was performed using explicit solvent
model. The swinging of H1 and H3 into a position
relatively close to its native positions was observed albeit
slowly (data not shown).

To further fathom the folding mechanism of 3α-GA88, we
scrutinized the protein by looking at separate helical domains
namely H1 (residues 9-23), H2 (residues 27-34) and H3
(residues 39-51) to observe the folding of these individual

Fig. 2 (a) Cluster analysis.
Representative structures of
each cluster are represented
using cartoon representation
with the percentage stated
denoting the percentage
occurrences of these structures
during the 75 ns simulation. (b)
Cartoon representation of the
NMR structure of GA88
(PDB id 2JWS) and GB88
(PDB id 2JWU) [4]
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helical domains. The calculation of Ca � RMSDs of the three
helical domains of the simulated protein at 270 K and 304 K
(Fig. 4a for 270 K and Fig. S1 in supporting information for
304 K) with respect to the three helical domains of the NMR
structure of GA88 reveal the following: (i) The Ca � RMSDs
of H1 and H3 show a general decrease with time implying
the folding of H1 and H3. (ii) The Ca � RMSD of H2
remains approximately constant evincing the conservation of
the helix domain at residues 27 to 34 from HB of α/4β-
GA88 to H2 of 3α-GA88 over the entire simulation. Even
though the Ca � RMSDs of H1 and H3 shows a general
decrease with time, fluctuations manifest throughout the
75 ns simulation indicating the persistent folding and
unfolding of these helical domains to β-strands which was
corroborated by DSSP plot of the protein in Fig. 5 showing
the interspersed presence of α-helix and β-strands at
residues 9 to 23 and residues 39 to 51 [34, 35].

To reduce the numerous dimensionality contained within
the MD trajectories to two dimensional, free energy
landscape was plotted to observe the populations encom-
passed within the trajectories. Free energy landscapes of
H1, H2 and H3 were plotted with Ca � RMSD and radius
of gyration (Rg) as the reaction coordinates (Fig. 4b). The
free energy landscapes of H1 and H3 displays a noteworthy
population at the lower left-hand side of the landscape
which corresponds to folded states and the notable single
population observed for H2 connotes the conservation of
H2. Furthermore, the fluctuations observed for the Ca �
RMSD of HI and H3 (Fig. 4a) which corresponds to the
folding and unfolding of H1 and H3 during the simulation
was supported by the presence of two prominent popula-

tions corresponding to helical domains and β-strands in the
energy landscape of H1 and H3 (Fig. 4b) thus further
attesting to the interpretation put together based on the
Ca � RMSD of the three helical domains of the folded
protein. The conservation of H2 is further supported by
observing the temporal change in secondary structures by
means of DSSP (Fig. 5) whereby residues 27 to 34 show
considerable conservation of helical structures over the
75 ns simulation [34, 35]. Furthermore, the DSSP plot at
both 270 K and 304 K demonstrates the occurrence of the
conformational transitions from B1-loop-B2 (residues 1-20)
to a structure incorporating H1 and from B3-loop-B4
(residues 42-55) to a structure incorporating H3 as the
simulation progresses authenticating the conformational
variation between α/4β-GA88 to 3α-GA88.

Other than gaining insights on the mechanism governing
the folding of 3α-GA88, an appreciation of the unfolding
pathway of α/4β-GA88 during the conformational varia-
tion is also of great importance. Here, the unfolding
pathway was probed by means of principal component
analysis (PCA). PCA is a well established mathematical
technique employed by many in the study of protein folding
and unfolding [3, 11, 36, 37]. This technique aids in the
study of protein dynamics through the reduction of the
numerous dimensions present in MD trajectories thus
curbing the 3 N (N = number of atoms in the protein)
degrees of freedom of the protein to key degrees of freedom
which are of great importance in the description of
functionally crucial motions leading to the folding or
unfolding of proteins [3, 36–38]. In this study, PCA of the
first 15 ns of the trajectory was conducted to filter out the

Fig. 3 Amino acid residues K13, K28, K31, K46 and E48 of cluster 4, cluster 5 and GA88 (PDB id 2JWS) are represented using licorice
representation, viewed using VMD [4, 24]
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Fig. 5 Secondary structure assignment (DSSP) of folded protein during REMD simulation at 270 K (top) and 304 K (bottom) [34, 35]

Fig. 4 (a) Ca � RMSD of H1 (residue 9 to 23), H2 (residue 27 to 34)
and H3 (residue 39 to 51) domain of the simulated protein with
reference to the NMR structure of GA88 (PDB code: 2JWS) at 270 K

[4]. (b) Free-energy landscape of H1, H2 and H3 domains of
simulated protein at 270 K and 304 K. Energy level increases from
blue to red
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dominant motion modes leading to the unfolding of α/4β-
GA88 via eigen decomposition of the overall motion of the
protein during the unfolding process [3, 36–38]. It was
highlighted by Das et al. and many others that a large
portion (∼90%) of the structural fluctuations observed by
means of PCA are described by a small set of degrees of
freedom (∼5%) of the protein [36, 37, 39]. Therefore, five
PCs were generated and based on these five PCs, the first
two PCs, PC1 and PC2, at both 270 K and 304 K show
major contributions to the unfolding of α/4β-GA88 as
illustrated by the plot of PCs versus time included in Fig.
S2 in the supporting information.

The visual analysis of the crucial motion modes
describing the unfolding pathway of α/4β-GA88 were
made possible with the help of the interactive essential
dynamics (IED) program [25]. IED program enables one to
control the addition or the removal of eigenvectors
describing the motion modes of the protein and the
projection of the protein along an eigenvector [25]. In this
study, the IED program, together with visual molecular
dynamics (VMD) as display interface, assist in the
comprehension of the functionality of each eigenvector in
detailing the unfolding of α/4β-GA88 [24, 25]. PC1 and
PC2 were noted to contribute dominant motions leading up
to the unfolding of α/4β-GA88 by the separation of the two
β-sheets, B1-loop-B2 and B3-loop-B4, of the protein to
form structures inclusive of H1 and H3 respectively. PC1
accounts for the pulling motion separating B1 and B4 while
PC2 accounts for the bending of the HB in α/4β-GA88 (see
Fig. 6). These motions lead to the unpacking of the
hydrophobic core of α/4β-GA88 which is comprised of Y3,
L5 and L7 in B1, A26 and A34 in HB, W43 in B3 and F52
and V54 in B4 [4]. This unpacking of the hydrophobic core is
crucial to drive the folding of H1 and H3 to form 3α-GA88.

Even though PC1 and PC2 are major contributors to the
unfolding of α/4β-GA88 at both 270 K and 304 K, it was

discerned that a higher temperature allows the protein to
explore more motion modes leading to unfolding. At
304 K, the amplitudes of the modal activity of the protein
described by PC3 to PC5 are greatly enhanced compared to
PC3 to PC5 at 270 K, with PC1 and PC2 still being the
major contributor to the unfolding of α/4β-GA88 for both
temperatures. (Supporting information, Fig. S2) A plot of
PCs against time for PC1 and PC2 shown in Fig. 6, also
suggest that PC2 plays a more prominent role than PC1
in the unfolding of α/4β-GA88 in the initial part of the
trajectory. Hence, through PCA, one is not only able to
identify crucial motions leading to the folding or
unfolding of proteins but also able to determine when
these motions occur.

Conclusions

REMD simulation was carried out to comprehend the
mechanism influencing the conformational variation from
α/4β-fold to 3α-fold originating from a protein with the
primary sequence of GA88 in the guise of GB88. The
conformational variation from α/4β-GA88 to 3α-GA88
was successfully observed albeit the large Ca � RMSD of
the folded structure when compared to the NMR structure
of GA88 at 270 K (4.34 Å) and 304 K (4.75 Å).
Notwithstanding the large Ca � RMSD, analysis of the
REMD trajectory aids in the understanding of the folding
and unfolding pathway of 3α-GA88 and α/4β-GA88
respectively. Trajectories from the REMD simulation
suggest an underlying bias of force field toward helix by
the formation of additional helix in the first eight residues
of 3α-GA88 instead of the intended random coil. The
failure of the folded protein to assume the correct helix
bundle conformation was attributed to the over stabilization
of salt bridges and the imprecise desolvation of the

Fig. 6 Temporal activity of the protein based on the first two PCs at 270 K and 304 K for the first 15 ns of the trajectory together with
illustrations of motion modes corresponding to PC1 and PC2 visualized using VMD with the aid of IED [24, 25]
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hydrophobic core leading to the inaccurate representation of
hydrophobic interactions crucial in the aggregation of the
helix bundle. By means of Ca � RMSD, free energy
landscape and secondary structure assignment (DSSP) of
the separate helical domains of 3α-GA88 namely H1, H2
and H3, we are able to identify the conservation of the helix
domain in α/4β-GA88 during the conformational variation
and the folding of H1 and H3 close to the respective helical
domains in GA88 [34, 35]. PCA aids in the study of the
unfolding pathway of α/4β-GA88 by disclosing the
motion modes crucial for the unfolding of this protein.
PCA conducted reveals PC1 and PC2 as the main
contributor to the unfolding of α/4β-GA88 with PC2
being more prominent during the initial part of the
trajectory although PC1 contributes largely to the overall
unfolding of the protein.
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Abstract Unlike atomistic and continuum models, empir-
ical pka predicting methods need to include desolvation
contributions explicitly. This study describes a new empir-
ical desolvation method based on the Born solvation model.
The new desolvation model was evaluated by high-level
Poisson-Boltzmann calculations, and discussed and com-
pared with the current desolvation model in PROPKA—
one of the most widely used empirical protein pKa

predictors. The new desolvation model was found to
remove artificial erratic behavior due to discontinuous
jumps from man-made first-shell cutoffs, and thus improves
the desolvation description significantly.

Keywords Solvation . Desolvation . pKa
. Protein

modeling . PROPKA

Introduction

The desolvation penalty makes an important contribution
when calculating ionization energies for protein ionizable
groups. It is the primary driving force explaining why
charged residues—primarily Asp, Glu, Lys, and Arg—are
found mainly on protein surfaces and only rarely buried in
the commonly more hydrophobic protein interior. When
they do occur in protein interiors, such residues often form
part of an active site or otherwise have an important

function in the protein, e.g., Glu 35 in lysozyme, Asp 25 in
HIV-protease, and Glu 78 and Glu 172 in Bacillus circulans
xylanase. Thus, since ionizable residues can be found in
protein interiors, it is crucial to include the desolvation
penalty correctly when modeling protein pKa predictions.

Most pKa predicting approaches calculate protein pKa

values starting from a thermodynamic cycle where an
ionization process is considered in a reference water
solution and in the protein [1, 2]. This eventually requires
calculating the change in solvation free energy for the
charged and uncharged form of the residue/solute. In most
approaches, the desolvation is typically included explicitly;
for instance, in all-atom molecular dynamics (MD) simu-
lations the explicit water solvent molecules are prevented
from occupying areas next to a buried ionizable residue by
the presence of intervening atoms, provided that the local
folding energy is larger than the desolvation penalty. Similarly,
in Poisson-Boltzmann (PB) and Generalized-Born (GB)
models the desolvation comes from using much lower values
for the internal protein dielectric constant, εin≈4, com-
pared to the external solvent dielectric constant, εext≈80
(the desolvation contribution is thus also intimately
connected with atomic radii). In empirical approaches,
however, there are typically no explicit solvent or atomic
radii a priori that can serve as the desolvation penalty;
instead it needs to be added as a specific contribution. Two
common ways of including solvation or desolvation in
empirical protein modeling are through the solvent
accessible surface area (ASA) [3] or the contact model.

Recently, we have found that the current desolvation
contact model used in PROPKA—one of the most popular
empirical protein pKa predictors—is fundamentally incor-
rect and needs to be revised since it has discontinuous
jumps and exhibits unphysical behavior. In this study, I
present an improved desolvation model that take its
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inspiration from the Born solvation model [4] and is
therefore also closely related to the GB and PB solvation
models. The model is quite simple, but in the end provides
a more reasonable description of desolvation than the
previous PROPKA contact model. The following sections
sketch out the theoretical justification of the desolvation
model, validate the behavior of the model and obtain
approximate parameters using PB calculations. Finally, the
new model, which has been implemented in a new version
of PROPKA [2], is compared with the current PROPKA
desolvation model for a few residues with experimental pKa

values. As we move to justifying and describing the model
in the following section, we should keep in mind that we
are not looking for an exact theory but for a simple and
computationally fast approximation that has the most
important features of an idealized system. We first briefly
consider some of the fundamental relationships and
practical details of pKa predictions.

pKa desolvation models

We start by noting that the vast majority of protein pKa

values are very similar to their corresponding reference pKa

values in water, and the effect of the protein is compara-
tively small even for a significantly shifted residue. In fact,
using the relationship between pKa value and solvation free
energy differences

ΔΔG�
solv ¼ 2:30RT �ΔpKa; ð1Þ

where R is the gas constant and T is the temperature, we
find that, for each pH unit of shift (pKa

protein − pKa
water) the

corresponding shift in solvation free energy is only
1.36 kcal mol−1. This is more than an order of magnitude
smaller than the absolute solvation energy change of several
tens of kcal mol−1 in water solvent between the protonated
and unprotonated residue (the solvation energy for acetic
acid for instance is close to 80 and 10 kcal mol−1 for its
charged and uncharged form, respectively). We therefore
formulate the pKa value of a protein residue in terms of its
known water reference as

pKprotein
a ¼ pKwater

a þΔpKwater!protein
a ð2Þ

and, thus, see the effect of the protein as a perturbation to
the reference water value (ΔpKa

water→protein) [1]. For pKa

predictions, this perturbation is subsequently divided into
an intrinsic “self-energy” term and a Coulomb charge–
charge interaction term. The former corresponds to trans-
ferring the residue from its reference state in the solvent to a
state in its protein position where all other titratable
residues are in their neutral form. In a second step the
interactions between titratable residues are turned on and
either solved iteratively by a Tanford-Roxby [5] scheme or

the titration curve is calculated by a Monte Carlo scheme
[6]. For our present purpose, however, we are not
concerned by this detailed analysis and conclude that the
solvation free energy of transferring an ionizable residue
from water to the protein can, like its pKa value, be divided
into a desolvation, protein resolvation (electrostatic inter-
actions with polar protein groups, e.g., COO− � � � HN ) and
Coulomb charge–charge contribution.

The desolvation term describes the solvation penalty or
the loss of solvation energy exerted by the protein as
protein atoms replace ambient water. The electrostatic terms
then describe the substituting resolvating effect of those
atoms and charge–charge interactions. Before we continue
and consider desolvation models in more detail we note that
the desolvation and the resolvating electrostatic contribu-
tions have opposite effects on the pKa value and, in many
cases, balance each other to give a rather subtle total pKa

shift. In some cases, however, apolar hydrophobic residues
surrounding the ionizable residue overthrow this balance,
resulting in significantly shifted pKa values.

Since calculating the desolvation energy is the reverse of
calculating the solvation energy, and solvation energy is a
more abundant topic in the literature [7, 8], we start by
briefly considering two of the more commonly used
simplified approaches to calculating large molecule or
protein solvation energies. These solvation methods are
especially relevant for the desolvation pKa contribution
since, in principle, both decompose the molecule into
solvating fragments or atoms, calculate the desolvation
from nearby fragments and obtain the solvation energy as
the residual solvation. For approaches based on ASA the
solvation energy is given by

ΔG�
solv ¼

X
i

s iASAi ð3Þ

where σi is an atom-based per-unit-area solvation parameter
and ASAi is its solvent accessible surface area in its protein
or large-molecule position [3]. The contact model in its
basic form is even simpler and can be written as

ΔG�
solv ¼

X
i

a � CW ¼
X
i

a � C � CPð Þ ð4Þ

where α is a scale factor, C is the number of possible
nearest-neighbor contacts, and CW and CP are the
corresponding contacts from water solvent and protein
atoms, respectively [9]. Effectively, both these methods
consider solvent effects from only the first coordination
sphere, either through the contact area or through a number
of nearest neighbor contacts. The solvation of a charged
residue, however, depends on the electrostatic potential of
the charge, which is proportional to r−1 and should therefore
be considered long range. Thus, it seems reasonable to try
to extend this picture.
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The desolvation model in PROPKA versions 1 [10] and
2 [11] makes use of two types of contact desolvation
contributions: local and global. The first term is akin to the
basic ASA or contact model in that it reports on atoms in
the immediate neighborhood that prevent solvent molecules
from coming into contact with the residue in question. The
global term is an extension that corresponds to a “depth of
burial” energy (i.e., the distance of a residue from the protein
surface). The difference in desolvation energy between the
charged and uncharged residue is thus calculated as

ΔΔGdesolv ¼ 2:30RT Clocal � Nlocal þ Cglobal � Nglobal � 400
� �� �

ð5Þ
where the local contribution is a product of an empirical
constant, Clocal=0.07, and the number of non-hydrogen
atoms (Nlocal) within a radius, Rlocal, of the residue ionizable
center. Rlocal depends on the residue type, but typically its
value is between 3.5 and 6Å. The global contribution is
calculated in a similar way using a global empirical constant,
Cglobal=0.01, and a residue-independent radius, Rglobal=15.5
Å. Although this model includes contributions beyond the
first coordination, it represents the desolvation penalty
inappropriately (as will be discussed later).

In order to extend these first-shell models, we start by
considering the solvation energy of residue i, which is defined as

ΔGðiÞ
solv ¼ ΔGenv ri½ � �ΔGvac ri½ � ð6Þ

where the first and second terms are the energy of its charge
density, ρi, in a solvating environment and in vacuum,
respectively. These terms are formally defined as charging
processes where the charge densities are turned on , 0→ρi, in
the environment and in vacuum. Following on from many
previous studies [12, 13], we next consider the solvation
environment as a continuum and write the solvation energy as
the integral

ΔGðiÞ
solv ¼

Z
V
f ri; r; "ðrÞ½ �dV ð7Þ

Here, f [ρi, r, ε(r)] is the solvation free-energy density at
a given point, r, that depends on the residue charge
distribution and the dielectric medium, ε(r), of the
protein+water system. The dielectric medium is, in this
context, clearly non-homogeneous and is therefore
denoted ε(r) rather than ε. V indicates that we integrate
over the volume surrounding the residue. Thus, unlike
several other studies concerned with simplified large-
molecule solvation models [12, 14], we do not include the
solute, or in this case residue, volume in the integral since
its contribution is identical in both terms of Eq. 6 and
therefore does not contribute to the solvation energy.
Following classical electrodynamics [15] and the long-range

limit of Schaefer and Froemmel [12], we choose f[ρ, r, ε(r)]
to be proportional to a functional of the dielectric medium,
α[ε(r)] and to the inverse distance according to

f r; r; "ðrÞ½ � / a "ðrÞ½ � � r�4 for r � r0 ð8Þ
(again for volumes outside the solute and accessible to the solvent,
r≥r0). Thus, for a spherical system with a unit point charge in a
homogeneous environment that can be described by a dielectric
constant, ε, we can rewrite Eq. 7 in spherical coordinates

ΔGsolv ¼
Z 1

r0

f r; r; "ðrÞ½ �4pr2dr ð9Þ

and carry out the integration from r0 to infinity and get

ΔGsolv ¼ 4p a "ð Þ
Z 1

r0

r�2dr ¼ �a "ð Þ 4p
r0

ð10Þ

Thus, we see that when we choose an appropriate form
of α(ε), we recover the well-known Born equation [4]

ΔGBorn
solv ¼ � 1� 1

"

� �
Q2

2a
ð11Þ

where Q is the point charge, a is its corresponding radius
(r0 in Eq. 8), and ε is the homogeneous dielectric constant.
This can be considered “exact” for an ideal system.

One way to extend the above model might be to
represent the charge distribution with atom-based resid-
ual charges, ρ=Σqi. In this case, both the charge
distribution and the solute/solvent boundary are better
described, but for it to make sense a desolvation
correction to the radii from nearby solute atoms is
required [16]. This more detailed description would
eventually lead to a pair-wise self-energy approximation
[13]. However, this seems excessive in PROPKA since
we in any case use a single point-charge model for
Coulomb interactions and generally a simplistic model of
intra-protein interactions. The desolvation term should
also preferably be as simple as possible since calculating
the desolvation penalty is the most time-consuming step
in PROPKA. Though the single-charge approximation
might seem crude we should keep in mind that our task
eventually is to calculate the desolvation energy, which is
the decrease in solvation free energy as a small portion
of the solvation density is removed due to nearby
protein atoms. In this sense the “exact” solvation energy
for the free amino acid, for which a more detailed
description would probably be necessary, is already
included in the model through the water-reference pKa

value. Moreover, pKa predictions require the desolvation
difference between the charged and uncharged residue,
which corresponds to a difference in the difference in
solvation free energy, and we therefore assume that only
the excess charge distribution can be modeled as a
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spherical difference. Thus, given these circumstances, a
point-charge model should suffice.

For calculating the desolvation, it seems feasible to
reverse the situation and to integrate the excluded contri-
butions from the solvation density volumes that are now
displaced by those atoms. This is of course the idea
introduced in reference [9]. However, a more convenient
definition, which we will adopt here, is to retain parts of the
polarization, e.g., the electronic polarization, in the exclud-
ed volume and integrate the difference. Again, we take the
Born model as inspiration and use the function

a "ð Þ ¼ 1

"w
� 1

"

� �
ð12Þ

where εw is the dielectric constant of ambient water and ε is
an effective dielectric constant of the residue occupying the
excluded volume without the contribution from its perma-
nent dipoles. Thus, we obtain our expression as

ΔΔGðiÞ
desolv ¼

Z
V 0
a "ð Þr�4dV0 ð13Þ

Here, ΔΔGdesolv
(i) refers to the difference in desolvation

energy between the charged and uncharged form of residue
i, and V’ indicates that we restrict the integration to the
space not occupied by the solvent, i.e., the volume occupied
by the protein but not residue i. Now, since we are looking
for a simple and computationally fast approach, and the
integral of Eq. 13 would be time consuming and maybe
also non-trivial, we replace the integral with a summation
over point-volumes according to

ΔΔGðiÞ
desolv ¼

XN
j; j=2i

a "ð Þ Vj

ri4j
ð14Þ

where the sum runs over all protein atoms not belonging to
residue i, and Vj is the volume occupied by atom j at distance
rij from the charge center of residue i. This approximation
might seem crude compared to, e.g., PB approaches that in
principle solve the corresponding solvation integral numer-
ically, but this point-volume model is much faster to evaluate
and much more in line with the remaining non-rigorous
electrostatic terms of PROPKA. The important point for us at
present is that the desolvation contribution is directly
proportional to the volume of displaced solvent and that
the distance dependence comes out as r−4.

So far we have considered a static or average-structure
model of the desolvation. In real-life protein titrations,
however, the protein typically reorganizes as the residue
changes ionization state. This reorganization can be
anything from smaller protein-dipole reorientation to water
penetration and, in extreme cases, local protein unfolding.
This structural change significantly complicates a rigorous

treatment, making at least the static picture approximate,
and marks one of the biggest challenges to both
empirical and non-empirical contemporary pKa predic-
tions. In the case of most PB approaches this is modeled
by the protein dielectric constant, εp=4, which generally
includes “protein effects not treated explicitly” [17]. In
PROPKA this effect is also treated implicitly, but in this
case it is instead parameterized into the effective perturba-
tions (the ΔpKa

water→protein contributions) and therefore
not seen directly. In the particular case of the desolvation,
this simply means that we fit the α(ε) coefficient in Eq. 14
to a set of experimentally determined protein pKa values to
include the effective contribution, which includes protein
reorganization.

As it turns out, this effective protein response is different
on the protein surface compared to in the protein interior
since water penetration and reorganization is easier on the
surface (this is not rigorous, but comes from the empirical
observation that pKa values are significantly better repro-
duced by two parameters compared to one [2]). Thus, we fit
two global constants (csurface and cburied) to the experimental
data through the function

ΔGðiÞ
desolv ¼ c �

XN
j; j=2i

Vj

r4ij
ð15Þ

where c is the interpolation between the two surface and
buried extremes

c ¼ csurface � csurface � cburied
� � � wiðNÞ ð16Þ

wi(N) is the buried ratio of residue i and defined elsewhere
[2]. The fact that we fit the c values to experiments also
relieves us from defining a protein dielectric constant, and
therefore we evade an open and much debated question in
protein modeling.

Before concluding this section and moving on to
validating our model, we need to clarify that the solute
Born radius that appears in the integral of Eq. 9, and is an
integral part of all PB and GB approaches, lies for our
derivation in the solvent contribution to the water reference
pKa value. The radius determines how close the solvation
free-energy density approach the ion, the effective size of
the ion, whereas the integral of Eq. 13 involves only
excluded-solvent regions that are outside this limit. Since
the reference value is a tabulated experimental value we do
not need to concern ourselves with what type of solute radii
are appropriate, i.e., whether Connolly radii are better than
van der Waals radii, etc. Note, however, that we have to
define volumes for the desolvating atoms according to
Eq. 15, but since these volumes appears as a product with c
we effectively have to define only the relative volumes and
let the fitting procedure scale these to obtain the appropriate
excluded-solvent volumes.
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Another attractive feature of this model is that there is
also no need to define the end of the first solvation-shell
radius since the desolvation from all surrounding atoms is
included with the appropriate distance-dependent weight
r−4. Conversely, the local desolvation contribution in the old
PROPKA contact model, and contact models in general,
requires this type of radius to define which atoms are within
the first coordination sphere and therefore contribute to
excluded nearest neighbor contacts. This is obviously an
attractive feature of the new model since it avoids
unnecessary, and to some extent arbitrary, parameters.

Methods

Test and evaluation

Before we continue with evaluating this model, we should
point out that pKa calculations are not at a stage where their
individual contributions can be calculated with accuracy.
Instead, pKa values depend on two comparatively large and
opposing quantities—the desolvation penalty and the
protein electrostatic resolvation—that to a large extent
balance each other out, often resulting in a rather subtle
total effect. Therefore, there is little purpose in obtaining
and cementing the necessary parameters without defining
the remaining parameters. Instead, this section focuses on
illustrating the model’s strengths and functional form,
keeping in mind that the paper’s main objective is to
provide a better desolvation model than the previous
PROPKA contact model.

Validation using Poisson-Boltzmann

The best approach to validating our new desolvation model
would obviously be to compare our model with mutation
experiments where the environment in the vicinity of an
ionizable residue is replaced by apolar groups. However,
since such experiments are scarce and difficult to assess, we
have instead calculated the desolvation energy using a PB
approach to further probe our model from a physical
perspective. In this part of the study, we calculate how the
solvation energy decreases as a fixed small “solvation
volume” is excluded from an otherwise fully solvated
solute “test residue” at various distances from the solute.
Our objective is to verify our model by fitting calculated
desolvation energies to Eq. 14 and to obtain a rough
estimate of the coefficient α(ε)⋅Vj and validate the r−4

distance dependence.
Our solute test residue is a sphere with a radius of 2.0Å

that is surrounded by a dielectric medium with ε=80. This
system has a solvation energy of 82 kcal mol−1 when it is
completely surrounded by the high-dielectric medium and

can thus serve as a united-atom model of lysine or a
simplified carboxylic acid. The desolvation energy is then
obtained as the solvation-energy difference between the
fully solvated test residue and when a small sphere of
solvation volume with radius 1.5Å is replaced by a low-
dielectric medium, ε=1, 2, or 4, representing, for instance,
an oxygen atom, see Fig. 1. We used the program suite
MEAD [18] to calculate the solvation energy by solving the
PB equation with the finite-difference method.

Before presenting the results we should point out that we
are calculating very small changes in the solvation free
energy and therefore have to set up our calculations such
that we minimize errors, and utilize error cancellation to the
largest extent possible. Thus, we used four consecutive
grids for our PB solver, 39×1.000, 75×0.500, 147×0.250, and
289×0.125Å, with a final grid finer than that commonly used
extending 18Å from the solute center. To reduce any
remaining artificial grid dependencies, we first tried to
average the calculated solvation energies over random solute
displacements (between 0 and 0.1Å from the grid center) for
each solute to excluded-volume distance. Generating these
displacements independently for each distance was, however,
found to be insufficient to obtain well-behaved data since
random numerical noise results in small and negative
desolvation energies for longer distances. Instead, we gener-
ated 52 random solute positions and calculated the desolva-
tion energy profiles for distances from 3 to 15Å along a
random vector with an increment of 0.25Å, and averaged
these. This enhanced cancelation of errors and resulted in
more well-behaved data. The resulting desolvation profile is
presented in Fig. 2 for ε=1, 2 and 4. The solid error bars
represent standard error (2×SE) and the dotted error bars
represent standard deviation (2×SD). In other words, we can
say with 95 % confidence that the average value is within
the solid error bars, but any one particular calculation falls
with 95 % certainty within the dashed error bars.

The reference solvation free energy for the three calcu-
lations (with 2×SE in parenthesis) was found to be −82.26
(0.02), −82.26 (0.01), and −82.25 (0.02) kcal mol−1. Even
though these numbers seem, and should be, identical, the
standard error shows that the solvation calculations converge
to only 0.02 kcal mol−1 with respect to random displace-
ments, whereas the desolvation energies can be significantly
smaller. Figure 3 depicts how the standard error decreases as
we include an increasing number of random displacements
in our averaging. The black lines and inset histograms
represent the reference solvation energies, whereas the red,
green, and blue lines represent the desolvation energies at
distances 3, 3.75, and 10Å, respectively. From the three
black lines, corresponding to different sets of random
numbers from desolvation calculations with different dielec-
tric constants, we see that the solvation free-energy reference
has a standard error of 0.01 kcal mol−1 after 52 random
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displacements. In the case of the desolvation energy, the
standard error is much smaller and we obtain 1.0, 0.13, and
0.03 cal mol−1 for distances 3, 3.75, and 10Å respectively.
Thus, we see that our desolvation calculations converge
much faster than the total reference solvation since we
set up the calculations to maximize cancelation of
errors. If instead we made random displacements
independently for each distance, thereby not utilizing
error cancelation, we would also obtain a standard error
of 0.01 kcal mol−1 for the desolvation calculations,
which makes the standard error larger than the calculated
desolvation energy already from distances of 4.25Å and
greater. Our calculations show that this limit is shifted to
longer distances and that the calculated desolvation is

larger than the standard error also at distances of 15Å
(0.1 cal mol−1 versus 0.06 cal mol−1). For the more
stringent requirement, ΔGdesolv>2×SE, we find that these
limits become approximately 3.75 and 13.5Å. Using a
coarser grid (147×0.250Å) increases the uncertainties by
a factor of more than 3 and an even coarser grid
(75×0.500Å) by a factor close to 16 (see Figs. S1–S4 in
the supplementary information).

The resulting averaged desolvation profile and fit to
Eq. 14 are presented in Fig. 2 and Table 1. The first, and
possibly most important property we want to verify is
whether we can represent the calculated data with a power
function, how good this fit is, and if we obtain the
expected exponent −4 of the distance dependence. Fitting
the averaged energies for all 49 distances to a power function
(ΔGdesolv=C⋅rn) gives an exponent in the range −4.47
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distances 3, 3.75, and 10Å (red, green, and blue respectively).
Although the solvation reference has not converged to more than
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because of efficient use of error cancellation

0 5 10 15

Distance (A)

0

0.2

0.4

0.6

D
es

ol
va

tio
n 

(k
ca

l/m
ol

)

1 2 3
log (distance)

-10

-5

0

lo
g 

(d
es

ol
va

tio
n)

Fig. 2 Desolvation profile for the system defined in Fig. 1 calculated
with the Poisson-Boltzmann (PB) approach using ε=1, 2, and 4
(black, red, and green respectively) and averaged over 52 random
initial origins and directions. Circles show the calculated averaged
points, the lines show the fitted power equations (ΔGdesolv=C⋅rijn),
and the error bars show double standard error (solid bars) and double
standard deviation (dotted bars). Inset Log-log plot showing the
trusted range and quality of the regression fit; desolvation is best
described by a power function with exponent 4 as expected

Fig. 1 Idealized system used to study desolvation energy where
desolvation is calculated as the difference between the solvation
energy of a fully solvated solute “test residue” and a small “excluded

solvent volume” in the high dielectric medium is replaced by a
vacuum or low dielectric. The figure does not show the entire grid; the
dielectric medium extends 18Å along all axes from the solute center
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to −4.23 for the different dielectric constants, with a
correlation coefficient close to 1. However, as can be seen
from the inset in Fig. 2, points corresponding to shorter
distances (3.00 to 3.50Å) deviate from the remaining, more
linear, points, and points from distances further than 10Å
show more noise. Discarding these points and redoing the fit
improves the correlation coefficient and we obtain an
exponent in the range −4.13 to −4.00, which is closer to
the expected −4.

Determining the coefficient of the power-function turns
out to be more difficult than the exponent. Using the
regression coefficients fitted to all 49 points, and the
volume of the 1.5Å sphere (14.14Å3), we obtain c(ε=1)=
1.02, c(ε=2)=0.64, and c(ε=4)=0.69 kcal mol−1Å−1.
Overall, however, we have to conclude that these values
are associated with large uncertainties, and it is possible to
determine α only somewhere in the range 0.3 to
1.4 kcal mol−1Å−1, which corresponds to 0.2 to 1 units Å
in terms of pKa desolvation (the range quoted here is slightly
larger than the three numbers imply since we also take into
account additional fits not presented in this article). The fact
that we are not able to determine the coefficient more
precisely is not a problem since c is a parameter and its value
is eventually obtained by fitting to experimental pKa values.
Nevertheless, since the biggest challenge in these calcula-
tions has to do with numerical stabilities for very small
energies, we have also doubled the excluded volumes by
adding a mirrored excluded volume in the opposite direction,
thus getting larger effects and thereby improve numerical
stabilities. The results are found to give similar values and
the same conclusions (the resulting graph and table can be
found in the supplementary information).

Even though the theoretical framework in this study
suggests a power function, it is conceivable that other
functions could also represent the desolvation reasonably
well; for instance a Gaussian-shaped solvent exclusion such
as the “effective energy function 1” (EEF1) [19] used in
CHARMM. It is clearly possible to find such a function to
represent the desolvation profile calculated in this study;
however, a regression fit to the data points does not give a
Gaussian-shaped function since the exponent becomes

positive, see Fig. 4. This is because the fit places larger
weight on the long-range regime, whereas the Gaussian
description is really only justified in the overlap regime
[12]. In our case, however, we are effectively interested only
in the non-overlapping region since van derWaals interactions
prevent any significant overlap between non-bonded atoms.
Fitting the data points to an exponential function gives a clear
underestimate of the desolvation at close distances. Thus, we
can conclude that the power function provided by Eq. 14
indeed represents the best option.

This section has so far considered an idealized system
within an overall static picture to validate the form of our
desolvation model. However, as mentioned above, embed-
ding the system in a protein gives a more complicated
response and therefore a different numerical value of the
desolvation parameter. In this respect it is better by far to
combine the desolvation model with functions for the other
interaction types (resolvation and Coulomb contributions),
and to determine the effective desolvation constants by
fitting to experimental pKa values. This also has the added
advantage of compensating for parameter uncertainties such
as the protein dielectric constant and absolute atom
volumes. This was done in a recent study by fitting 6
empirical parameters to 85 experimentally determined Asp
and Glu pKa values [2], where we obtained the desolvation
parameters cburied=1.27 and csurface=0.32 kcal mol−1Å−1

when combined with the van der Waals radii defined in
Table S1 in the electronic supplementary information.
While we realize that there is not necessarily any numerical
correspondence between these more reliable pKa-fitted
values and those obtained from the PB calculations above,
we note that they are, for all practical purposes, within
reasonable agreement.
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Fig. 4 Regression fit of our calculated desolvation energies to a
power-, exponential-, and Gaussian-type function (black, green, and
red respectively); of these three types of functions, the power function
best represents the calculated points

Table 1 Regression parameters for the desolvation energy fitted to
a power function (ΔGdesolv=C⋅rijn) given in kcal mol−1Å−n or
dimensionless

Points from 3.00 to 15.00Å Points from 3.75 to 10.00Å

ε C n r C n r

1 14.37 -4.47 -0.98 5.95 -4.12 -1.00

2 9.10 -4.23 -0.99 4.81 -4.00 -1.00

4 9.78 -4.35 -0.99 5.56 -4.13 -1.00
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Results and discussion

At this point, we have defined and evaluated our new
desolvation model from a theoretical perspective; the next
step is to evaluate how it behaves in the context of a real
protein, and to compare the new with the previous model
and show why the new model is more reasonable.

Comparison with the previous PROPKA desolvation model

Although the original PROPKA desolvation model, which
is based on a contact scheme, reproduces desolvation
effects for a number of buried residues in various proteins
reasonably well, it has some conceptual errors that lead to
failure of the model in more challenging cases. This
problem, and the more general problem with the contact
model, can best be summarized by considering the pKa

value of a significantly buried residue with a large
desolvation penalty and scrutinizing its origin. As a test
case, we chose residue Glu66 in the staphylococcal
nuclease mutant V66E/P117G/H124L/S128A [20]. Here,
an ionizable residue is introduced into a hydrophobic region
of the protein and, consequently, its pKa value is raised
significantly compared to its water reference because of
desolvation. In particular, a large desolvation contribution is
likely to come from hydrophobic side-chain atoms from the
residues T62, V23, L14, V99, I92, and L36, which are all
oriented towards Glu66 (see Fig. 5, Table 2).

Unfortunately, PROPKA2 does not give a reliable
estimate of this pKa value, but experimentally we know
that it is raised by 4 units compared to its reference water
value, 8.5 versus 4.5, and since the program does not give
any additional terms, we assume that the majority of this

comes from the desolvation contribution in the PROPKA
framework. This corresponds to a desolvation energy of
5.4 kcal mol−1. Using the parameters defined previously, we
obtain a desolvation energy close to 3.5 kcal mol−1 for our
new model compared to 2.9 for the old; this is already
slightly better compared to the experiment value. Figure 6
depicts the desolvation contribution for 1-Å spherical
segments as a function of the distance from the Glu 66 residue
center for the old (red line) and new (green line) desolvation
models. We see that the largest individual contributions to the
old model come from distances 3–4 and 4–5 Å from the
residue (0.22 and 0.23 kcal mol−1, respectively), and that
they originate mainly from the local desolvation term.
However, we note that the third largest contribution comes
from distances of 13–14Å, and in fact, 53 % comes from
the region 9Å and outwards. For the new desolvation
model, on the other hand, the largest individual contribu-

Fig. 5 Residue Glu 66 in the mutant V66E/P117G/H124L/S128A of
staphylococcal nuclease is buried in a hydrophobic patch of the
protein. The figure highlights some of the neighboring hydrophobic
residues that increase its desolvation energy and therefore raise the
pKa value

Table 2 Closest atoms surrounding Glu 66 in the mutant V66E/
P117G/H124L/S128A of staphylococcal nuclease

Residue Atom Distance (Å)

Thr 62 CG2 2.95

Val 23 CG2 3.59

Leu 14 CD2 5.15

Val 99 CG1 5.25

Ile 92 CG2 5.65

Leu 36 CD1 5.85
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Fig. 6 Desolvation contributions accumulated for 1-Å spherical
segments as a function of distance to the Glu 66 charge center; for
the new volume desolvation model (green) it can be seen that the
majority of the desolvation comes from a region 2–7Å from the
residue, whereas from the PROPKA2 contact model (red) there are
significant contributions from the regions at 3–5 and 10–16Å from the
residue. inset Profiles showing the corresponding contribution for each
atom for the new volume desolvation model (right) and the
PROPKA2 contact model (left) for each atom type
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tion comes from distances 5–6 Å (0.55 kcal mol−1), and
only 15 % comes from the region 9Å and outwards. In this
case, it might not seem such a big problem, but
staphylococcal nuclease is a comparatively small enzyme,
which is also why the red line eventually falls off at 14–16
Å in the graph. For deeply buried residues in larger
enzymes, the majority of desolvation accumulates close to
the global desolvation cutoff (r≈15.5Å) since the number
of atoms increases rapidly with distance. The two pictures
above obviously conflict, and even though the origin of
the desolvation depends on the shape of the protein and
position of the residue, we turn back to the Born model to
guide us to the correct asymptotic behavior as the distance
increases.

We find from the Born model that the solvation contribu-
tion from 1Å segments close to 15Å should be vanishingly
small compared to those close to r0, 1

14 � 1
15 � 1

2 � 1
3, and

this must also be true for the desolvation. Clearly, the
volume desolvation behaves much more appropriately in
this respect. Undeniably, the old desolvation model seems
also to be counter-intuitive since, if we extend the radius
for the heavy-atom count in Eq. 5 to be analogous to the
infinite integration of Eq. 13, the sum would quickly
approach infinity and the major desolvation contributions
would come from extreme distances. It can also be seen
from the inset, which depicts the individual atomic
contribution for the contact model (left) and the volume
model (right), that the specific radius chosen for local
desolvation provides a discontinuity where an atom just
outside Rlocal contributes very little, whereas an atom just
inside contributes almost an order of magnitude more.
This arbitrariness of the model and increased number of
parameters is obviously an undesirable feature that reduces
the applicability and generality of the model.

A more complete validation of the new desolvation
model alone in terms of energy is not feasible with existing
experimental data since pKa values also contain contribu-
tions from other terms (i.e., protein resolvation and
Coulomb interactions). The second best option is to
complete the pKa-predicting model and validate the
complete model against experimental values. This has been
found to reduce the root mean squares deviation (rmsd)
from 0.91 for PROPKA2 (which includes the old desolva-
tion model) to 0.79 for PROPKA3 (which includes the new
desolvation model) for a set of 201 Asp and Glu pKa values
[2]. The most notable improvement is seen for Asp 75 in
barnase for which PROPKA predicts a pKa shift of −5.3
and 1.0 (versions 2 and 3, respectively), whereas the
experimental pKa shift is close to −0.1. This residue is
found to be 77 % buried in the protein and surrounded by
two nearby Arg residues. Since the experimental pKa value
is similar to its reference value it means that the
electrostatic interactions and desolvation is almost balanced

and gives a small total shift (−0.1). The old desolvation
model seems to significantly underestimate the desolvation
effect and therefore predict an extremely low pKa value,
whereas the new model treats the two effects in a more
balanced way, and predicts a pKa value closer to experi-
ment. Although this is by far the most extreme case among
the 201 pKa values, we found additional examples where
the problem is less severe. We also note that the
overestimate of PROPKA3 for this residue is probably
related to an underestimation of Coulomb interactions
rather than overestimation of desolvation. The disconti-
nuity in the contact model provided by Rlocal is also
found to create problems, and is aggravated in cases of
π-stacking interactions. Interactions where r is slightly
larger than Rlocal give virtually no desolvation contribution
(6×0.01=0.06 units for a phenyl group), whereas the
contribution is non-negligible when r is slightly smaller than
Rlocal (6×0.08=0.48 units). At any rate, the new desolvation
model seems to result both in a more physical description of
the behavior of desolvation contributions and better pKa

predictions.

Conclusions

This study has shown that the desolvation model in
PROPKA2 is fundamentally incorrect in that it does not
properly take into account the solvent volume that is
displaced by surrounding protein fragments, and it has a
faulty distance dependence. This is remedied by a new
volume desolvation model that uses atom volumes to
quantify the desolvation penalty by relating the solvent
inaccessible volume and the size of intervening protein
atoms, i.e., large atoms such as sulfur atoms have a larger
effect on desolvation than small atoms. The model also
includes these contributions with the correct r−4 distance
dependence, which provides an especially attractive feature
since it removes all boundaries and unnecessary radii
parameters that are not only often difficult to define, but
essentially artificial.

The properties of the new volume desolvation model
clearly represents an improvement over the previous
PROPKA contact model, but the question of whether this
model also provides a general improvement over the
popular solvent ASA model remains. This is beyond the
scope of the present study, but before addressing the
question it should be realized that the answer might be
more complicated than first perceived. Following the
derivation outlined here, the ASA model seems quite
archaic since it does not take into account the solvation
from solvent behind a shielding contact group, and artificial
crystal contacts and other crystallization effects therefore
represent a severe problem because of these first-sphere
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properties. However, the model has withstood the test of
time, and for empirical pKa predictions we need to be able
to describe the free energy of charging the residue and
capturing all the structural rearrangement that entails. If we
want to model this rearrangement implicitly using single
structures from pdb files, it is not obvious that the
rearrangement is similar throughout the protein. It might
be that surface regions of a protein respond differently
compared to interior regions and the ASA model implicitly
manages to capture that difference. All the same, it seems
clear that the new volume desolvation model in PROPKA
provides a better starting point for further investigation than
the previous model, and indeed has rectified a number of
both conceptual and practical problems while reducing the
number of parameters.
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Abstract Aurora-A, the most widely studied isoform of
Aurora kinase overexpressed aberrantly in a wide variety of
tumors, has been implicated in early mitotic entry,
degradation of natural tumor suppressor p53 and centro-
some maturation and separation; hence, potent inhibitors of
Aurora-A may be therapeutically useful drugs in the
treatment of various forms of cancer. Here, we report an
in silico study on a group of 220 reported Aurora-A
inhibitors with six different substructures. Three-
dimensional quantitative structure–activity relationship
(3D-QSAR) studies were carried out using comparative
molecular field analysis (CoMFA) and comparative molec-
ular similarity indices analysis (CoMSIA) techniques on
this series of molecules. The resultant optimum 3D-QSAR
models exhibited an rcv

2 value of 0.404-0.582 and their
predictive ability was validated using an independent test
set, ending in rpred

2 0.512-0.985. In addition, docking
studies were employed to explore these protein–inhibitor
interactions at the molecular level. The results of 3D-QSAR

and docking analyses validated each other, and the key
structural requirements affecting Aurora-A inhibitory activi-
ties, and the influential amino acids involved were identified.
To the best of our knowledge, this is the first report on
3D-QSAR modeling of Aurora-A inhibitors, and the results
can be used to accurately predict the binding affinity of related
analogues and also facilitate the rational design of novel
inhibitors with more potent biological activities.

Keywords Aurora-A . Inhibitor . 3D-QSAR . CoMFA .

CoMSIA .Molecular docking

Introduction

Mammalian Aurora kinases comprise a family of three
highly homologous serine/threonine kinases, namely
Aurora-A, -B, and -C, which are involved in regulating
multiple steps of mitosis, including centrosome duplication,
formation of a bipolar mitotic spindle, alignment of
chromosomes on the mitotic spindle, establishment and
maintenance of the spindle checkpoint, and cytokinesis
[1–5]. Since their discovery in 1995 [6], and the first
observation of their expression in human cancer tissue in
1998 [7], these kinases have been the subject of intense
research in both the academic and industrial oncology
communities as novel attractive targets for anticancer
therapy [8]. The biology of the three isoforms of Aurora
kinase (Aurora-A, -B, and -C) has been reviewed exten-
sively [2, 3]. It is found that, although they are very closely
related in kinase domain sequence—Aurora B and C are
75% and 72% identical to Aurora A—certain discrepancies
still exist in amino acid length and sequence at the
N-terminal domain, and in the cellular localization, regula-
tion, and substrate specificity of these kinases [5, 9].
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Aurora A localizes to the centrosome and the mitotic spindle
from prophase to telophase, and plays a critical role in
regulating many early mitotic events, including entry into
mitosis [7, 10, 11]. Depletion of Aurora-A results in delayed
entrance into mitosis and formation of numerous monopolar
spindles due to defects in centrosome maturation and
separation and in the organization of the microtubules that
form the spindle [8]. Aurora-A can phosphorylate Cdc25b, a
direct regulator of the cyclin B1-Cdk1 complex whose
activation is an essential requirement for mitotic entry [12].
In addition, phosphorylation of the kinesin motor protein
HsEg5 (KSP)—a crucial driver of centrosome separation—by
Aurora-A is associated with the later process of centrosome
separation as the bipolar spindle forms [13]. Aurora-A is
critical to the regulation of the EXTAH multiprotein complex
comprised of the proteins Eg5, XMAP2154, TPX-2, Aurora-
A, and HURP, which together act to bundle, crosslink, and
stabilize the growing microtubule network [8]. Disruption of
any component in the complex would perturb spindle
formation and lead to mono- and multi-polar spindles [12].
Moreover, Aurora A can promote mdm2-mediated degrada-
tion of the natural tumor suppressor p53 and inhibition of its
transcriptional activity [14, 15].

The Aurora-A gene lies within a region of chromosome
20q13 that is frequently amplified in many human cancers [7],
and is also associated with the chromosomal instability
phenotype in colorectal cancers [16]. Overexpression of
Aurora-A has been reported to be transforming in some cell
types [7, 10], and appears to associate with a wide variety of
tumors, including those from colon [7], breast [10], ovary
[17], pancreas [18], head, and neck [19]. In addition,
transgenic mice overexpressing Aurora-A in the mammary
gland develop mammary tumors at a high incidence rate
[20]. These results provide compelling evidence that Aurora-
A acts as an oncogene and plays a key role in cell cycle
progression and carcinogenesis—an area that is emerging as
a promising molecular targeted cancer treatment option.

A number of small molecule inhibitors of Aurora kinases
have been developed, and more than ten such inhibitors
have entered early clinical assessment [8]. ZM447439, a
quinazoline derivative and the first Aurora kinase inhibitor
to be developed in 2003, inhibits both Aurora-A and -B
(IC50 values of 110 and 130 nM, respectively) [21]. VX-
680/MK-0457, which is a 4,6-diaminopyrimidine that
inhibits all three Aurora kinases (A, B, and C) with Ki

values of 0.6, 1.8, and 4.6 nM, respectively, and was first
demonstrated in 2004 to show potent antitumor activity in
vivo [22]. Hesperadin is an indolinone inhibitor of Aurora-
B (IC50 of 250 nM) with significant cross-reactivity against
six other kinases (no data on Aurora-A or -C are reported)
[23]. Examples of Aurora selective inhibitors include
AZD1152 (the first Aurora-B selective inhibitor to enter
clinical trials) [24], MLN8054 (the first reported Aurora-A

selective inhibitor) [25], and the most recently developed
inhibitor, MK-5108 (Aurora-A selective) [26]. These
Aurora inhibitors, which have diverse structures and
biological activities, offer the potential to improve the
treatment of cancer by helping to develop new drugs as
well as by defining optimal therapeutic strategies.

In silico modeling has been demonstrated as one of the
most widely used and effective tools in reducing costs and
speeding up the drug discovery process. Nowadays, it has
become an urgent task to design more potent Aurora
inhibitors in order to present new strategies to identify
therapeutics for cancer treatment. In order to understand the
function–structure relationships of Aurora inhibitors, simple
explorations based on the derivatives of some effective
inhibitors have been carried out [8, 9, 27, 28]. Furthermore,
crystallography studies have shown that the Aurora kinases
can adopt a number of different conformations that
represent distinct drug targets with alternative opportunities
to derive potency and selectivity [8]. For instance, the
crystal structure of VX-680 with Aurora-A kinase showed
that the compound is bound to an “inactive-closed”
conformation of the enzyme, and that the cyclopropyl
group of the amide occupies a small hydrophobic pocket
capped by a phenylalanine residue (Phe275). However, the
crystal structures of activated “open” Aurora-A show that
this pocket is not available in this conformation [8]. The
crystal structure of Aurora-A and TPX2 illustrated that
TPX2 makes two contacts with the Aurora-A kinase
domain. The interactions between TPX2 and Aurora-A
help mold the activation loop into a conformation that is
ready for substrate binding, and also provide a lever arm-
like mechanism that causes the rotation of phosphorylated
T288 away from the solvent-exposed position found in free
Aurora-A, thus protecting it from dephosphorylation by
PP1 [29]. Recently, a structural study revealed the potential
importance of Thr217 by revealing a hydrogen-bonding
interaction with pyrazole compounds that exhibit specificity
for Aurora A over Aurora B [28]. Despite the many co-
complex structures that have been solved, in most cases a
clear explanation for the observed inhibitory activity
against Aurora kinases is still unclear. To date, a compre-
hensive review of the structural requirements of Aurora-A
inhibitors based on quantitative structure–activity relation-
ship (QSAR) has not been reported, highlighting the
urgency of undertaking such studies to fill the blank in this
field. Thus, in this work, two widely used QSAR methods,
i.e., comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis
(CoMSIA) [30, 31], were exploited to derive 3D-QSAR
models for six different chemical series of Aurora-A
inhibitors. These techniques were applied successfully in
the past to various therapeutic areas in our laboratory
[32–36]. In addition to 3D-QSAR analyses, docking
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simulations were also performed to explore the molecular
interactions between ligands and their receptors at the
active site. To the best of our knowledge, this is the first
attempt toward the establishment of 3D-QSAR for A-type
Aurora inhibitors, which may help in designing and
forecasting the Aurora-A inhibitory activity of novel
molecules.

Materials and methods

Dataset

In order to build as large a dataset as possible, while still
maintaining consistency of structure and bioactivity in
generating QSAR models, a total of 220 molecules reported
as Aurora-A inhibitors were collected from recently published
data [8, 9, 27, 28, 37–41]. These chemicals have diverse
structures, and the main skeletons of these molecules can be
divided into six main groups (Table 1): Groups GI–GVI,
comprise 37, 36, 25, 54, 24, and 44 molecules, respectively.
The in vitro inhibitory activity, Ki or IC50 (μM) against
Aurora-A was converted to pKi or pIC50 in developing
3D-QSAR models. For each group, the molecules of the test
set represent nearly 25% of the whole dataset. The strategy
for selection of training and test sets was to ensure that test
compounds represented a similar structural diversity and
range of biological activities as the training set. To illustrate
this, a principal component analysis (PCA) was performed
on the dataset as follows: (1) more than 600 structural
descriptors, including the topological, constitutional, walk
and path counts, atom-centered fragments and connectivity
indices for each molecule, were calculated for all the
compounds using Dragon software (http://www.talete.mi.it/
help/dragon_help/); (2) PCA was then performed within the
calculated structure descriptor space for the whole dataset,
giving three significant principal components (PCs) that
explain more than 70% of the variation in the data [42]. The
structures and inhibitory activity data of the training and test
set molecules are described in Tables S1, S2, S3, S4, S5 and
S6, and details of distribution of the compounds over the
three PCs for each class are depicted in Figs. S1, S2, S3, S4,
S5 and S6 (Supporting Information).

Molecular modeling

The 3D-QSAR and molecular docking computations were
carried out using Sybyl 6.9 (http://tripos.com/) on a Redhat
Linux platform. The 3D structures of the training and test
set compounds were built using the Sketch Molecule
function in Sybyl. Optimization of the 3D structures was
carried out using TRIPOS force field with the Gasteiger
Hückel charges, and repeated minimization was performed

using Powell conjugate gradient method until a root-mean-
square (rms) deviation of 0.001 kcal mol−1 was achieved.
Compound alignment was performed separately for each
dataset with each respective common structure (Table 1,
shown in bold). In each dataset, the most active compound
was chosen as the template molecule and all compounds
were aligned to a common substructure using the “align
database” command in Sybyl software. The corresponding
alignment results of the six groups are shown in Figs. S7,
S8, S9, S10, S11 and S12 (Supporting Information).

CoMFA and CoMSIA analyses

In order to derive the CoMFA and CoMSIA descriptor
fields, a 3D cubic lattice with grid spacing of 2Å in x, y
and z coordinates, was created to encompass the aligned
molecules. CoMFA descriptors were calculated using an
sp3 carbon probe atom with a van der Waals radius of 1.52
Å and a charge of +1.0 to generate steric (Lennard-Jones
6–12 potential) field energies and electrostatic (Coulombic
potential) fields with a distance-dependent dielectric at each
lattice point. The steric and electrostatic cutoff values were
set to 35 kcal mol−1 for group II and 30 kcal mol−1 (default
value) for the remaining groups, which are optimal
parameters for the respective models. In CoMSIA analyses,
the steric, electrostatic, hydrophobic, and hydrogen-bond
donor and acceptor descriptors were calculated using the
probe atom Csp3

+ with a radius of 1Å and a +1.0 charge
placed at the lattice points of the same region of the grid as
used for CoMFA calculations.

Partial least-square (PLS) regression analyses was used to
evaluate the predictive values of models using the leave-one-
out (LOO) cross validation method. The number of compo-
nents leading to the highest cross-validated r2 and lowest
standard error of prediction was set as the optimum number
of components in the PLS analyses; F value and standard
error of estimates (SEE) were then calculated. The models
were also evaluated for their ability to predict the activity of
compounds in the test set. A detailed description of this
method can be found in many previous works [32, 35, 36].

Molecular docking

Molecular docking analysis was carried out using the
Surflex module of the Sybyl package to explore the
interaction mechanism and to illustrate the accurate binding
model for the active site of Aurora-A with its ligands [43].
Up to now, 38 various Aurora-A crystal structures
complexed with different inhibitors have been reported in
the RCSB Protein Data Bank (http://www.pdb.org). To
ensure reasonable docking models, the selection of Aurora-
A crystal structures was made according to the following
criteria:
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Table 1 Main skeletons (shown in bold) and template molecular structures in each group with corresponding inhibitory activities (pKi or pIC50)
for Aurora-A kinase

Group I Group II 

  

Compound pKi  (µM) Compound pIC50 (µM) 

37 3.222 68 3.824 

Group III Group IV 

 

N
H

N

S

Br

OH

O
1

2

3

4

5

6

 

Compound pIC50 (µM) Compound pIC50 (µM) 

81 2.824 119 1.102 

Group V Group VI 

 

 

Compound pIC50 (µM) Compound pIC50 (µM) 

176 1.481 220 2.469 
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(1) The ligand in the crystal structure to be applied
should share a common structure with certain group
compounds; also, the most active compound in the
corresponding dataset should have a reasonable
docking score (total score of 5.96 on average) in
obtaining the models. Therefore, the following PDB
files were used: 3E5A for G-I [44], 2C6E for G-II
[40], 2W1E for G-III [38], 3FDN for G-V [28], and
2NP8 for G-VI [45].

(2) For the remaining group, G-IV, no common structure
was observed with any of the ligands in the X-ray
complexes. In this case, the file 1MUO.pdb [46] was
selected as the co-crystallized ligand shares several
highly topological similarities, such as molecular size,
shape, distribution of H-bond donors/acceptors with
the most active compound 119 in G-IV.

In Surflex-docking, protomol construction was based
on protein residues proximal to the native ligand and on
parameter settings to produce a small and buried docking
target. Two parameters, i.e., protomol_bloat and proto-
mol_threshold, which determine how far from a potential
ligand the site should extend, and how deep into the
protein the atomic probes used to define the protomol
can penetrate, were adjusted to produce reasonable
docking results (for detailed values, see section on
Docking analysis and comparison with 3D contour maps
below). For receptor preparation, all ligands were first
removed and the polar hydrogen atoms were added. Water
molecules in 3E5A, 2C6E, 2W1E, 3FDN and 2NP8
crystal structures were not removed for the reason that
co-crystallized water molecules were found in the active
site and could be involved in ligand–protein interactions
by forming mediating H-bonds between the ligand and the
protein. No water molecules were considered for docking
with G-IV, since this protein receptor 1MUO.pdb has no
co-crystallized water molecules in the active site. Auto-
matic Mode was adopted to generate the protomol, and
other parameters used the default values of this software.

Results and discussion

All combinations of CoMFA and CoMSIA models for the
220 compounds were calculated and analyzed; only the
optimal 3D-QSAR models for each class are listed in
Table 2. The best models were selected primarily on the
basis of better cross-validated r2 and predictive r2 values
and the chosen models were then exploited to generate 3D
contour maps. In addition, a parameter, rm

2, was included
to validate the external predictability of QSAR models, and
a value of rm

2>0.5 could be taken as an indicator of good
external predictability [47]. The plot of actual versus

predicted activities for the training and test set molecules
for each class is depicted in Fig. 1, where the data points
are rather uniformly distributed around the regression line,
indicating that the obtained models are reasonable.

In 3D-QSAR analyses, one of the major obstacles lies
with the ‘congeners’, which misfit the final equation and
are termed as outliers. In our study, several factors may
account for the outliers: (1) unique structural differences
such as compounds 20 and 29, which have a –tBu
substituent in the GI series; (2) different binding conforma-
tions like compounds 145 and 166 that have very low
binding affinity in docking analysis (2.72 and 3.32,
respectively); and (3) a higher residual between the
observed and predicted biological activity, as in the case
of compounds 71 and 199, which have residuals more than
1 log unit. All these compounds were deleted from the data
set, and the 3D-QSAR models were derived from the
remaining compounds; the resulting models served as the
basis for further assessment and discussion.

Graphical interpretation of the 3D-QSAR models

One of the attractive features of 3D-QSAR modeling is that
the results can be visualized as 3D coefficient contour plots.
To aid the visualization, the most potent molecule in each
group of compounds is displayed and discussed as the
reference compound. In order to select appropriate contour
levels for each feature, the resulting histograms of actual
field values were analyzed, and a contour level was chosen
interactively as that producing the best interpretable contour
map.

Group-I

In Fig. 2a, the yellow contours near position 2 indicate that
bulky substituents at this position are not favorable for
inhibitory activity. This is in accordance with the findings
of Pollard et al. [8], showing that improvements in
bioactivity were obtained upon replacement of the quinazo-
line with 6-heterocyclic substituted pyrimidines (com-
pounds 21 and 32–34). A large, sterically unfavorable,
yellow polyhedron is seen near positions 4 and 5. In the
CoMSIA electrostatic field, the blue contour observed near
positions 5 and 6 indicates that a negatively charged group
at these positions would have a detrimental effect on
biological activity. The red contour near position 8 suggests
the favorability of electronegative groups for inhibitory
activity (compounds 16, 17 and 37). Figure 2c shows the
contour map of the hydrophobic field with compound 37
overlaid. In the CoMSIA hydrophobic field, a large white
contour seen in the vicinity of positions 7 and 8 indicates
that a hydrophilic substituent at these positions is favored
for inhibitory activity. There is also a small yellow region
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near the white contour, suggesting that a hydrophobic
substituent around this yellow region would also enhance
inhibitory activity. In addition, a white contour observed
near position 1 signifies that the introduction of hydrophilic
group at this position would improve inhibitory effects on
the enzyme (compounds 36 and 37).

Group-II

The steric contour plot of the best model with the template
molecule (compound 68) is shown in Fig. 3a. The green
contour observed near position 6 suggests that bulky
substituents may favor activity, yet the yellow contour near

G-I G-II G-III G-IV G-V G-VI

CoMSIA CoMFA CoMSIA CoMSIA CoMSIA CoMSIA

rcv
2 0.501 0.404 0.582 0.432 0.549 0.454

NC 7 6 6 6 4 6

SEP 0.135 0.333 0.241 0.288 0.048 0.280

rncv
2 0.982 0.973 0.982 0.809 0.986 0.964

SEE 0.089 0.216 0.168 0.240 0.083 0.151

F value 147.609 119.974 110.034 21.838 205.669 110.175

rpred
2 0.946 0.809 0.928 0.512 0.985 0.719

rm
2 0.890 0.552 0.838 0.507 0.975 0.662

Contribution (%)

S 25.6 45.4 43.1 21.3 12.0 13.7

E 28.0 54.6 56.9 25.8 58.6 44.9

H 46.4 - - - - 41.4

D - - - - 29.4 -

A - - - 52.9 - -

Table 2 Summary of statistical
results of the optimal three-
dimensional quantitative struc-
ture–activity relationship
(3D-QSAR) models for each of
the six groups GI–GVI. rcv

2

Cross-validated correlation
coefficient using the leave-one-
out (LOO) methods, NC optimal
number of components, SEP
standard error of prediction,
rncv

2 non-cross-validated corre-
lation coefficient, SEE standard
error of estimate, rpred

2 predicted
correlation coefficient for the
test set of compounds, S steric,
E electrostatic, H hydrophobic,
D H-bond donor, A H-bond
acceptor

Fig. 1 Plots of the predicted versus experimental activity data of the optimal three-dimensional quantitative structure–activity relationship (3D-QSAR)
model in each group (GI–GVI) for the training and the test set compounds. □ Training set, ▲ test set
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Fig. 2 Comparative molecular similarity indices analysis (CoMSIA)
stdev*coeff (a) steric, (b) electrostatic and (c) hydrophobic contour
maps for Group I. Color code: a green and yellow contours favorable
and unfavorable bulky groups, respectively; b blue and red contours

favorable and unfavorable electropositive groups, respectively; c
yellow and white contours favorable and unfavorable hydrophobic
groups, respectively. Compound 37 in ball and stick is displayed as a
reference

Fig. 3 Comparative molecular field analysis (CoMFA) stdev*coeff (a) steric and (b) electrostatic contour maps for Group II. Color codes of a and
b as in Fig. 2. The compound 68 in ball and stick is displayed as a reference
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position 10 indicates that a bulky substituent would decrease
biological activity. A small green contour near position 3
indicates that a sterically bulky group is favored in this
region (compounds 45, 47 and 48). The electrostatic contour
map with the reference compound 68 is described in Fig. 3b.
The red contour near position 10 indicates the significance of
a negatively charged group for biological activity. The
positively charged blue contour near position 1 suggests that
a compound activity might be decreased by an electroneg-
ative group at this position (compounds 46 and 49).

Group-III

The CoMSIA model of steric contribution is shown in
Fig. 4a, with compound 81 overlaid on the map. A large
yellow contour near position 7 indicates that compounds
like 97 with bulky substituents (–COOEt) entering this
yellow region will be less active than those unsubstituted or
with small substituents like compounds 94 and 98 (–
CH2OH). A small green contour at position 10 suggests the
requirement for a bulky substituent in this area to enhance
biological activity. The CoMSIA electrostatic map is
displayed in Fig. 4b. Clearly, a blue region is observed
near position 7, suggesting a high demand for positively
charged substituent in this region to improve inhibitor
activity. The red contour near position 1 indicates that its
occupancy by negatively charged groups would favor
inhibitory activity, as revealed by compounds 74 and 78.
Another small red contour near position 11 suggests an
electronegative group is preferred in this region (com-
pounds 79 and 80).

Group-IV

For the CoMSIA steric model (Fig. 5a, with compound
119), a large green contour at position 4 suggests that

occupancy of this sterically favorable region with a bulky
substituent would lead to an increase in bioactivity. The green
contour located near position 1 indicates that a bulky substituent
is preferred at this position (compounds 145 and 146).
Figure 5b showed the CoMSIA electrostatic contour plot with
compound 119 overlaid on the map. The blue contour plot
near position 4 indicates that an electropositive group is
favorable. This is consistent with the experimental results that
compound 130 shows higher activity than 129 and 131 since
130 has a more electropositive group (3-Me) than 129 (3-F)
and 131 (3-CF3) in this region. In the H-bond acceptor contour
map (Fig. 5c), the red contour near position 5 indicates that an
H-bond donor group is favored as supported by the fact that
compound 119 is more active than 118 since 119 has an
H-bond donor group (–OH) herein while 118 does not (–OEt).
The magenta contour observed near position 4 suggests that
the H-bond acceptor enhanced molecular activity.

Group-V

The graphical representation of the CoMSIA steric field
with reference compound 176 is displayed in Fig. 6a. The
green contour near position 1 suggests that a bulky
substituent may be necessary to increase the inhibitory
potency of the compound. A large yellow contour located at
position 3 indicates that bulky substituents have unfavor-
able steric interactions (compounds 169, 173 and 175). In
CoMSIA electrostatic field (Fig. 6b with compound 176), a
positive charge favored blue contour is observed near
position 4, which is in accordance with the finding of
Coumar et al. [28], that replacement of O with NH at this
position would enhance compound activity. The graphical
representation of CoMSIA H-bond donor field is shown in
Fig. 6c. A small cyan contour near position 4 indicates that
the H-bond donor group is favorable for activity. This is
verified by experiment results that compound 157 exhibits

Fig. 4 CoMSIA stdev*coeff (a) steric and (b) electrostatic contour maps for Group III. Color code of a and b as in Fig. 2. The compound 81 in
ball and stick is displayed as a reference
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higher activity than 156 since 157 has an H-bond donor
group (–NH–) at this position while 156 does not (–O–). A
purple contour near position 1 suggests there would be a
positive effect on biological activity by having an H-bond
acceptor replaced in this region.

Group-VI

The steric contour map of the CoMSIA model with compound
220 is displayed in Fig. 7a. The yellow contour observed near
position 1 indicates that a bulky substituent may decrease
biological activity, which agrees partly with the finding by
Aliagas-Martin et al. [37] that smaller aliphatic groups are
preferred at this position (compounds 188, 189 and 190). A
large green contour is seen near position 6, suggesting that a
bulky substituent is favorable in this region, as confirmed by
the fact that compounds 200 and 201, with substituents i-Pr
and Ph, respectively, show higher activity than unsubstituted
analogue 197. A small green contour near position 9 signifies
that occupation of this area by a bulky group would have a
positive effect on activity. The electrostatic contour map of the

CoMSIA model with compound 220 is shown in Fig. 7b. A
small red contour near position 1 indicates the requirement for
increased electron density in this area, which is in accordance
with the findings of Aliagas-Martin et al. [37] that electron-
withdrawing substituents, especially halogens, are preferred in
this region (compounds 181, 185, 187 and 189). The blue
contour map observed near position 5 suggests that electro-
negative groups are not favored for inhibitory activity
(compounds 211 vs 217 and 218 vs 220). The hydrophobic
contour map of the CoMSIA model with compound 220 is
shown in Fig. 7c. The white contour near position 8 indicates
that its occupancy by a hydrophilic group would enhance
activity. A medium size yellow contour located near position
7 suggests that a hydrophobic group is favorable for inhibitory
activity (compounds 202, 205 and 208).

Docking analysis and comparison with 3D contour maps

All the 220 molecules in six different groups were docked
into the active site of Aurora-A protein. Prior to docking the
inhibitors with the protein crystal structure, a redocking of

Fig. 5 CoMSIA stdev*coeff (a) steric, (b) electrostatic and (c)
H-bond acceptor contour maps for Group IV. Color code for a and b as
in Fig. 2; c magenta and red contours favorable and unfavorable

H-bond acceptor groups, respectively. The compound 119 in ball and
stick is displayed as a reference
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the co-crystallized ligand was performed by removing the
ligand from the binding site and redocking it to the binding site
of Aurora-A kinase. Our analysis suggests good agreement
between the localization of the inhibitor observed upon docking
and that from the crystal structure as evidenced by the result
that RMSD values in each group (I–VI) were 0.87Å, 1Å, 0.34
Å, 0.02Å, 0.27Å and 1.5Å, respectively. The low RMSD
values suggest the high docking reliability of Surflex-Dock in
reproducing the experimentally observed binding mode for
Aurora A kinase inhibitor and the parameter set for Surflex-
docking reproduces X-ray structures with reasonable accuracy.

Group-I

The protomol bloat and threshold applied the default values
(0 and 0.5, respectively) and the binding mode of

compound 37 is displayed in Fig. 8. The ligand is anchored
in the binding site via three H-bonds and one water-
mediated contact with the protein. Pyrazole –N– and –NH
ring atoms form H-bonds with the backbone at Ala213
(–N···HN, d1=2.08Å, θ1=146.8°) and Glu211 (–NH···O,
d2=2.34Å, θ2=77.1°), respectively. The –NH– nitrogen
atom at position 3 forms a H-bond with the carbonyl
oxygen atom on the backbone at Ala213 (−NH···O, d3=
2.24Å, θ3=169.2°). The oxygen atom at position 8 forms a
H-bond (2.68Å, 144.9°) with water16, which itself forms
H-bonds to the backbone –NH of Phe275, side chain –OH
of Glu181 and carbonyl oxygen atom of Gln185. Sub-
stituents like phenyl directly linked to position 4 would
potentially have a steric clash with residue Phe144, as is
evident from the presence of a CoMSIA large sterically
unfavorable yellow contour. The side chain –NH– of the

Fig. 6 CoMSIA stdev*coeff (a) steric, (b) electrostatic and (c)
H-bond donor contour maps for Group V. Color code of a and b as
in Fig. 2; c cyan and purple contours favorable and unfavorable

H-bond donor groups, respectively. The compound 176 in ball and
stick is displayed as a reference
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Gln185 residue and water molecule (w16, 3E5A.pdb) near
position 8 suggests a requirement for an electronegative
group like carbonyl, which is in accordance with the
CoMSIA red contour observed herein. The presence of

the white contour for the pyrazole ring indicates a
hydrophilic favorable region, as confirmed by the docking
results that two H-bonds exist in this region between the
pyrazole ring and residues Ala213 and Glu211, respective-
ly. According to the docked structure, the small white
contour observed near position 1 suggests that the substit-
uent at this position is exposed to the solvent.

Group-II

The protomol bloat and threshold values were set to 0 and
0.6, respectively, and compound 68 is shown in Fig. 9. Five
H-bonds and one water-mediated interaction exist in the
active site of the protein structures. For example, a
quinazoline ring nitrogen at position 5 interacts through
H-bonding with the backbone of the Ala212 amino acid
residue (–N···HN, d1=2.25Å, θ1=160.7°). The nitrogen
atom of the morpholine ring at position 2 forms a H-bond
with the guanidino group of Arg219 (–N···HN, d2=3.09Å,
θ2=127.3°). The pyrimidine ring N atom at position 7 is
located within H-bonding distance (2.97Å) from the
Lys161 side-chain amino function. The water-mediated
interaction (i.e., forming H-bonds with proteins through
water molecules) is observed between the carbonyl oxygen

Fig. 8 Docked conformation derived for compound 37 with the
binding site of Aurora-A kinase. H-bonds are shown as dotted black
lines. Active site amino acid residues and the inhibitor are represented
in stick model. W16 and W17 represent water molecules

Fig. 7 CoMSIA stdev*coeff (a) steric, (b) electrostatic and (c) hydrophobic contour maps for Group VI. Color code for a, b and c as in Fig. 2.
The compound 220 in ball and stick is displayed as a reference
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at position 8 and the backbone –NH of Asp273. The
4-substituent of the quinazoline ring binds to the solvent-
exposed pocket, where it interacts with Arg136, Thr216 and
Arg219 amino acid residues. Comparing the docked
structure and the 3D contour plots reveals that the yellow
contour is present in the regions of Leu177 and Val181.
Hence, a bulky substitution at position 10 would have an
unfavorable steric interaction, which may also explain the
lowest activity of compound 73. Another sterically unfa-
vorable region (yellow contour) is located near the carbonyl
oxygen atom at position 8. Our docked model shows that a
bulky substituent at this position would have an unfavor-
able steric clash with the backbone of residue Asp273. The
carbonyl group at position 8 is observed near the backbone
–NH group of Asp273. This may explain the increased
activity of compounds with electronegative groups at this
position and is consistent with the CoMFA red contour
presented in this region. A large blue contour seen in the
vicinity of position 9 suggests a favorable electropositive
region, as corroborated by the presence of several amino
acid carbonyl groups of Phe274, Asp273 and Gln184 in
this region.

Group-III

The default values of protomol bloat and threshold were
applied and compound 81 is described in Fig. 10. A total of
five H-bonds and one water-mediated interaction are
formed between compound 81 and Aurora-A kinase. The
pyrazole ring nitrogen at positions 5 and 6 forms H-bonds
with the backbone of Ala213 (–N···HN, 2.23Å, 152.3°) and
Glu211 (–NH···O, 1.88Å, 157.7°), respectively. The N
atom at position 4 enters into a H-bonding interaction with
the carbonyl group of Ala213 (–NH···O, 2.38Å, 117.8°).
The carbonyl oxygen atom at position 9 and nitrogen atom
at position 10 form H-bonds with the side chain of Lys162
(–O···HN, 3.00Å, 131.1° and –NH···N, 3.35Å, 143.9°),
respectively. Interaction between the morpholine ring N at
position 2 and the side chain guanidino group of Arg220 is
mediated by a water bridge formed by water 2002 and
water 2004 (2W1E.pdb, Fig. 10). The presence of residue
Leu210 near position 7 of the pyrazole ring indicates that a
bulky substituent is not favored in this region, which is in
agreement with the 3D contour plots showing that a large
sterically unfavorable yellow contour is located at this

Fig. 9 Docked conformation
derived for compound 68 with
the binding site of Aurora-A
kinase. H-bonds are shown as
dotted black lines. Active site
amino acid residues and the
inhibitor are represented as stick
model. W2033 represents a water
molecule

Fig. 10 Docked conformation
derived for compound 81 with
the binding site of Aurora-A
kinase. H-bonds are shown as
dotted black lines. Active site
amino acid residues and the
inhibitor are represented as stick
model. W2002 and W2004
represent water molecules,
respectively
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position. Those binders with larger substituents at position
10 are generally better because the space in the receptor
binding site is relatively large. The red contour near
position 3 suggests a negative charge favorable region, as
verified by the –NH2 of the guanidino group of Arg137
located herein. The presence of the –NH group on the
backbone of Gly140 near position 11 indicates the
preference of electronegative groups at this position, which
can also be inferred from the CoMSIA red contour map.
The blue contour observed near position 10 shows the
region favorable for electropositive groups, which corre-
sponds to interaction with the –NH group of Lys162.

Group-IV

The protomol bloat and threshold values were 0 and 0.43,
respectively. Figure 11 depicts the interacting model of
compound 119 with the kinase. Four H-bonds anchor the
ligand into the binding site of Aurora-A. The thiazole ring
nitrogen at position 2 acts as an acceptor to form a H-bond
with the backbone –NH of Ala213 (–N···HN, 2.00Å,
162.6°). The N atom at position 3 forms another H-bond
with the backbone of Ala213 (–NH···O, 1.87Å, 142.1°).
The carbonyl oxygen and –OH atoms of the carboxyl group
at the para-position of the phenyl ring form H-bonds with
the guanidino group of Arg137 (–O···HN, 1.97Å, 154.9°)
and the backbone O of Leu139 (–OH···O, 2.47Å, 62.5°),
respectively. The substituent at position 1 can bind to a
relatively shallow hydrophobic pocket formed by Val147,
Ala160, Lys162 and Leu210 residues, which is in agree-
ment with the CoMSIA small green contour present at this
position. The yellow contour observed near position 6
indicates a sterically unfavorable region at this position.
This is confirmed by docking results showing that bulkier
groups at position 6 can lead to a steric clash with the side

chain of residue Arg137. The presence of a blue contour
near position 5 suggests the requirement of electropositive
groups at this site and expects to have a favorable
interaction with electronegative groups like the carbonyl
backbone of Leu139. The magenta contour seen at position
4 indicates an H-bond acceptor favored region as verified
by the H-bond donor group of –NH2 of Arg220 presented
herein. The carbonyl group of Leu139 located at position 5
suggests the importance of H-bond donor groups at this
position, which is also supported by the presence of an
H-bond donor favorable red contour (CoMSIA model).

Group-V

The protomol bloat and threshold values were 0 and 0.43,
respectively, and compound 176 is depicted in Fig. 12.
There are four H-bonds and one water-mediated interaction
between the inhibitor and binding site residues. The
carbonyl oxygen at position 1 forms an H-bond with the
backbone of Lys141 (–O···HN, 2.01Å, 162.6°). The
pyrazole ring –N– and –NH atoms at positions 5 and 6
form H-bonds with the backbone atoms of Ala213
(–N···HN, 2.16Å, 155.9° and –NH···O, 1.60Å, 144.4°),
respectively. The O atom at position 8 is located within
H-bonding distance (3.45Å) of the backbone of Thr217.
Interaction between the nitrogen atom at position 2 and the
side chain hydroxyl group of Thr217 is glued by a
structural water molecule (w25, 3FDN.pdb). Docking
results show that space around the substituent at position
1 is relatively large, and that this moiety seems to be
exposed to the solvent, which is in line with the sterically
favorable green contour presented herein. A large yellow
contour at position 3 suggests a preference for small groups
at this position, which is also validated by the docked

Fig. 12 Docked conformation derived for compound 176 with the
binding site of Aurora-A kinase. H-bonds are shown as dotted black
lines. Active site amino acid residues and the inhibitor are represented
as stick model. W25 represents water molecule

Fig. 11 Docked conformation derived for compound 119 with the
binding site of Aurora-A kinase. H-bonds are shown as dotted black
lines. Active site amino acid residues and the inhibitor are represented
as stick model
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structure showing that substitution with bulky groups will
have an unfavorable steric clash with the backbone atoms
of Lys141 and Gly142. The electronegative favorable red
contour near position 1 corresponds to the –NH– backbone
of Lys141, which explains the increased activity of
compounds with electronegative groups in this region. A
small cyan contour near position 4 suggests H-bond donor
groups are favored at this position as confirmed by the –NH
group of Thr217 located nearby. The purple contour
observed near position 7 indicates an H-bond acceptor
favorable region, which is further supported by the presence
of a backbone –NH group of Gly216 in this location.

Group-VI

The protomol bloat and threshold were set to 1 and 0.43,
respectively, and compound 220 is displayed in Fig. 13. A
total of three H-bonds and two water-mediated interactions
exist between the ligand and the active site of Aurora-A
kinase. The F atom at position 1 forms a H-bond with the
side chain –NH of Lys162 (–F···HN, 2.35Å, 136.1°). The
pyrimidine ring nitrogen atoms at positions 2 and 3 form
H-bonds with the side chain of Lys143 (–N···HN, 2.49Å,
117.0° and –N···HN, 2.47Å, 102.3°), respectively. The
carbonyl oxygen at position 4 and the backbone –NH of
Thr217 is linked by a water-mediated H-bond bridge
(w455, 2NP8.pdb). Another water-mediated interaction is
formed between the F atom at position 1 and the backbone
carbonyl group of Ala273 through the water molecule
w489. The side chain of Lys162 and Asp274 located near
position 1 indicates that analogues with bulky substituents
at the 1 position of the pyrimidine ring would have an
unfavorable steric interaction. This is in accordance with

the 3D contour maps showing that a CoMSIA sterically
unfavorable yellow polyhedron is observed at this position.
The green contour seen near position 6 suggests a sterically
favorable region, as corroborated by the docking structure
showing that this space is relatively large, and extends even
outside to the solvent. The red contours near positions 1
and 4 indicate that compounds with electronegative groups
at these positions may have a favorable interaction with
surrounding residues as shown by the side chain –NH of
Lys162 and backbone –NH of Thr217 present nearby. The
side chain hydroxyl group of Tyr212 and the backbone
carbonyl group of Pro214 near position 8 suggests that
hydrophilic groups are favored in this region, which is in
line with the presence of a CoMSIA hydrophilic favorable
white contour. A small white contour along with a small
green contour is observed near position 9, suggesting that
hydrophilic and bulky substituents are both favorable at this
position, as demonstrated by the docking model showing
that this moiety is located in the lower lobe of the solvent-
exposed binding area.

In order to explore the similarities and differences in
binding modes, the six docked complexes were super-
imposed together using PYMOL software (www.pymol.
org). The common big ligand binding pocket was found to
be constructed by 34 residues: Arg137, Pro138, Leu139,
Gly140, Lys141, Gly142, Lys143, Val147, Ala160, Lys162,
Leu164, Leu178, Glu181, Val182, Gln185, Leu194,
Leu196, Leu208, Leu210, Glu211, Tyr212, Ala213,
Pro214, Leu215, Gly216, Thr217, Tyr219, Arg220,
Glu260, Asn261, Leu263, Ala273, Asp274 and Phe275
(residue numbering according to 3E5A.pdb).

Residues Arg137, Lys141, Lys143, Lys162, Glu181,
Gln185, Glu211, Ala213, Thr217, Arg220, Ala273,
Asp274 and Phe275 produced mainly H-bonds with the
ligand, and amino acids Arg137, Lys141, Gly142, Val147,
Ala160, Lys162, Leu178, Val182, Leu210, Thr217, Arg220
and Asp274 formed steric interactions or hydrophobic
interactions (Val147, Ala160, Lys162, Leu210, Glu211,
Tyr212, Ala213, Pro214 and Arg220) with inhibitors.
Interestingly, Phe144 belongs only to G-I (3E5A.pdb) and
cannot be found in other binding models, indicating that
this residue might be more specific for G-I derivatives. It
was also found that residue Ala213 (Ala212 in 2C6E)
formed important H-bonding interactions in the five models
G-I to G-V, but not in G-VI, suggesting that this residue
plays a critical role in the recognition of Aurora-A by
inhibitors.

We conclude that the results obtained from molecular
docking and those from 3D-QSAR modeling can comple-
ment and validate each other, suggesting that the 3D-QSAR
models generated in the present study are reasonable and
could be utilized to derive useful information in the design
of novel Aurora-A inhibitors.

Fig. 13 Docked conformation derived for compound 220 with the
binding site of Aurora-A kinase. H-bonds are shown as dotted black
lines. Active site amino acid residues and the inhibitor are represented
as stick model. W455 and W489 represent water molecules,
respectively
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Conclusions

3D-QSAR studies using CoMFA and CoMSIA techniques
were performed on six different chemical series of Aurora-
A inhibitors. These studies yielded stable and statistically
significant predictive models indicated by good perfor-
mance with both internal and external validations. The 3D
contour maps obtained from the optimal QSAR models in
each group correlated well with the structural and function-
al features of the active binding sites identified from
docking studies. One common residue, i.e., Ala213
(Ala212 in G-II), was found in the kinase active site that
played a significant role in recognition of the inhibitors by
presenting H-bonding interactions in five groups (not in G-
VI). Other notable findings are listed in detail for each
individual group as follows:

Group-I

Hydrophobic interaction was found to govern the inhibitory
activity of group I compounds by making the highest
contribution of 46.4% in the optimal CoMSIA model. At
position 4, a linker consisting of hetero atoms such as O
and S between quinazoline and aromatic ring can enhance
kinase activity. In addition, electronegative and hydrophilic
substituents at position 8 can also improve the Aurora-A
inhibitory activity of a compound.

Group-II

Electrostatic interaction is more important in G-II mole-
cules, showing a higher contribution of 54.6% in the best
CoMFA model. A bulky substituent at position 6, and small
and electronegative substituents at positions 8 and 10
would improve biological activity.

Group-III

Electrostatic field contributes more than steric field (56.9%
and 43.1%, respectively) in the best CoMSIA model,
suggesting electrostatic interactions are more critical to G-III
compounds. Substitution with small and electropositive
groups at position 7, and relatively large and electropositive
groups at position 10 might increase compound activity.

Group-IV

The H-bond acceptor field exhibits a prominent contribu-
tion of 52.9% in the optimal CoMSIA model, which
indicates the importance of H-bonding interactions to this
kind of molecule. Bulky and H-bond donor substituents at
position 5, and H-bond acceptor group at positions 4 and 6
would have a positive effect on bioactivity.

Group-V

Electrostatic interactions were found to have a determinant
effect on inhibitory potency by making a contribution of
58.6% in the best CoMSIA model. Bulky, electronegative
and H-bond acceptor substituents at position 1, and
electropositive and H-bond donor substituents at position
4 are favorable for biological activity.

Group-VI

The hybrid effect of electrostatic and hydrophobic inter-
actions is more crucial to the inhibitory activity of G-VI
compounds. Substitution with small and electronegative
groups at position 1, and bulky and hydrophilic groups at
positions 8 and 9 may lead to an increase in compound
activity.

To the best of our knowledge, this is the first study
aimed at deriving predictive 3D-QSAR models for A-type
Aurora kinase inhibitors. Moreover, the docking studies
provided good insights into inhibitor–protein interactions at
the molecular level. The good correlation between exper-
imental and predicted pKi or pIC50 values for test set
compounds further indicated the robustness of the
3D-QSAR models. Thus, the derived models can be
utilized in predicting the affinity of related analogues,
guiding future structural modifications and synthesizing
novel potent Aurora-A inhibitors.
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Abstract In Mg-Li-Al alloys, θ-phase MgAlLi2 is a
strengthening and metastable phase which is liable to be
transformed to the equilibrium phase AlLi on overaging.
While the structural details of the θ-phase MgAlLi2 and the
microscopic transformation are still unknown. In this paper,
the structure of MgAlLi2 unit cell was determined through
X-ray powder diffraction simulation. Microscopic transfor-
mation process of θ-phase MgAlLi2 was discussed in detail
using first principles method.

Keywords Alloy . Density functional theory .Magnesium .

Transformation

Introduction

As the lightest engineering alloys, Mg-Li alloys have
attracted increasing interests in transportation industries as
they have many advantages, such as high specific strength,

good formability, good damping ability and high energetic
particle penetration resistance [1–3]. The most common
and typical Mg-Li based alloys are Mg-Li-Al based alloys
such as LA141, MA18 and MA21 in which the Li content
is always larger than 8 wt% [4]. The stability of these Mg-
Li-Al alloys is relatively poor since Li is a very active
element. In Mg-Li-Al alloys, θ-phase MgAlLi2 is a
strengthening and metastable phase which is liable to be
transformed to the equilibrium phase AlLi on overaging
[4–7]. While the structural details of the θ-phase MgAlLi2
and the microscopic transformation are still unknown, so,
we attempt to reveal both of them in this paper.

We organize the paper as follows. Section 2 elaborates
the computational details of our first-principles calculations.
It is followed by a section presenting our determination of
the structure of θ-phase MgAlLi2 through X-ray powder
diffraction simulation. In Sect. 4, we further investigate the
microscopic transformation process. A brief summary and
statement of conclusions are presented in Sect. 5.

Methodology

Cambridge serial total energy package (CASTEP) [8], first-
principles pseudopotential plane-wave method based on
density functional theory (DFT) is used in the present study.
In the process of solving the Schrödinger equation,
Ultrasoft pseudopotentials in reciprocal space represented
by a generalized gradient approximation as described by
Perdew, Burke and Ernzhofer (GGA-PBE) [9] was adopted
for all elements in our models to describe the exchange-
correction energy and the computationally expensive
electron-ion interaction, respectively. The values of kinetic
energy cutoff Ecut and the k-points number are increased
until the calculated energy converges within the required
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tolerance, where Ecut determines the number of plane waves
and k points determines the sampling of the irreducible
wedge of the Brillouin zone. Ecut is set at 380 eV, the k-
point meshes for Brillouin zone sampling are constructed
using the Monkhorst-Pack scheme and a 4×4×4 k-point
mesh are used for all cells, which are found to be sufficient
to give fully converged results. The calculation of elastic
constant and electronic structure is followed by cell
optimization with the convergence tolerance of energy of

5.0×10-6eV/atom, maximum displacement of 5.0×10-4Å,
maximum force of 0.01 eV/Å.

Crystal structure of the θ-phase

Up to now, there have been no published structural details
of the metastable θ-phase. In this work, we attempt to
reveal the characteristics of the θ-phase using X-ray
diffraction simulation.

Experiments indicate the θ-phase is MgAlLi2 [4–7],
and the initial structure of MgAlLi2 was taken from the
data reported previously by Levinson et al. [10]. Accord-
ing to it, the X-ray powder diffraction pattern of MgAlLi2
is known and its unit cell is a cubic structure with the
lattice parameter of 6.7Å, while, the atomic position is
unknown. The atomic position was guessed by replacing
the same position in the structure of ABC2 as AlCsO2,
Be2CoSi, Li2PdSb and so on. On the basis of repeated
comparison of the known X-ray powder diffraction pattern
of MgAlLi2 and the simulating X-ray powder diffraction
patterns of these structures after performing an energy
minimization calculation, the final structure of MgAlLi2
unit cell was determined according to the following
procedure.

A combination of Pawley [11] and Rietveld [12]
refinement methods was used for the optimum structure
of the MgAlLi2 unit cell. To refine the structure, it was
necessary to obtain a first approximation of the profile

Fig. 1 Comparison between experimental [10] and calculated X-ray
powder diffraction patterns for MgAlLi2 unit cell. The difference between
the experimental and calculated patterns is shown below the data

Fig. 2 Structural details includ-
ing structures, space group
numbers and lattice parameters
for the five intermetallic com-
pounds during phase transfor-
mation
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parameters, such as peak profiles, background parameter,
line shift parameters, lattice parameters, asymmetry
parameters, and a good starting model of the atomic
positions. The Pawley refinement was applied to the
calculation of these values without details of the atomic
position beforehand, for it can refine the intensities of
Bragg reflections as freely varying refinement parameters,
irrespective of the atomic structure. It was applied
repetitively, with only a few parameters being refined at
a time, up to obtaining a best-valued refinement, which
gets an optimum agreement between simulated and
experimental data. Once the initial guesses of the profile
parameters were obtained, Rietveld method was applied to
refine the structure of the MgAlLi2 unit cell. Profile and
lattice parameters obtained from the Pawley refinement
were used for calculations in the Rietveld method. The
calculated powder pattern which was compared to the
observed one is shown in Fig. 1. It provides a measure of
similarity by means of the weighted profile factor (Rwp).
The optimum structure was selected based on the achieved
minimum Rwp 5.00%.

The procedure described above gave information about
the structure of the θ-phase. Its space group number is 216,
and the lattice parameter is 6.7Å. The atomic positions are
as follows, Mg (0 0 0), Li (0.5 0.5 0.5) ( 0.75 0.75 0.75)
and Al (0.25 0.25 0.25). In order to get a clear

understanding of phase transition, we use the above
structure of MgAlLi2 as the initial structure to do further
research that is described in section 4

Microscopic transformation process of the θ-phase

Change in structure

The structural details and stabilities of complex intermetal-
lic phases produced during transformation process from the
metastable θ-phase to stable AlLi will be discussed in this
section. These structures have been calculated from
MgAlLi2 derived through the refinement method by
replacing the Mg atoms with some Al atoms, and further
minimizing the energy of the structure. The structural
transformation is as follows, MgAlLi2→Mg3Al5Li8→
MgAl3Li4→MgAl7Li8→AlLi. The structures, the space
group numbers and the lattice parameters are all shown in
Fig. 2.

It is noteworthy that the cohesive energy of a material is
a fundamental property which is descriptive in studying the
phase stabilities of different structures of the same material
[13]. Cohesive energy is often defined as the work which is
needed when crystal is decomposed into the single atom.
Hence, when stabilities of different structures of the same
material are compared, the smaller the absolute value of
cohesive energy is, the more unstable the crystal structure
is. In this work, cohesive energies of per atom (E) for the
five crystal cells were calculated by using the following
expression:

E ¼ 1

xþ yþ z
ðEtot � xEMg

atom � yEAl
atom � zELi

atomÞ ð1Þ

where E refers to the total energy of crystal used in the
present calculation, x, y and z refer to the numbers of Mg,
Al and Li atoms, respectively. EMg

atom, E
Al
atom and ELi

atom are the
energies for isolated Mg atom, Al atom and Li atom. The
energies of isolated Mg, Al and Li atoms are −977.0508 eV,
-52.6554 eV and −188.4079 eV, respectively. Cohesive
energies of per atom of all crystals are calculated from Eq.
(1), and the results were illustrated visually in Fig. 3. It can
be concluded that the values of cohesive energy decrease
gradually from MgAlLi2 to AlLi, that is to say, the stability

Fig. 3 Cohesive energies of the five intermetallic phases

Phase C11 C12 C44 C13 C33 C66 B0 G E

MgAlLi2 44.32 24.61 38.95 —— —— —— 31.18 27.31 63.42

Mg3Al5Li8 58.73 24.48 32.40 —— —— —— 35.90 26.29 63.40

MgAl3Li4 44.32 24.61 45.07 24.61 62.57 42.48 37.32 31.11 73.04

MgAl7Li8 50.10 38.15 58.03 —— —— —— 42.13 37.21 86.24

AlLi 58.56 38.48 39.41 —— —— —— 45.17 27.66 68.92

Table 1 The data of the elastic
constants (GPa), bulk modulus
B0 (GPa), shear modulus G
(GPa) and Young’s modulus E
(GPa)
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of the five intermetallic phases improves gradually, which
is also in good accordance with experiment.

Change in mechanical properties

To get a clear understanding of the change of mechanical
properties during the phase transformation, we calculated
the elastic constants Cij, bulk modulus B0, shear modulus G
and Young’s modulus E of the five intermetallic phases. Cij

of solids enclose a great deal of the important information
on their mechanical and dynamical properties. Crystal
structure cannot exist in a stable phase unless its elastic
constants obey certain relationships. They also determine
the response of a crystal under external strain and provide
key information of the strength of the material, as
characterized by the B0, G and E. Hence, they play an

important role in the estimation of the material’s stiffness
and can be used to check the phase stability of proposed
compounds.

The macroscopically measurable quantities obtained for
materials are G that represents the isotropic response for
shearing, E corresponding to the stress–strain ratio in the
case of tensile forces, B0 which is important for technolog-
ical and engineering applications. For a cubic material,
there are three independent elastic constants: C11, C12 and
C44, and for a tetragonal material, five elastic constants:
C11, C12, C33, C44 and C66 are all independent These
macroscopic parameters are related to the microscopic
elastic constants by means of the following Eqs. 2, 3, 6
for a cubic material and Eqs. 4, 5, 6 for a tetragonal
material:

B0 ¼ C11 þ 2C12ð Þ=3 ð2Þ

G ¼ 3C44 þ C11 � C12ð Þ=5 ð3Þ

B0 ¼ 2C11 þ C33 þ 6C12ð Þ=9 ð4Þ

G ¼ 2C11 þ C33ð Þ=15þ 2C44 þ C66 � C12ð Þ=5 ð5Þ

E ¼ 9B0G= 3B0 þ Gð Þ: ð6Þ
The values of Cij, B0, G and E are given in Table 1. The

mechanical stability of a crystal, which means that the
strain energy must be positive, is checked by the whole set
of elastic constants Cij which satisfies special restrictions.
To remain mechanically stable, the following restrictions on

Fig. 4 The curves of Young’s modulus E, shear modulus G and bulk
modulus B0 of the five intermetallic phases

Fig. 5 Total density of states of
the five intermetallic phases
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the elastic constants must be required, Eq. 7 and 8 for a
cubic system and tetragonal system, respectively.

C11�C12ð Þ > 0; C11 > 0; C44 > 0; C11 þ 2C12ð Þ > 0 ð7Þ

C11> C12j j; C11þC12ð ÞC33>2C13
2;C44>0; C66 > 0 ð8Þ

As we can see in Table 1, the whole set of Cij calculated
for the five intermetallic phase all obey well the above
conditions, which is an important requisite for materials’
stability, indicating that all of them are mechanically stable.

It is acknowledged that B0 is a measure of resistance to
volume change by applied pressure, that is, materials with
high bulk modulus are likely to be hard materials. The
values of B0 increase gradually from MgAlLi2 to AlLi.
Young’s modulus E is defined as the ratio between stress
and strain, and is used to provide a measure of the stiffness
of the solid, i.e., the larger the value of E, the stiffer the
material. Shear modulus G is a measure of resistance to
reversible deformations upon shear stress. From Fig. 4, we
can see that the values of E and G have no significant
change from MgAlLi2 to Mg3Al5Li8, and the values of E
and G increase obviously from Mg3Al5Li8 to MgAl7Li8,
while, the values decrease sharply from MgAl7Li8 to AlLi.
Thus, the values of B, E and G are not key factor for the
experimental observation that the metastable and strengthen
phase MgAlLi2 is liable to transfer to the softening phase
AlLi.

Change in electronic properties

Based on the above discussion, we did further research
on the change in electronic properties which is reflected
by total density of states (DOS). The results are shown
in Fig. 5. The DOS curves of the five intermetallic phases
mainly consist of three parts: the two peaks which are
from −47 to −45 eV and from −44 to −42 eV in the low
energy interval are mainly due to the electrons of Al and
Mg, respectively. The DOS curve above the Fermi level is
due to the electrons of Li. The peak value at −46 eV
increases gradually with the Al content increasing from
MgAlLi2 to AlLi, at the same time, the peak value at −43 eV
decreases gradually with the Mg content decreasing from
MgAlLi2 to AlLi. That is to say, the chemical bonding
increases gradually at lower energy level with the Al content
increasing from MgAlLi2 to AlLi, correspondingly, the
structural stability increases gradually. Thus, the trends in
the cohesive energy can be understood in terms of different

chemical bonding below Fermi level for the five intermetallic
phases.

Conclusions

The phase transformation of the metastable θ-phase
MgAlLi2 in Mg-Li-Al alloys was discussed in detail from
microscopic perspective in this paper. The structural details
of MgAlLi2 were determined through X-ray powder
diffraction simulation. Its space group number is 216 with
the cubic structure and the lattice parameter is 6.7Å. The
atomic positions are as follows, Mg (0 0 0), Li (0.5 0.5 0.5)
( 0.75 0.75 0.75) and Al (0.25 0.25 0.25). Three
intermediate phases Mg3Al5Li8, MgAl3Li4 and MgAl7Li8
exist during transformation from the metastable MgAlLi2 to
AlLi. The stability of the five intermetallic phases improves
gradually and some changes on mechanical properties exist
during transformation, which are in good accordance with
experiment. In the end, the densities of states (DOS) of the
five intermetallic phases were calculated and analyzed.
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Abstract Insulin is a hormone that regulates the physio-
logical glucose level in human blood. Insulin injections are
used to treat diabetic patients. The amyloid aggregation of
insulin may cause problems during the production, storage,
and delivery of insulin formulations. Several modifications
to the C-terminus of the B chain have been suggested in order
to improve the insulin formulation. The central fragments of
the A and B chains (LYQLENYand LVEALYL) have recently
been identified as β-sheet-forming regions, and their micro-
crystalline structures have been used to build a high-resolution
amyloid fibril model of insulin. Here we report on a molecular
dynamics (MD) study of single-layer oligomers of the full-
length insulin which aimed to identify the structural elements
that are important for amyloid stability, and to suggest single
glycine mutants in the β-sheet region that may improve the
formulation. Structural stability, aggregation behavior and the
thermodynamics of association were studied for the wild-type
and mutant aggregates. A comparison of the oligomers of
different sizes revealed that adding strands enhances the
internal stability of the wild-type aggregates. We call this
“dynamic cooperativity”. The secondary structure content and
clustering analysis of the MD trajectories show that the largest
aggregates retain the fibril conformation, while the monomers

and dimers lose their conformations. The degree of structural
similarity between the oligomers in the simulation and the
fibril conformation is proposed as a possible explanation for
the experimentally observed shortening of the nucleation lag
phase of insulin with oligomer seeding. Decomposing the free
energy into electrostatic, van der Waals and solvation
components demonstrated that electrostatic interactions con-
tribute unfavorably to the binding, while the van derWaals and
especially solvation effects are favorable for it. A per-atom
decomposition allowed us to identify the residues that
contribute most to the binding free energy. Residues in the β-
sheet regions of chains A and B were found to be the key
residues as they provided the largest favorable contributions to
single-layer association. The positive ΔΔGmut values of 37.3
to 1.4 kcal mol−1 of the mutants in the β-sheet region indicate
that they have a lower tendency to aggregate than the wild
type. The information obtained by identifying the parts of
insulin molecules that are crucial to aggregate formation and
stability can be used to design new analogs that can better
control the blood glucose level. The results of our simulation
may help in the rational design of new insulin analogs with a
decreased propensity for self-association, thus avoiding
injection amyloidosis. They may also be used to design
new fast-acting and delayed-release insulin formulations.

Keywords Amyloid fibril . Insulin .β-Sheet . Aggregation .
Oligomer . Secondary structure . LYQLENY. LVEALYL .

Molecular dynamics simulations . Cluster . MM-GBSA .

Per-residue decomposition

Introduction

Insulin is a 51-residue protein hormone consisting of two
polypeptide chains, chain A (comprising 21 residues) and
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the chain B (comprising 30 residues), linked by three
disulfide bonds (Fig. 1a). Deficiency in the secretion or
action of insulin in response to the level of glucose may
cause an abnormally high concentration of sugar, which can
have a profound impact on metabolism in the human body
[1, 2]. Insulin is stored in the body in the secretory vesicles
of the pancreas as a zinc-containing hexamer. When in the
bloodstream, insulin is present in its biologically active
monomeric form [3, 4]. The underproduction of insulin or a
lack of receptor sensitivity to insulin is known to cause
diabetes, which affects 171 million people worldwide [5].
Insulin is the mainstay of drug therapy for patients with
type I diabetes, and it can reduce morbidity in the long
term. The disease is caused by the autoimmune destruction
of insulin-secreting β cells of the pancreas. Without
sufficient levels of insulin, these patients cannot properly
utilize glucose, and they typically have markedly elevated
blood glucose levels (hyperglycemia) while their intracel-
lular glucose levels are generally low. The chronic
complications of a consistently high blood sugar level are

serious and include retinopathy (diabetes is the most
common cause of blindness), neuropathy, nephropathy
(diabetes is a leading cause of chronic renal failure),
cardiovascular disease, peripheral vascular disease (diabetes
is the leading cause of limb amputation), and it makes the
patient more susceptible to infection [6].

Similar to many other proteins, insulin can misfold and
form highly ordered fibrillar amyloid aggregates. Insulin
fibrils have been observed in vivo following continuous
subcutaneous insulin infusion [7] and repeated insulin
injections [8]; they are the main factor in the pathogenesis
called injection amyloidosis [9, 10]. These insulin fibrils
that form in vivo display the defining characteristics of
amyloid aggregates associated with neurodegenerative
diseases [11]: they bind to the dye Congo red with
“apple-green” birefringence, they show an elongated,
unbranched fibrillar morphology [10], they exhibit
nucleation-dependent polymerization, and they present a
cross-β X-ray diffraction pattern [9]. Recently, serum
samples from patients with Parkinson’s disease have been

Fig. 1a–b Amino acid sequences
and structural models of double-
layer insulin oligomers.
a Amino acid sequence of
insulin (chain B at the top and
chain A at the bottom). Segments
LVEAYLV of chain B and
SLYQLENT of chain A are
colored green. Disulfide bonds
are colored blue. The C-terminal
region of chain B (underlined
and italicized) is not involved in
amyloid fibrillization. The
underlined residues are missing
from the insulin model used in
this study; only 40 amino acids
are taken into account in the fibril
model. b Single-layered structural
models of insulin oligomers
(ten-stranded). Two chains are
associated via an interdigitated
pair of LYQLENY molecules of
chain A and LVEALYL
molecules of chain B, which
interlock tightly to form the dry
steric zipper. Chain A is red and
chain B is shown in blue.
Disulfide bonds are indicated
in yellow
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found to display an autoimmune response to insulin
oligomers and fibrils [12], possibly indicating the presence
of insulin aggregates in this disease too. Insulin also forms
amyloid-like fibrils in vitro, a process that is promoted by
elevated temperatures, low pH, and increased ionic strength
[11, 13]. In addition, insulin fibril formation has been a
limiting factor in the long-term storage of insulin to treat
diabetes. Amyloid fibrillation may cause problems during
the production, storage and delivery of protein-based
pharmaceuticals [14, 15]. In the case of commercial insulin,
fibril formation is a problem during some of the isolation
and purification steps when the pHis lowered to 1–3 [11].
The agitation of insulin solutions during transportation and
in portable delivery systems may also induce fibrillar
aggregation [14–16]. Moreover, during the therapeutic use
of protein drugs, it is essential to avoid fibril formation,
since amyloid fibrillated protein is biologically inactive [11,
17] and may cause immunological responses in patients
[17, 18]. Future drug development may aim to either
stabilize native structure, inhibit the formation of crucial
intermediates on the pathway to fibril formation, or prevent
interactions between fibrillation intermediates such as the
partially unfolded monomer and oligomers [15].

The tendency of insulin monomers to aggregate is also
of fundamental importance to other physiologically relevant
questions [19]. Recent experimental work by Maji et al.
[20] showed that mammalian cells store a large quantity of
the hormone in the form of amyloid fibrils in the secretory
granules of cells until a signal triggers its release, at which
point they can secrete hormones much faster than their rates
of synthesis would permit. The amyloid aggregates have
the properties required of a long-acting drug because they
are stable depots that guarantee controlled release of the
active peptide drug from the amyloid termini [21, 22]. This
concept was tested by Maji et al. [21] with a family of
short- and long-acting analogs of gonadotropin-releasing
hormone, and it was shown that amyloids can act as a
source for the sustained release of biologically active
peptides. Modifications of the amino acid sequence of
insulin, such as single point mutations, influence both its
activity and protein aggregation [19]. The newer insulin
analogs have several improvements due to their modified
action profiles [23]. The main advantages of short-acting
preparations include a faster onset of action and a shorter
duration time. Long-acting analogs have structural changes
that delay the onset of action, allow slow and continuous
absorption into the systemic circulation, and prolong the
duration, thus producing a time–concentration profile that
imitates the normal insulin basal level and leads to
physiological basal glycemic control with fewer nocturnal
hypoglycemias [24].

Upon aggregation, the molecule of insulin undergoes
structural changes from a predominantly α-helical state to a

β-sheet-rich conformation, and many models of insulin
fibrils have been suggested [11, 15, 24]. The fibrillar β-
sheets have been described as being either parallel [25–27]
or antiparallel [28], and being flat [29], β-helical [30], or
having β-roll-type structure [31]. Previous biophysical
studies suggest that the B chain, or a segment of it, may be
the primary determinant of insulin fibrillation. For example,
equimolar amounts of the peptide RRRRRLVEALYLV
(containing residues B11–B17) can attenuate insulin
fibrillation [32]. The segment B11–B17 with the sequence
LVEALYL is the smallest peptide that can both nucleate
and inhibit the fibrillation of full-length insulin, depending
on the molar ratio. This activity suggests that this segment
is central to the cross-beta spine of the insulin fibril [14].
In addition, the point mutations H10D and L17Q in chain
B of insulin prolong the lag phase of insulin fibrillation,
further supporting the idea that this segment is important
in fibril formation [33]. Also, exposing this fibril-prone
segment by truncating the five residues of the C-terminal
of the B chain increases the propensity of insulin to form
fibrils [34].

Recent studies have shown that the A chain also
contributes to insulin fibrillation. Both the A and B chains
can form fibrils on their own [35, 36], and seeds of these
chains can nucleate the fibrillation of full-length insulin
[35]. In addition, it was reported that segments as short as
six residues from either chain A (residues A13–A18) or
chain B (residues B12–B17) can form fibrils by themselves
[37]. The same segments were found to be protected against
hydrogen exchange when insulin was incubated under
conditions favorable to fibril formation [38].

The first atomic-resolution view of the fibrillar spine
came from single-crystal structures of the segments
LYQLEN (residues A13–A18) and VEALYL (residues
B12–B17) [28]. The combination of several complementa-
ry techniques (including X-ray fiber diffraction of insulin
fibrils and scanning-transmission electron microscopy
analysis of the morphology of insulin fibrils) allowed a
highly reliable structure of full-length insulin amyloid
fibrils to be constructed [14, 29–31]. This model has a β-
solenoid structure consisting of repeated structural units of
similar but not identical peptides that are covalently
connected by two disulfide bonds [14, 31]. The solenoids
are linked by a dry steric zipper formed by mating the two
central LVEALYL (residues B11–B17) strands. Because
LYQLENY contains a Tyr residue at the second position,
this side chain is superimposed on a Tyr from LVEALYL,
preserving the “kissing tyrosine” interaction observed
across the wet interface of the crystal of LVEALYL
(Fig. 1b).

Computational studies have been performed as comple-
ments to experimental studies in order to provide insights
into insulin aggregation. All-atom molecular dynamics
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(MD) simulations have been used to study amyloid
oligomer stability by testing different candidate β-sheet
arrangements of preformed oligomers that mimic possible
nucleus seeds at the very early stage of fibril formation
[39–41]. Mark et al. [42] performed a series of short
molecular dynamics simulations to investigate the struc-
tures of monomeric insulin molecules and their dimers in
aqueous solution. Their simulations showed that, both
monomeric and dimeric insulin have high degrees of
intrinsic flexibility in the absence of crystal contacts.
Monomer MD simulations [43, 44] established that the
proposed binding site for glucose is stable, both statically
and dynamically [45]. Other MD simulations of the insulin
dimer have also been published [46, 47]. They reveal
details concerning the dynamics of the dimer during the
simulation, including the hydrogen-bond pattern and
correlated motions.

In this contribution, we report on an MD study of single-
layer insulin aggregates based on the high-resolution model
of insulin fibrils that aimed to elucidate the nature of insulin
self-assembly. We present information on the energetics of
the insulin association at the atomic level that could be used
to design new short- and long-acting insulin analogs.
Mutant forms of insulin with altered aggregation properties
that could potentially be used in slow- or fast-acting
therapeutic formulations are suggested on the basis of the
observed contacts at the aggregate interface. There has been
no previous systemic study of how mutation affects the
stability of the insulin oligomer aggregates. Our MD
simulation of different sizes of insulin oligomer may
contribute to a better understanding of the nucleation
process and conformational changes during the very early
stages of fibril formation. This study aims to answer the
following questions:

1. Which regions of the wild-type insulin oligomer
aggregate are flexible?

2. How do the single point mutations influence the
structures and flexibilities of these regions?

3. What are the effects of single glycine mutations of the
side chains involved in the steric zipper?

4. What are the conformational differences among the
aggregates of various sizes?

Computational details

We conducted a total of ~0.35 μs of explicit-solvent
molecular dynamics (MD) simulation of the insulin
single-layer oligomer of wild type and mutated sequences
with intact disulfide bridges, using a temperature of 330 K
to emulate the experimental conditions of in vitro insulin
fibrillization [48, 49].

System setup

In this study, we rely on the insulin fibrillar model
constructed by Ivanova et al. [14] using the crystal
structures of the LVEALYLV, SLYQLENY and fiber
diffraction patterns. The C-terminal region of chain B
(residues 20–30) is not involved in amyloid fibrillization
[31], and was omitted. A comparison of the amino acid
sequences of the insulin sequences from five different
mammalian species (porcine, bovine, sheep, mouse and
rate) for residues 20–30 shows that nine of the amino acids
residues are conserved and that B30 Tyr in the human
sequence is replaced with Ala in those of the other species
[50]. These residues are missing from the insulin model
used in this study. Therefore, only 40 amino acids are taken
into account in the fibril model used here [14]. The starting
coordinates (Fig. 1) for the MD simulations were taken
from the web page http://people.mbi.ucla.edu/sawaya/jmol/
fibrilmodels. An interesting feature of insulin is that its
three disulfide bridges are retained in the in vitro and in
vivo fibrillar forms [14]. Thus, these disulfide bonds must
constrain the possible conformational rearrangements
during the α-helix-to-β-sheet transition [14]. This con-
formational constraint makes insulin a unique model
system for studying protein misfolding and subsequent
amyloid fibrillization [14].

Molecular dynamics simulations

The molecular dynamics (MD) simulation was performed
using the AMBER11 [51] package with an all-atom
Amber99SB force field and explicit TIP3P water models.
Each of the amyloid peptides and the corresponding
mutants were solvated by explicit water molecules that
extend 10 Å from any edge of the octahedral box to the
protein atoms. Counterions were added to the box by
randomly replacing water molecules in order to neutralize
the system. The energy of each system was initially
minimized using the conjugate gradient method in order
to remove bad contacts. The peptide atoms were first
constrained, and then relaxed without positional constraints.
The system was then subjected to 50 ps of a gradual heating
procedure while constraining the backbone atoms of the
protein to allow the relaxation of water and ions, followed
by a 1 ns equilibration run without positional constraints.
Constant pressure (1 atm) and constant temperature (330 K)
were maintained in the system by an isotropic Langevin
barostat and a Langevin thermostat. The temperature 330 K
was selected as a compromise which ensured that the
amyloid fibrils are still experimentally stable [48, 49, 52,
53], but the molecular system evolves faster in the limited
simulation time and possible kinetic traps are avoided.
Electrostatic interactions were calculated using the particle
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mesh Ewald (PME) method. The cutoff radius for Len-
nard–Jones interactions was set to 12 Å. The SHAKE
algorithm [54] was used for bond constraints, and the time
step was 2 fs for all simulations. Each system was
simulated for 20 ns and the trajectories were saved at
4.0 ps intervals for further analysis. The VMD (Visual
Molecular Dynamics) program was used to visualize the
trajectories [55]. The MM-PBSA single-trajectory approach,
implemented as a script (MMPBSA.py) in AMBER11, was
used to calculate the binding energy. Solute entropic
contributions were not calculated in this study. The entropy
term was estimated using normal mode and harmonic
methods for qualitative comparisons, rather than to quanti-
tatively reproduce binding free energies [56].

In silico mutagenesis

Ten different single point glycine mutants were studied to
examine the effects of the steric zipper. In chain A, the
following three single point glycine mutations were
performed: (a) tyrosine (Y) at position 14 was replaced
with glycine (G), (b) leucine (L) at position 16 was replaced
with glycine (G), and (c) asparagine (N) at position 18 was
replaced with glycine (G). In chain B, a total of seven
mutations were realized: (d) leucine (L) at position 11 was
replaced with glycine (G), (e) valine (V) at position 12 was
replaced with glycine (G), (f) glutamic acid (E) at position
13 was replaced with glycine (G), (g) alanine (A) at
position 14 was replaced with glycine (G), (h) leucine (L) at
position 15 was replaced with glycine (G), (i) tyrosine (Y)
at position 16 was replaced with glycine (G), (j) leucine (L)
at position 16 was replaced with glycine (G). The three
mutants in chain A will henceforth be termed Y14GA,
L16GA and N18GA, respectively. The other seven mutants
in chain B will be termed L11GB, V12GB, E13GB, A14GB,
L15GB, Y16GB and L17GB, respectively. All the starting
structures for the mutants were built from the wild type

structure [57] by replacing the side chains of the targeted
residues with glycine using VMD [55]. Such analogs could
potentially lead to the development of more potent insulin-
based medicines with extended durations of action, the
ability to control this duration using prodrugs, as well as
enhanced medicine bioavailability. Insulin analogs were
developed in order to try to replace more physiological
insulin through injection at a subcutaneous site.

Binding free-energy calculation

The insulin single-layer oligomer aggregates studied here
contain multiple protein–protein interfaces, and the
calculation of the free energy of association of monomers
in single-layer oligomers requires a suitable interface. In
order to assess the stability of the insulin oligomer as the
number of strands increases (the longitudinal growth),
and the effect of mutations of amino acids involved in
the intra chain, we measured the interaction energy
between the terminal strands and the central dimer,
marked A and B, respectively in Fig. 2. A molecular
mechanics–generalized Born surface area (MM-GBSA)
method was used to calculate the binding free energies.
The free energy analyses were done using a single
trajectory approach, where whole complex and the frag-
ments A and B snapshots were extracted from the MD
trajectory. According to the MM-GBSA method [58, 59],
the binding free energy was calculated using the following
equation:

ΔGbind ¼ GCh i � GAh i � GBh i; ð1Þ
where the bracket 〈 〉 indicates the average of the energy
terms over 2500 snapshots extracted from the MD
simulation. The free energy of each system X (= A, B,
or C) was computed as the sum of the three terms [60, 61]

ΔGXh i ¼ EMMh i þ ΔGsolvh i � T Sh i: ð2Þ

Fig. 2 Schematic of the setup used to estimate the internal stability of
the insulin single-layer aggregates and mutants. Free energies of
interaction were calculated between the central chains A (cyan) and

the terminal strands B (red), reflecting the strength with which chain
A clamps the insulin stack in the β-solenoid structure
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Here, EMM is the molecular mechanical energy of the
molecule expressed as the sum of the internal energy
(bonds, angles and dihedrals) (Eint), electrostatic energy
(Eele) and the van der Waals term (Evdw):

EMM ¼ Eint þ Eele þ Evdw: ð3Þ

ΔGsolv accounts for the solvation energy, which can be
divided into polar and nonpolar parts:

ΔGsolv ¼ ΔGGB þΔGSA: ð4Þ

The polar part ΔGGB accounts for the electrostatic
contribution to the solvation and is obtained from general-
ized Born (GB) calculations in a continuum model of the
solvent. The second term, ΔGSA, is the nonpolar contribu-
tion to the solvation free energy, which is linearly
dependent on the solvent-accessible surface area (SASA):

ΔGSA ¼ gSASAþ b: ð5Þ

The parameters γ and b were set to their default values in
AMBER11. The entropic contribution was not calculated in
this study, since it is only crudely estimated using normal
mode analysis [59, 62].

Results and discussion

Relative structural stabilities of insulin oligomers

The conformational changes of the oligomers and the
conservation of their stability were monitored by observing
the time evolution of the root mean square (RMSD) and the
root mean square fluctuation (RMSF) of the backbone. The
RMSDs provide useful information on the relative stabil-
ities of the oligomers, and were previously used in stability
analyses of amyloid oligomers with β-sheet structure [39,
63–66]. Figure 3 plots the RMSDs of the wild-type and
mutant oligomer aggregates relative to the corresponding
initial structure as a function of simulation time.

RMSD

The conformational changes of the wild-type insulin
oligomers of different sizes and the conservation of their
stability were monitored by watching the variations in the
RMSD over time. Figure 3 plots the RMSDs of the main-
chain heavy atoms of the insulin oligomers relative to the
corresponding initial structure as a function of simulation
time. The RMSD time profiles evolve into reasonable
plateaux during the course of the 10 ns production run,
indicating that statistical convergence was attained in these
simulations. The average main-chain RMSDs between the

MD simulation and the initial structure were found to be
4.3–4.9 Å for WT and 3.75–4.75 Å for the mutants. Along
the trajectories, the systems tended to retain their original
conformations.

High conformational flexibilities were observed for the
wild-type monomer and dimer, as indicated by the RMSDs,
RMSFs (Figs. 3 and 4), average secondary structure
contents (Table 1) and a cluster analysis (Fig. S2). The
RMSFs and the cluster analysis presented in Fig. 3 and
Fig. S2 for the monomer indicate that it undergoes
significant conformational changes as it forms a globular
structure instead of its initial solenoid form. The C-terminus
of the monomer bends into the central region and forms an
antiparallel β-sheet between residues 12–16 and residues
35–40. The dimer largely preserves its solenoid conforma-
tion, but exhibits large per-residue fluctuation values in the β-
sheet region in chains A (11SLYQLENY19) and B
(12VEALYL17); these values are twice as large as the
RMSFs in other cases (Fig. 4).

RMSF

The residue-based root mean square fluctuations (RMSFs)
of the backbones were used to assess the local dynamics
and flexibilities of the residues using the Ptraj tool in
AMBER11. A detailed analysis of the RMSFs of the Cα,
C, and N atoms versus the residue number for wild-type
and mutant insulin oligomer aggregates is shown in Fig. 4.
Large oligomers such as SH1-ST8 and SH1-ST10 are
more flexible at their N- and C-termini than smaller
oligomers (except for SH1-ST2). The relatively large
RMSFs per residue in the β-sheet regions of SH1-ST1
and SH1-ST2 indicate that they are relatively unstable and
that the initial fibril conformation is lost (Fig. 4A). For the
other oligomers (SH1-ST4 to SH1-ST10), the β-sheet
region exhibits a much smaller structural fluctuation from
the fibril conformation. Figure 4B and C show the RMSF
values for each residue, as computed throughout the
simulation for wild type insulin (SH1-ST10) and its
corresponding single point glycine mutants. The RMSFs
of the single point mutants were found to be larger than
those of the wild type. The smallest fluctuations in
average RMSF for chains A and B were found in the
segments LYQLENY and LVEALYL, respectively. The
RMSF results for the wild type and the mutants indicate
that all of the chains show only small variations for the
residues located within the β-sheet region but large
variations for the residues in the termini regions. The
greater flexibility of the two termini residues is due to a
reduction in the hydrogen bonds between the peptides.
The side chains of the termini residues are more exposed
to the water and tend to form hydrogen bonds with water
molecules [66].
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Fig. 3 Backbone RMSDs of the
single-layered insulin A1-21 and
B1-19 models with 1, 2, 4, 6,
8 and 10 β-solenoids and single
point mutants (SH1-ST10). The
RMSD curves are shown for all
residues
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Secondary structure content

We carried out secondary structure analysis using the dssp
tool in AMBER11 [67]. Table 1 reports the average number
of residues in a given secondary structure as a function of
simulation time and the corresponding initial structure
(Fig. S3). When the average secondary structure content
over time is considered, differences between the smaller
and larger oligomers become evident from the simulations.
The single- and double-stranded aggregates exhibit lower
β-sheet contents, and more residues in helices and coil-like
conformations. The larger oligomers (such as SH1-ST4 to
SH1-ST10) exhibit more β-sheet contents and fewer
residues in helices and coil-like conformations. The larger
aggregates retain the fibril conformation mainly due to an
increased number of backbone hydrogen bonds [66].

Cluster analysis

Cluster analysis (“clustering”) places similar samples of
data into groups called clusters, such that an ensemble of
data (for example the different structures obtained from an
MD trajectory) is partitioned into groups of similar objects.
Structural clustering is useful for understanding the molecular
motion within conformational space [68]. Conventional
clustering algorithms can reduce any large MD trajectory
to a set of conformational basins. To identify the most
populated conformations sampled, clustering was applied to
all snapshots from the trajectories using the Ptraj program of
AMBER11. The standard approach, which has been used
with considerable success, is to cluster the configurations in
terms of the RMSD. To perform the clustering, we utilized
the average linkage algorithm implemented in Ptraj [69]. The

Fig. 4 Plot of the average root
mean square fluctuations
(RMSFs) from the 20 ns
simulation with respect to the
initial structure. Residues of
chain A are numbered 1–21
and those of chain B are
numbered 22–40
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uniqueness or equivalence of different clusters was assessed
based on a visual comparison of representative structures.
The clustering was performed on a 5000-frame reference set
(4 ps sampling rate). Table 2S shows the clustering metric
values, and Fig. S2 shows the superposition of the initial
structure and the most populated cluster structure for the
single-layer insulin aggregates of different sizes. The
analysis of the structures indicated that the most populated
clusters were associated with the smaller oligomers (single-
and double-stranded), indicating that these underwent greater
structural rearrangements from the initial conformation taken
from the fibril model. The conformation was preserved for
the larger aggregates (SH1-ST8 and SH1-ST10).

Free-energy calculation

A detailed characterization of the individual energy terms
of the calculated binding free energies of the studied insulin
oligomer aggregates is shown in Table 2. An inspection of
the free energy components for the wild types and mutants
reveals that the electrostatic component of the free energy
of binding (ΔEele ) contributes unfavorably to the binding
(ΔG>0). The nonpolar component contributes favorably
(ΔG<0), as expected, since the formation of complexes
reduces the solvent-accessible surface area. In most cases,
the electrostatic component of the solvation free energyΔGGS

is consistently favorable. The energy due to electrostatic

interactions (ΔEele) between strands led to unfavorable
binding. These observations are consistent with previous
calculations of the electrostatic component of the free energy
of solvation. However, the less favorable electrostatics in
each case are compensated for by the highly favorable
nonpolar component of the free energy. In each case, the
favorable nature of the nonpolar interaction originates from
the nonpolar component of solvation (ΔGGB) and the van
der Waals interaction energy (ΔEvdw).

The results of the binding free-energy calculations
(Table 2) indicate that the structurally stable models have
the lowest binding free energies, while the models that are
structurally unstable were found to have the highest binding
free energies. The difference in binding free energy
between the unmutated (wild-type) and mutated complex
is defined as:

ΔΔGmut ¼ ΔGmut �ΔGwild: ð6Þ

Positive and negative ΔΔGmut values indicate unfavor-
able and favorable contributions, respectively. The positive
ΔΔGmut values of 37.3–1.4 kcal mol−1 of the mutants in
the β-sheet region (except for Y14GA and L15GB) indicate
lower tendencies to aggregate than the wild type. This
finding could be used in the rational design of new insulin
analogs with decreased propensities for self-association,
thus reducing the risk of injection amyloidosis of insulin.

Table 2 Individual energy components for the calculated binding free energies of insulin amyloid aggregate peptides

MM-GBSA binding energy components of the single-layer insulin amyloid aggregates of different sizes

System ΔEvdw ΔEele ΔGGB ΔGGS ΔGsolv ΔGtotal ΔΔG(6-n)

WT(SH1-ST4) −163.96±0.18 576.65±1.02 −502.40±0.95 −21.35±0.02 −523.75±0.95 −111.06±0.17 11.43

WT(SH1-ST6) −177.21±0.28 1149.66±0.91 −1071.50±0.86 −23.43±0.03 −1094.94±0.86 −122.49±0.24 0.0

WT(SH1-ST8) −149.64±0.19 1514.62±2.27 −1433.42±2.22 −25.81±0.02 −1459.27±2.22 −142.29±0.22 −19.8
WT(SH1-ST10) −196.31±0.14 1827.75± −1742.52±1.00 −25.20±0.02 −1767.28±0.13 −136.28±0.13 −13.79
MM-GBSA binding energy components of chain-A mutants of single-layer insulin amyloid aggregates (SH1-ST10)

System ΔEvdw ΔEele ΔGGB ΔGGS ΔGsolv ΔGtotal ΔΔGmut

Y14GA (chain A) −165.16±0.12 1974.31±0.84 −1887.76±0.84 −20.36±0.02 −1908.11±0.84 −98.96±016 37.3

L16GA (chain A) −208.14±0.14 1710.42±1.74 −1628.03±1.73 −27.10±0.03 −1655.15±1.73 −152.87±0.16 −16.59
N18GA (chain A) −201.272±0.12 1623.99±0.93 −1527.81±0.91 −26.02±0.01 −1553.82±0.91 −131.11±0.15 5.17

MM-GBSA binding energy components of chain-B mutants of single-layer insulin amyloid aggregates (SH1-ST10)

System ΔEvdw ΔEele ΔGGB ΔGGS ΔGsolv ΔGtotal ΔΔGmut

L11GB (chain B) −171.7±0.23 1598.8±3.4 −1522.2±3.4 −22.0±0.02 −1544.2±3.4 −117.1±0.2 19.2

V12GB (chain B) −167.1±0.2 1789.9±1.1 −1715.79±1.0 −21.5±0.01 −1737.2±1.0 −114.4±0.2 21.9

E13GB (chain B) −186.7±0.3 981.4±1.0 −893. 7±1.0 −25.3±0.02 −918.9±1.06 −124.2±0.25 12.1

A14GB (chain B) −191.2±0.2 1620.8±4.0 −1533.3±4.0 −25.4±0.03 −1558.7±4.0 −129.2±0.25 7.1

L15GB (chain B) −209.3±0.2 1622.9±2.4 −1529±2.4 −26.6±0.02 −1555.6±2.4 −142.03± −5.7
Y16GB (chain B) −194.8±0.2 1752.6±1.9 −1663.1±1.9 −23.3±0.03 −1686.4±1.9 −128.622±0.2 7.6

L17GB (chain B) −204.4±0.3 1823.9±2.3 −1728.42±2.2 −26.0±0.02 −1754.43±2.3 −134.904±0.2 1.4

Evdw and Eelec are the van der Waals and electrostatic binding terms, ΔGGB, ΔGGS, ΔGsolv are the polar, nonpolar and total solvation energies.
Data are shown as mean ± SD. ΔGtotal = ΔEvdw + ΔEele + ΔGsol; ΔGsol = ΔGGB + ΔGGS; ΔGmut = ΔGmut − Gwild (the difference in binding free
energy between the mutant and the wild type). ΔΔG(n-6) is the oligomer free energy expressed relative to the hexamer state for β-sheet oligomers

1138 J Mol Model (2012) 18:1129–1142



The relatively large positive values of ΔΔGmut for the
mutants (Y14GA, L11GB, V12GB and E12GB) indicate that
they are less likely to associate than the wild type. In
general, substituting the β-sheet regions of chains A and B
for a small, short Gly disrupts the shape complementarity of
the steric zipper and weakens hydrophobic interactions (see
Table 2, Tables 3S–5S). The single point glycine mutation
reduces the unfavorable electrostatic interaction. The
mutation of the negatively charged glutamate (E) to G in
the mutant E12GB reduces the electrostatic repulsion that
occurs in the wild type, as shown by the significantly
reduced unfavorable electrostatic interaction (Table 2). The
mutation of Tyr14 in chain A to glycine eliminates the
hydrogen bond between Tyr14 of chain A and Tyr16 of
chain B, so the calculated binding free energy was high in
this case. The negative values of ΔΔGmut for the mutants
are due to the increased hydrophobic interactions in the
steric zipper between the chains (Tables 4S and 5S). The
trend in the calculated binding free energy is in agreement
with the observed instabilities based on RMSD and RMSF.
The aggregate oligomer models that showed structural
instability were found to have unfavorable binding energies
compared to the stable models. This is also in agreement
with experiment, which finds that complete substitution of
the hydrophobic side chain for Gly impedes fibril growth
[70].

Free energy decomposition on a per-residue basis

Free energy decomposition not only identifies ‘hotspots’ in
the binding energy but also provides insight into the nature
of the key interactions [45]. To provide basic information
on the intermolecular interactions contributed by individual
residues in the single-layer insulin aggregate interaction, the
free energy (the per-residue combined side chain and
backbone binding free energy) was decomposed using
MM-GBSA module in AMBER11. The calculation was
performed over the 2500 MD snapshots taken from the
20 ns simulation. The per-residue interaction free energies
were separated into those for the residue backbone (ΔG for
backbone binding) and the side chain (ΔG for side chain
binding). The energy contributions from the selected
residues are summarized in Fig. 5.

The results from the energy decomposition show that the
major contribution to the binding energy of the insulin
oligomer aggregate derives from key amino acid residues
(those with ΔGbinding ≤ −0.50 kcal mol−1) that occur
mainly in the β-sheet region. These residues are in chain A
(Q5, L13, Y14, Q15, L16, N18 and Y19) and in chain B (S9,
L11, V12, L15, L17 and V18). The results of the per-residue
decomposition indicate the importance of these particular
residues in the β-sheet region in the formation and stabiliza-
tion of insulin, which is in agreement with experimental

observations [14]. To establish the interactions associated
with these residues, their electrostatic, van der Waals and
solvation energy terms are shown in Table 2. Table 2 shows
that favorable contributions to the binding free energy
arising from these residues relate to Eele, Evdw, and ΔGGS,
while unfavorable contributions come from ΔGGB. The
favorable Eele terms from the residues in the β-sheet region
are compensated for by highly unfavorable repulsion from
three glutamates between the adjacent insulin strands.

Fibril nucleation and the structures of insulin oligomers

Understanding the process of amyloid fibril formation is an
important goal of protein aggregation studies [71]. Amyloids
grow in a nucleation-dependent manner [71, 72]. Fibrillation
kinetics are typically characterized by an initial apparent lag
phase related to the formation of oligomers, protofibrils, and
aggregation nuclei [73]. No detectable fibers are formed
during this lag phase. This is followed by an elongation
phase in which the fiber is formed over a time period that is
often shorter than the lag phase. Eventually, the process
reaches equilibrium when the most soluble proteins are
converted into fibrils [74]. On the other hand, if fibers
(oligomers, protofibrils, and fibrils) have already formed,
they grow extremely quickly, with very short lag times.
Recent experimental works performed in various labs on the
capacity of oligomers to stabilize fibril nucleation activity on
Aβ amyloid [75], on amylin [74], and on insulin [76–81]
have indicated that oligomers and fibrils have different
capacities to act as seeds. Anselm et al. [40] used the degree
of structural similarity of each oligomer to the fibril
conformation found in their simulation as a possible reason
for differences among oligomers of various sizes in terms of
their effectiveness as nucleation seeds. The degree of
structural similarity between the fibril conformation and the
conformation of the oligomer after MD simulation could be
used to explain the shortening of the lag phase in the
presence of oligomers of different sizes. The trend in relation
to retaining the initial fibril conformation will help us to
elucidate an atomic-level explanation for the observed
difference in the seed effects of oligomers of various sizes.
The results from our simulation show that a single-layer
insulin oligomer as small as the trimer is capable of
preserving the conformation present in the fibril (see
Fig. S2). The dimer only retains some of the properties of
the mature fibril, while the monomer adopts a structure that
differs significantly from that of the fibril.

The secondary structure contents and the clustering
analysis of the trajectories for the single-layer insulin
oligomers of differing sizes show that the larger aggregates
retain the fibril conformation but the smaller ones (SH1-
ST1 and SH1-ST2) lose this conformation. This observa-
tion can be used to explain the shortening of the nucleation
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lag phase of insulin aggregation with oligomer seeds.
Insulin, like other amyloid peptides, appears to follow
nucleation-dependent polymerization kinetics [71, 82]
whereby a small number of monomers associate through a
free energy barrier corresponding to a critical nucleus size;
beyond this size there is a gradient of favorable free energy
or “downhill” polymerization. Based on the results for the
secondary structure contents and the cluster analysis, we
propose that SH1-ST4 is a critical nucleus for single-layer
insulin fibril oligomer growth. To characterize the critical
nucleation, we computed the difference in association
energy between our proposed minimum nuclei and the
larger oligomers (SH1-ST6, SH1-ST8 and SH1-ST10)
using the equation

ΔΔG nð Þ ¼ G nð Þ � G4ð Þ; n ¼ 4; 6; 8; 10: ð7Þ
The results are shown in Table 2 and are plotted in

Fig. S3. Our calculations show that, for a high number of
strands, the oligomer is stable and its free energy is
favorable for the addition of new chains. The results of

our semi-quantitative approach for insulin single layers of
limited size are in agreement with those obtained from
previous extensive simulations done on the critical nucleus
and mechanism of fibril elongation for Aβ amyloid [83, 84].

Conclusions

The results from this work provide valuable insight into the
forces that drive the stability of the peptide–peptide
complexes in the single-layer aggregate oligomer models
of insulin and those that lead to unstable complexes. The
study of the wild type and mutants in an explicit solvent
may prove valuable to future efforts aimed at the design of
short- and long-acting insulin analogs. The major findings
of this study can be summarized as follows:

(i) The stabilities of the single-layer insulin peptide
oligomers increase as the number of strands increases
(dynamic cooperative effect).

Fig. 5a, b Decomposition of
the free energy on a per-residue
basis for chain A (a) and chain
B (b) of the ten-strand single-
layer insulin aggregate
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(ii) The binding energy calculated by the MM-GBSA
method shows that hydrophobic interactions play an
important role in stabilizing the structural organization
of the single-layer insulin. Per-residue decomposition
shows that the key amino acid residues (those with
ΔGbinding≤−1.00 kcal mol−1) occur mainly in the β-
sheet regions of chains A and B. Due to the
electrostatic repulsion between the three negatively
charged glutamates in adjacent insulin strands, elec-
trostatic contribution to the binding energy is unfa-
vorable.

(iii) A single glycine substitution at the steric zipper
interface disrupts the hydrophobic contacts and
reduces the van der Waals interactions in the mutants,
thus reducing the binding free energy. The results of
the binding free-energy calculation indicated that the
wild type is more structurally stable than most of the
mutants. A comparison of the binding free energy
between the wild type and the chain-A mutants
(Y14GA, L16GA and N18GA) indicated that shape
complementarity between neighboring strands plays a
key role in stabilizing the entire oligomeric structure.

(iv) The secondary structure contents and the clustering
analysis of the trajectories of the single-layer insulin
oligomers of various sizes showed that the larger
aggregates retain the fibril conformation but the
smaller ones (SH1-ST1 and SH1-ST2) lose this
conformation. This observation could explain the
observed shortening of the nucleation lag phase of
insulin aggregation with oligomer seeds. Based on the
secondary structure contents and the cluster analysis,
we propose that SH1-ST4 is a critical nucleus for
single-layer insulin fibril oligomer growth.

Our simulations provide detailed insight into the struc-
tural stability and aggregation behavior of wild-type and
mutant single-layer insulin aggregates (obtained from the
high-resolution insulin fibril model) at the atomic level. In
search for clinically advantageous fast-acting insulin ana-
logs, several approaches were found to be useful for
altering the monomer/monomer interface. These include
the disruption of β-sheet interactions in the β-chain through
charge repulsion, and changes in hydrophobic interactions
at the C-terminus of chain B [50]. Our simulations of wild-
type and single glycine mutants at the steric zipper region
show that other parts of the insulin molecule can be
targeted in the design of both short- and long-acting insulin
analogs as well. Aside from the design of such insulin
analogs, the present study may prove useful in the rational
design of insulin aggregation inhibitors that can be used to
stabilize insulin formulations, leading to safer handling and
more cost-effective storage of such formulations, especially
in developing countries.

Acknowledgments This work was supported in part by the National
Science Foundation (CCF/CHE 0832622). This research used resources
of the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy
under contract no. DE-AC02-05CH11231.

References

1. Zierath JR, Krook A, Wallberg-Henriksson H (2000) Diabetologia
43:821–835

2. Shepherd PR, Kahn BB (1999) N Engl J Med 341:248–257
3. Nystrom FH, Quon MJ (1999) Cell Signal 11:563–574
4. Ottensmeyer FP, Beniac DR, Luo RZT, Yip CC (2000) Biochemistry

39:12103–12112. doi:10.1021/bi0015921
5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Diabetes

Care 27:1047–1053
6. RewersM (2008) Diabetes Care 31:830–832. doi:10.2337/dc08-0245
7. Storkel S, Schneider HM, Muntefering H, Kashiwagi S (1983)

Lab Invest 48:108–111
8. Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys

MB, Rennie JA, Gilbey SG, Watkins PJ (1988) Diabetologia
31:158–161

9. Greenwald J, Riek R (2010) Structure 18:1244–1260.
doi:10.1016/j.str.2010.08.009

10. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva
MJM, Westermark P (2010) Amyloid J Protein Fold Disord
17:101–104. doi:10.3109/13506129.2010.526812

11. Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E (1997)
J Pharm Sci 86:517–525

12. Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas
M, Casaite V, Darinskas A, Forsgren L,Morozova-Roche LA (2007)
Eur J Neurol 14:327–334. doi:10.1111/j.1468-1331.2006.01667.x

13. Ahmad A, Uversky VN, Hong D, Fink AL (2005) J Biol Chem
280:42669–42675. doi:10.1074/jbc.M504298200

14. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D
(2009) Proc Natl Acad Sci USA 106:18990–18995. doi:10.1073/
pnas.0910080106

15. Groenning M, Frokjaer S, Vestergaard B (2009) Curr Protein Pept
Sci 10:509–528

16. Sluzky V, Klibanov AM, Langer R (1992) Biotechnol Bioeng
40:895–903

17. Grillo AO, Edwards KLT, Kashi RS, Shipley KM, Hu L, Besman
MJ, Middaugh CR (2001) Biochemistry 40:586–595

18. Onoue S, Ohshima K, Debari K, Koh K, Shioda S, Iwasa S,
Kashimoto K, Yajima T (2004) Pharm Res 21:1274–1283

19. Valla V (2010) Exp Diabetes Res 14:178372. doi:10.1155/2010/
178372

20. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K,
Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D,
Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009)
Science 325:328–332. doi:10.1126/science.1173155

21. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R (2008)
PLoS Biol 6:240–252. doi:10.1371/journal.pbio.0060017

22. Zhao F, Ma ML, Xu B (2009) Chem Soc Rev 38:883–891
23. Bell DSH (2007) Drugs 67:1813–1827
24. Geddes AJ, Parker KD, Atkins EDT, Beighton E (1968) J Mol

Biol 32:343–344
25. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV

(2000) Protein Sci 9:1960–1967
26. Burke MJ, Rougvie MA (1972) Biochemistry 11:2435–2439
27. Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM,

Robinson CV (2000) Biophys J 79:1053–1065
28. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA,

Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane

J Mol Model (2012) 18:1129–1142 1141

http://dx.doi.org/10.1021/bi0015921
http://dx.doi.org/10.2337/dc08-0245
http://dx.doi.org/10.1016/j.str.2010.08.009
http://dx.doi.org/10.3109/13506129.2010.526812
http://dx.doi.org/10.1111/j.1468-1331.2006.01667.x
http://dx.doi.org/10.1074/jbc.M504298200
http://dx.doi.org/10.1073/pnas.0910080106
http://dx.doi.org/10.1073/pnas.0910080106
http://dx.doi.org/10.1155/2010/178372
http://dx.doi.org/10.1155/2010/178372
http://dx.doi.org/10.1126/science.1173155
http://dx.doi.org/10.1371/journal.pbio.0060017


HT, Madsen AO, Riekel C, Eisenberg D (2007) Nature 447:453–
457. doi:10.1038/nature05695

29. Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson
CM, Saibil HR (2002) Proc Natl Acad Sci USA 99:9196–9201.
doi:10.1073/pnas.142459399

30. Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de
Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007)
PLoS Biol 5:1089–1097. doi:10.1371/journal.pbio.0050134

31. Choi JH, May BCH, Wille H, Cohen FE (2009) Biophys J
97:3187–3195. doi:10.1016/j.bpj.2009.09.042

32. Gibson TJ, Murphy RM (2006) Protein Sci 15:1133–1141.
doi:10.1110/ps.051879606

33. Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL (2001)
Biochemistry 40:8397–8409

34. Brange J, Dodson GG, Edwards DJ, Holden PH, Whittingham JL
(1997) Proteins 27:507–516

35. Devlin GL, Knowles TPJ, Squires A, McCammon MG, Gras SL,
Nilsson MR, Robinson CV, Dobson CM, MacPhee CE (2006) J
Mol Biol 360:497–509. doi:10.1016/j.jmb.2006.05.007

36. Hong DP, Fink AL (2005) Biochemistry 44:16701–16709.
doi:10.1021/bi051658y

37. Ivanova MI, Thompson MJ, Eisenberg D (2006) Proc Natl Acad
Sci USA 103:4079–4082. doi:10.1073/pnas.0511298103

38. Tito P, Nettleton EJ, Robinson CV (2000) J Mol Biol 303:267–278
39. Zheng J, Jang H, Ma B, Tsai CJ, Nussinov R (2007) Biophys J

93:3046–3057. doi:10.1529/biophysj.107.110700
40. Horn AHC, Sticht H (2010) J Phys Chem B 114:2219–2226.

doi:10.1021/jp100023q
41. Tsai HH, Reches M, Tsai CJ, Gunasekaran K, Gazit E, Nussinov

R (2005) Proc Natl Acad Sci USA 102:8174–8179
42. Mark AE, Berendsen HJC, Vangunsteren WF (1991) Biochemistry

30:10866–10872
43. Zoete V, Meuwly M, Karplus M (2004) Proteins Struct Funct

Bioinf 55:568–581. doi:10.1002/prot.20071
44. Zoete V, Meuwly M (2006) J Comput Chem 27:1843–1857.

doi:10.1002/jcc.20512
45. Zoete V, Meuwly M, Karplus M (2005) Proteins Struct Funct

Bioinf 61:79–93. doi:10.1002/prot.20528
46. Falconi M, Cambria MT, Cambria A, Desideri A (2001) J Biomol

Struct Dyn 18:761–772
47. Lu BZ, Chen WZ, Wang CX, Xu XJ (2002) Proteins 48:497–504.

doi:10.1002/prot.10172
48. Sasahara K, Naiki H, Goto Y (2005) J Mol Biol 352:700–711.

doi:10.1016/j.jmb.2005.07.033
49. Meersman F, Dobson CM (2006) BBA Proteins Proteomics

1764:452–460. doi:10.1016/j.bbapap.2005.10.021
50. Mayer JP, Zhang F, DiMarchi RD (2007) Biopolymers 88:687–

713. doi:10.1002/bip.20734
51. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J,

Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B,
Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF,
Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T,
Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR,
Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov
S, Kovalenko A, Kollman PA (2010) AMBER 11. University of
California, San Francisco

52. Mauro M, Craparo EF, Podesta A, Bulone D, Carrotta R,
Martorana V, Tiana G, San Biagio PL (2007) J Mol Biol
366:258–274. doi:10.1016/j.jmb.2006.11.008

53. Arora A, Ha C, Park CB (2004) Protein Sci 13:2429–2436.
doi:10.1110/ps.04823504

54. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys
23:327–341

55. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38
56. Jouaux EM, Timm BB, Arndt KM, Exner TE (2009) J Pept Sci

15:5–15. doi:10.1002/psc.1078
57. Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D,

Riekel C, Eisenberg D (2008) Protein Sci 17:1467–1474.
doi:10.1110/ps.036509.108

58. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L,
Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan
J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897.
doi:10.1021/ar000033j

59. Gohlke H, Case DA (2004) J Comput Chem 25:238–250.
doi:10.1002/jcc.10379

60. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Proc
Natl Acad Sci USA 96:14330–14335

61. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143
62. Chong LT, Pitera JW, Swope WC, Pande VS (2009) J Mol Graph

Model 27:978–982. doi:10.1016/j.jmgm.2008.12.006
63. Buchete NV, Hummer G (2007) Biophys J 92:3032–3039.

doi:10.1529/biophysj.106.100404
64. Huet A, Derreumaux P (2006) Biophys J 91:3829–3840.

doi:10.1526/biophysj.106.090993
65. Berhanu WM, Masunov AE (2010) Biophys Chem 149:12–21.

doi:10.1016/j.bpc.2010.03.003
66. Berhanu WM, Masunov AE (2011) J Mol Model. doi:10.1007/

s00894-010-0912-4
67. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637
68. Keller B, Daura X, van Gunsteren WF (2010) J Chem Phys

132:16. doi:10.1063/1.3301140
69. Shao JY, Tanner SW, Thompson N, Cheatham TE (2007) J Chem

Theor Comput 3:2312–2334. doi:10.1021/ct700119m
70. Takeda T, Klimov DK (2009) Biophys J 96:4428–4437.

doi:10.1016/j.bpj.2009.03.015
71. Bhak G, Choe YJ, Paik SR (2009) BMB Rep 42:541–551
72. Harper JD, Lansbury PT (1997) Annu Rev Biochem 66:385–

407
73. Soto C, Estrada L, Castilla J (2006) Trends Biochem Sci 31:150–

155. doi:10.1016/j.tibs.2006.01.002
74. Padrick SB, Miranker AD (2002) Biochemistry 41:4694–4703.

doi:10.1021/bi0160462
75. Ono K, Condron MM, Teplow DB (2009) Proc Natl Acad Sci

USA 106:14745–14750. doi:10.1073/pnas.0905127106
76. Sorci M, Grassucci RA, Hahn I, Frank J, Belfort G (2009)

Proteins 77:62–73. doi:10.1002/prot.22417
77. Heldt CL, Sorci M, Posada D, Hirsa A, Belfort G (2011)

Biotechnol Bioeng 108:237–241. doi:10.1002/bit.22902
78. Nayak A, Lee CC, McRae GJ, Belfort G (2009) Biotechnol Prog

25:1508–1514. doi:10.1002/btpr.255
79. Nayak A, Sorci M, Krueger S, Belfort G (2009) Proteins 74:556–

565. doi:10.1002/prot.22169
80. Manno M, Giacomazza D, Newman J, Martorana V, San Biagio

PL (2010) Langmuir 26:1424–1426. doi:10.1021/la903340v
81. Fodera V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M

(2009) J Phys Chem B 113:10830–10837. doi:10.1021/jp810972y
82. Xue WF, Homans SW, Radford SE (2008) Proc Natl Acad Sci

USA 105:8926–8931. doi:10.1073/pnas.0711664105
83. Fawzi NL, Okabe Y, Yap EH, Head-Gordon T (2007) J Mol Biol

365:535–550. doi:10.1016/j.jmb.2006.10.011
84. Fawzi NL, Kohlstedt KL, Okabe Y, Head-Gordon T (2008)

Biophys J 94:2007–2016. doi:10.1529/biophysj.107.121467

1142 J Mol Model (2012) 18:1129–1142

http://dx.doi.org/10.1038/nature05695
http://dx.doi.org/10.1073/pnas.142459399
http://dx.doi.org/10.1371/journal.pbio.0050134
http://dx.doi.org/10.1016/j.bpj.2009.09.042
http://dx.doi.org/10.1110/ps.051879606
http://dx.doi.org/10.1016/j.jmb.2006.05.007
http://dx.doi.org/10.1021/bi051658y
http://dx.doi.org/10.1073/pnas.0511298103
http://dx.doi.org/10.1529/biophysj.107.110700
http://dx.doi.org/10.1021/jp100023q
http://dx.doi.org/10.1002/prot.20071
http://dx.doi.org/10.1002/jcc.20512
http://dx.doi.org/10.1002/prot.20528
http://dx.doi.org/10.1002/prot.10172
http://dx.doi.org/10.1016/j.jmb.2005.07.033
http://dx.doi.org/10.1016/j.bbapap.2005.10.021
http://dx.doi.org/10.1002/bip.20734
http://dx.doi.org/10.1016/j.jmb.2006.11.008
http://dx.doi.org/10.1110/ps.04823504
http://dx.doi.org/10.1002/psc.1078
http://dx.doi.org/10.1110/ps.036509.108
http://dx.doi.org/10.1021/ar000033j
http://dx.doi.org/10.1002/jcc.10379
http://dx.doi.org/10.1016/j.jmgm.2008.12.006
http://dx.doi.org/10.1529/biophysj.106.100404
http://dx.doi.org/10.1526/biophysj.106.090993
http://dx.doi.org/10.1016/j.bpc.2010.03.003
http://dx.doi.org/10.1007/s00894-010-0912-4
http://dx.doi.org/10.1007/s00894-010-0912-4
http://dx.doi.org/10.1063/1.3301140
http://dx.doi.org/10.1021/ct700119m
http://dx.doi.org/10.1016/j.bpj.2009.03.015
http://dx.doi.org/10.1016/j.tibs.2006.01.002
http://dx.doi.org/10.1021/bi0160462
http://dx.doi.org/10.1073/pnas.0905127106
http://dx.doi.org/10.1002/prot.22417
http://dx.doi.org/10.1002/bit.22902
http://dx.doi.org/10.1002/btpr.255
http://dx.doi.org/10.1002/prot.22169
http://dx.doi.org/10.1021/la903340v
http://dx.doi.org/10.1021/jp810972y
http://dx.doi.org/10.1073/pnas.0711664105
http://dx.doi.org/10.1016/j.jmb.2006.10.011
http://dx.doi.org/10.1529/biophysj.107.121467


ORIGINAL PAPER

Analysis of surface cavity in serpin family reveals potential
binding sites for chemical chaperone to reduce
polymerization

Poonam Singh & Mohammad Sazzad Khan &

Asma Naseem & Mohamad Aman Jairajpuri

Received: 24 March 2011 /Accepted: 26 April 2011 /Published online: 17 June 2011
# Springer-Verlag 2011

Abstract Serpin constitute about 10% of blood protein and
are associated with mutations that results in aberrant
intermolecular linkages which leads to polymer formation.
Studies with short peptides have shown promise in
depolymerization of serpins however a reactive center loop
based peptide also makes the serpin inactive. A chemical
chaperone based approach is a better option in terms of
maintaining activity and retarding polymerization but not
much is known about its binding and mechanism. Specific
target for chemical chaperones and its effectiveness across
many serpin is not known. We did an analysis of serpin
cavity using CASTp and show that cavities are distributed
throughout the molecule where the largest cavities are
generally present in areas of major conformational change
like shutter region, helix D and helix F. An analysis of
different conformational states of serpins showed that this
large cavity undergoes increase in size in latent and cleaved
states as compared to native state. We targeted serpins with
a variety of carbohydrate, methylamine and amino acid
based chemical chaperones and selected those that have
highest binding energy across different serpins to assess
their ability to bind large cavities. The results show that
carbohydrate based chemical chaperone like sorbitol,
sucrose, arabitol and trehalose and amino acid based
chaperones like dopamine, phenylalanine, arginine and
glutamic acid are the most effective in binding serpins.
Most of these chemical chaperone interacted with residues
in the shutter region and the helix D arm at the C-terminal
which are part of the largest cavities. We selected the

carbohydrate based chemical chaperone with best binding
energies and did experimental study under the condition
that induce polymerization and show that indeed they were
able to retard polymer formation with moderate effect on
inhibition rates. However a fluorometric study with native
antithrombin showed that chemical chaperone may effect the
conformation of the proteins. Our study shows that chemical
chaperones have the best binding affinities for the cavities
around shutter region and helix D and that a cavity targeting
based approach seems to be a better option for retarding
polymerization in serpins, but a thorough analysis of its effect
on folding, inhibition and cofactor binding is required.

Keywords Autodock . CastP. Protein polymerization .

Reactive center loop . Serine protease inhibitor

Abbreviations
Serpin Serine protease inhibitors
ATIII Antithrombin
HCFII Heparin cofactor II
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topography of proteins
RCL Reactive center loop
TMAO Trimethylamine N-oxide

Introduction

Serine protease inhibitors (serpins) like neuroserpin,
antithrombin, α-1antitrypsin, α-antichymotrypsin and
plasminogen activator inhibitor are a unique superfamily
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of protease inhibitors that are involved in important
biological processes like blood coagulation, fibrinolysis,
inflammation, cell migration and complement activation
[1, 2]. Serpins have a common secondary fold, which is
defined by at least 30% sequence identity and constitutes
about 7–9 α-helices and three β sheets. An exposed
reactive center loop (RCL) is an important structural
component of serpin that is needed for targeting and
inhibition of cognate serine proteases [3, 4]. Serpin
undergoes a remarkable conformational transition on
interactions with proteases, which is translocated to more
than 70 A° away on the opposite site rendering it
functionless by distorting the geometry of serine protease
catalytic triad and conversion of the reactive center loop to
strand 4A of β-sheet A [5]. This significant transition
during the course of inhibition through the shutter region
and breach region is also the cause of many serpin based
polymerization defects. Naturally occurring variants of
serpin forms the basis of several familial heredity diseases
due to conformational deformation linked polymerization
[1]. The majority of serpinopathy-linked mutations cluster
in the center of the serpin molecule, underneath β-sheet A,
in a region termed as shutter [6]. This portion of the
molecule is the point of initial RCL insertion. It is
suggested that destabilization of β-sheet A in either the
shutter or the breach is sufficient to favor the transition to
a polymeric or latent state over maintenance of the
monomeric metastable native state [7]. Serpin polymeri-
zation is postulated to occur via a domain-swapping event
whereby the RCL of one molecule docks into β-sheet A of
another to form an inactive long-chain serpin polymer [8].
In addition to promoting polymerization, several serpin
mutations have been identified that promote formation of a
disease-linked latent state [9].

Serpin polymerization is a significant problem and
devising a cure has been cumbersome owing to their
complex mechanism of inhibition, metastable nature,
cofactor binding ability and large scale conformational
change. A reactive center loop peptide based approach has
been successful in retarding the polymer growth however it
also renders the serpin benign for further inhibitory use.
Chemical chaperones such as glycerol and trimethylamine
N-oxide (TMAO) mediate increase secretion of mutant α-1
antitrypsin and act as effective pharmacological strategy for
prevention of liver injury and emphysema. Phenyl butyric
acid (PBA) was also shown to have a similar effect on
secretion of α-1 antitrypsin [10]. Previous studies have
shown that glycerol is able to bind β sheet A of
antithrombin [11] and increases the secretion of Z
α-1 antitrypsin [10]. Glycerol, erythritol and trehalose (a
disaccharide) reduce the rate of polymerization of wild and
mutant type neuroserpin [12]. Overall chemical chaperone
seems to be an attractive option because it can be

administered orally, can cross blood brain barriers and
restore proper trafficking to the lysosome and dissociates.
However, chemical chaperones require high concentrations
for effective folding of mutant proteins and might be toxic
in in-vivo applications.

It was shown recently that filling of cavities around
strand 2A of β-sheet A might retard polymerization in
antitrypsin [13]. Comprehensive analysis of cavities in
serpin will reveal the dimension of cavities in areas
involved in conformational change, cofactor binding and
inhibition. Especially important will be to detect variation
in cavity size in the process of protease inhibition. Binding
small osmolyte to either retard polymerization or to
enhance inhibitory activity of serpins hold promise, but it
is also important to know the nature of such interactions. In
this study we first did a comprehensive cavity based
analysis of different conformational states of various
serpins. Next docking and experimental studies confirmed
that indeed chemical chaperone bind effectively in the
shutter and helix D region to retard polymerization with
minimum loss of activity.

Methodology

Materials

Hi-Trap heparin column was from GE Biosciences. Amicon
Ultra-15 centrifugal filters (Mr 30,000 cutoff) were used for
buffer exchange and concentration of protein solutions.
Human thrombin and S-2238 were from American
Diagnostic. All the other chemicals were purchased
either from Sigma or Merck.

Cavity analysis using CASTp

CASTp was used to study surface features, functional
regions and roles of important residues of different serpin
conformations like native, latent and cleaved. It also gives
an interactive visualization of computed pockets [14]. In
CASTp, a pocket, which is a local spatial surface pattern, is
regarded as an empty concavity on a protein surface into
which solvent can gain access. The pockets were obtained
by a geometric computation method, which can capture the
physicochemical texture and the shape of a surface around
functional residues, from the protein structures in PDB
[15]. CASTp uses the weighted Delaunay triangulation and
the alpha complex for shape measurements. It provides
identification and measurements of surface accessible
pockets as well as interior inaccessible cavities. It measures
analytically the area and volume of each pocket and cavity,
both in solvent accessible surface (SA, Richards’ surface)
and molecular surface (MS, Connolly’s surface) [15]. All
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hetero atoms treated as ligand are automatically removed
from calculation, which includes solvent water molecules.

Molecular docking studies

Autodock Vina was used for molecular docking and virtual
screening of chemical chaperone binding to serpins [16].
Autodock Vina is a newly developed program for molecular
docking and virtual screening. It achieves an approximately
two orders of magnitude speed-up in comparison with the
molecular docking software AutoDock4.0 [17] and can
achieve significantly improved accuracy of the binding
mode predictions. The program automatically calculates the
grid maps and clusters and uses a sophisticated gradient
optimization method in its local optimization. In our present
work we took 27 ligands like amino acid, carbohydrate and
methylamines that were collected from PubChem database.
Ligands like proline, arabitol, taurine and γ-amino butyric
acid were collected from NCBI (PubChem substances) and
their coordinate files were generated using Online Smile
Translator. Polar hydrogen was added and Kollman charges
were assigned to all atoms. Affinity grids were centered on
and encompassing the active site were calculated with
0.375A° spacing. Gasteiger charges were assigned to all
atoms and rotable bonds were assigned using AutoDock
tools. Autodock was used to evaluate ligand binding
energies over the conformational search space using
Lamarckian genetic algorithm. Default docking parameters
were used with some exceptions. In the output log file, we
have considered the minimum energy conformation state of
each ligand showing binding affinity in kcal mol−1. RMSD
values are calculated relative to the best mode and use only
movable heavy atoms. Finally images of ligand and serpin
bound complexes were prepared in PyMOL program and
polar contacts between them were noted down.

Purification of antithrombin from human plasma

Large-scale purification of antithrombin from human
plasma was achieved by using Hi-Trap heparin affinity
column which was eluted with a 300 ml 0.15 – 2.50 M
NaCl gradient [18, 19]. A Biorad Econopac integrated
protein purification unit was used to achieve the purifica-
tion. Human plasma was obtained from Rotary Blood Bank
(New-Delhi) and kept under freezing condition until it was
used for purification. 100 ml of human plasma was diluted
1:1 with 20 mM phosphate buffer containing 100 mM
NaCl, 0.1 mM EDTA (PNE) and having a pH of 7.4 and
ionic strength of 0.15. 2% sodium azide was added to the
diluted plasma to avoid bacterial growth. Diluted solution
was filtered on a 0.22 um filter under cold condition and
loaded on to a 5 ml Hi-trap heparin column equilibrated
with PNE. After washing with 5 column volume of column

with PNE buffer, protein was eluted with 0.15 M, 0.25 M,
0.50 M, 0.75 M, 1 M, 1.25 M 1.50 M, 1.75, 2 M, 2.25 M
and 2.5 M NaCl 1x-PNE gradient. After, elution fractions
containing single band of purified ATIII with thrombin
inhibitory activity were pooled, concentrated and buffer
exchanged in tangential flow Amicon Ultra-15 centrifugal
concentrators having a 30,000 molecular weight cut-off.
SDS-PAGE was used to assess the purity of the ATIII.
Concentration of purified ATIII was determined from
absorbance at 280 nm using molar extinction coefficient
of plasma ATIII.

Conditions that induce polymerization

Long chain polymer of ATIII was prepared by heating
under specific buffer and pH condition. 100 ug ml−1 each
of native antithrombin in total of 1 ml was incubated at 60 °
C in 50 mM Tris buffer and 50 mM KCL, 40 % glycerol at
pH 6.0 in the absence and presence of chemical chaperone
at different time interval. Aliquots were removed and
rapidly added to the ice-cold non-denaturating loading
buffer and analyzed for native PAGE. Any hindrance/
prevention of polymerization process by chemical chaperones
can be detected by the combination of providing the above
conditions in which polymer can form. The decrease in
polymer formation and increased intensity of the monomeric
band was detected using Native PAGE.

Kinetics of polymer transition

100 ug ml−1 each of native antithrombin in total of 1 ml
was incubated at 60 °C in 50 mM Tris buffer and 50 mM
KCL, pH 6.0, in the absence and presence of chemical
chaperone at different time interval. Samples were removed
at indicated times and snap frozen and stored at −70 °C.
These aliquots were assayed for thrombin progressive
activity (in PNE buffer) to assess the loss of ATIII
inhibitory activity due to transition to polymeric ATIII with
time. Reaction for the measurements of activity was set up
under pseudo first order condition and contained ATIII and
thrombin in a 10:1 ratio. ATIII and thrombin were reacted
in microplates, and following the E+I incubations, S-2238
substrate was added and measured at 405 nm. Appropriate
thrombin and S-2238 controls with chemical chaperone in
the absence of antithrombin were taken.

Results and discussion

Analysis of cavities in the native state of serpin

Native states of serpin like antitrypsin, neuroserpin,
antithrombin, antichymotrypsin, plasminogen activator in-
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hibitor and PCI were analyzed for the cavities to find their
area and volume and to assess if they are part of
functionally and structurally important regions of protein.
The results are shown in Fig. 1, which includes information
about residues that are part of the largest cavity. Analysis of
the native state showed that with the exception of
antithrombin the number of cavities in each serpin were
consistent. Largest cavity in the native state is centered
around the shutter region in most of the serpin with the

exception of antithrombin. Largest cavity in antithrombin
was around helix D in a region that transforms the
conformation change to the reactive center loop on account
of heparin binding. Volume of the largest cavity varied in
each serpin where protein C inhibitor cavity has a volume
of 1603 Å3 as compared to a volume of 283 Å3 in the
antichymotrypsin. Antitrypsin had a total of 66 cavities
where the volume of the largest cavity was 526 Å3 and it
has an area of about 459 Å2. This cavity predominantly

Antitrypsin(1qlp) Neuroserpin (3fgq) Antichymotrypsin(1yxa)

Antithrombin( 1t1f) Plasminogen Activator 
Inhibitor(1b3k) Protein C Inhibitor (2hi9)

Inhibitory Serpins CavityID Largest Cavity 

Antitrypsin 
(1qlp) 

66 S53,V55,S56,T59,A60,M63,Q97, L100, R101,N104, L112,T114, G115, N116, L137, Y138, 
H139, S140, E141,N186, I188, L383 

Neuroserpin 
(3fgq) 

57 P22, E23, A25, I26, D28, L29, N32, M33, R36, L51, A54, A54, M57, G58, E61, I72, R73, S75, 
M76, Y78, E86, F87, S88, F89, E92, L307, L310, I312, T387 

Antichymotrypsin 
(1yxa) 

61 V63, L64, P67, D68, C231, K233, M282, Q283, E286, P395, K413, A415, N416 

        Protein C Inhibitor  
(2hi9) 

67 S25, R26, R27, D28, F29,T30, D32, R35, P50, V51, S54, E74, G75, L76, G77, L78, L80, Q81, 
K82, S83,L88, F92, L95, S264, E265, K266, L268,R269, L272, V374, N377, I378 

Antithrombin 
(1t1f ) 

85 R129,L130, Y131, R132, K133, A134, K136,S138, K139, L140, V141, F274, K275, G276, 
D277, D278, I279, E414, P416 

Heparin CofactorII 
               (1jmj) 

78 A135, V137, G138, T141, A142, M145, L186, T187, L190, I191, R192, L199, R200, S201, 
V202, N203, D204, Y206, Y225, F226, A227, E228, Q230, H246, I247, L250, T251, N272, 
I274, L469, F470 

PAI  
(1b3k) 

58 A12, Y37, A40, M45, S41, F64, A72, L75, R76, L78, V79, T93, D95, A96, I97, F113, L116, 
F117, R118, S119, T120, V121, K122, W139, H193 

Fig. 1 Cavities were identified at a cutoff of 250 Å3 in different
native structures of serpins using CASTp program. Amino acids that
are part of a particular cavity were also identified. The cavity

identification numbers are arbitrary; they are numbered according to
the largest to the smallest consecutively as identified by the program.
Arrow indicates the cavity at the backside
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included residues, which are part of helix B (Ser53,
Val55, Ser56 Thr59 and Ala60), along with residues at
N-terminal and C terminal end of helix D. Shutter
region contains F-helix, B-helix and parts of strand s2A,
s3A, s5A and s6A of β-sheet A, it plays an important
role in stability and function of serpins [1, 20, 21]. It is
interesting to note that an overwhelming majority of the
polymerization variants of serpin are part of the shutter
region. Shutter region mutations in α1-antichymotrypsin
(Leu55Pro), α1-antitrypsin (Phe51Leu, Ser53Phe and
Val55Pro), protein C1-inhibitor (Ser52Phe and Ser54Leu),
antithrombin (Pro80Ser/Thr, Thr85Met/Lys, Cys95Arg
and Leu99Phe) and neuroserpin (Ser56Arg and Ser52Arg)
are linked to several pathological conditions due to
polymerization [22–24]. It is quite likely that increased
polymerization propensity of the serpin shutter region
variants is due to their presence in the large cavity in an
area that is involved in conformational change. Interest-
ingly as shown in Fig. 1 several polymerization variants
are in or around the largest cavity in the shutter region.
Indicating that cavity size and its variations may have a
critical role to play in the serpin inhibition and polymer-
ization mechanism. Indeed increase in size of a cavity by
introduction of bulkier group (by mutation) in antitrypsin
was shown to retard the polymerization [25].

Comparison of cavities in different conformational states
of serpin

We did cavity analysis in different states of serpins like
native, latent and cleaved conformations and the
analysis is shown in Table 1. The analysis showed that
the native to cleaved transition leads to an increase in the
size of the largest cavity in almost all the serpins with the
exception of antithrombin. Antitrypsin showed an increase
of 10 folds where the size of the largest cavity increased
from 526 Å3 in native to a volume of 5339 Å3 in the
cleaved state. Similarly neuroserpin largest cavity size was
increased from 649 Å3 in native to 5316 Å3 in the cleaved
conformation. In the latent structure of antitrypsin the
biggest cavity had a volume (701 Å3) which is slightly
greater than the native structure. Latent state is a loop
inserted state where the reactive center loop inserts as s4A
without cleavage, our analysis did not show large variation
in the cavity volume of latent as compared to the native.
This indicates that the loop insertion mechanism in latent
is different from that of the cleaved and role of cavity in
latent loop insertion might be limited. Surface cavity
contributes to metastability of antitrypsin and cavities near
the β-sheet A have been shown to be important in
regulating the inhibitory activity [13, 26]. It is possible

Serpins Native Cleaved Latent

Antitrypsin Cavity IDb Cavity
Volumea

Cavity ID Cavity
Volume

Cavity ID Cavity
Volume

66 459 55 5339 58 701

65 375 54 480 57 627

64 242 52 379 56 438

Neuroserpin 57 649 50 5316 – –

56 433 – – – –

54 563 – – – –

Antichymotrypsin 63 278 37 4578 – –

62 246 – – – –

61 283 – – – –

– – – – – –

– – – – – –

Antithrombin 85 500 62 303 60 508

84 345 – – 59 432

83 291 – – 61 457

– – – – 82 317

Plasminogen activator
inhibitor

59 599 51 3450 77 401

58 600 – – 74 359

– – – – 75 292

– – – – 73 254

Protein C1-inhibitor 67 1602 51 3450 63 710

66 312 49 273 62 542

– – – – 60 452

Table 1 CASTp analysis of
Connolly surface area and
volume of the largest cavities in
different conformational states
of antitrypsin: Table shows the
cavities which were identified
(at the cutoff of 250 Å)3 in
different monomeric native,
cleaved and latent crystal
structures of inhibitory serpins

a Table shows the volume of the
three biggest cavities in different
conformational states of serpin
b The cavity identification
numbers are arbitrary; they are
numbered according to the larg-
est to the smallest consecutively
as identified by the CASTp
program
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that changes in the cavity volume may be part of the RCL
translocation mechanism to thermodynamically trap in
loop inserted conformation during inhibition. Natural
variants can introduce local destabilization in these
cavities which might make this area polymerization prone.
Destabilized residues inside surface cavities may be
stabilized by targeting with small molecule which can
counter local deformation and help reduce polymerization.
However targeting molecules to specific cavity will be
difficult especially since the cross specificity may affect
the functional properties of serpin.

Docking of chemical chaperone to serpin

We choose carbohydrate, methylamine and amino acid
based chemical chaperone to target serpins with an aim
of determining the binding energies, interacting residues
and also if they are part of cavity. The binding energy
computed using Autodock is shown in Table 2 and
represents the binding affinities of 27 chemical chaperone
to serpin. The results show that most of the chemical

chaperone interacted with residues in the shutter region
and the helix D arm at the C-terminal end. The data
indicates a wide array of binding energies, more specifi-
cally our result shows that in native state most of the
chaperones show a preference of binding in the cavity
around shutter region whereas few like taurine, serine,
glycerol, mannitol, TMAO seems to prefer cavities around
F and D helix. The results show that carbohydrate based
chemical chaperone like sorbitol, sucrose, arabitol and
trehalose, and amino acid based chaperones like dopa-
mine, phenylalanine, arginine, glutamic acid are most
effective in binding serpins. Figure 2 shows the interaction
of mannose, trehalose, sorbitol and sucrose with anti-
thrombin. The results show that mannose interacts with
Asp278 (strand 2A), Leu130 (helix D) and Ala134 (helix
D), whereas sorbitol interacts with Glu414 (strand 3B),
Leu130 (helix D) and Ser138 (strand 2A). Interestingly all
these residues are part of the largest cavity in the
antithrombin as shown in Fig. 1. Trehalose showed the
best binding energy among all the chemical chaperones
analyzed in our study. Trehalose forms hydrogen bond

S.NO. Chaperones ATIII ANT NEU ACH PC1-I HCFII PAI

1 Alanine −3.9 −3.9 −4 −3.7 −3.7 −3.8 −4
2 Arginine −5.4 −5.4 −5 −5.9 −5.3 −5.5 −5
3 Betaine −3.8 −4 −3.8 −3.5 −4 −3.7 −3.8
4 Dopamine −5.9 −6.2 −6.2 −5.7 −6.2 −6.4 −6.2
5 Gaba −3.9 −4 −4.4 −3.9 −4 −4 −4.4
6 Glutamic-acid −5 −5 −5.8 −4.6 −4.9 −5 −5.8
7 Glycine −3.5 −3.6 −3.5 −3.6 −3.5 −3.6 −3.5
8 Isoleucine −4.8 −4.8 −4.8 −4.4 −4.5 −5 −4.8
9 Lysine −4.7 −4.8 −4.7 −4.1 −4.7 −4.7 −4.7
10 Phenylalanine −5.4 −5.7 −5.3 −5.2 −5.6 −6 −5.3
11 Proline −4.4 −4.6 −4.8 −4.6 −4.5 −4.6 −4.8
12 Serine −4.1 −4.1 −4.1 −4.1 −4.2 −4 −4.1
13 Taurine −4 −4 −3.8 −4.1 −3.9 −3.8 −3.8
14 Threonine −4.5 −4.4 −4.4 −4.2 −4.7 −4.3 −4.4
15 Tyrosine −5.6 −6 −6.1 −5.4 −5.9 −6.2 −6.1
16 Valine −4.4 −4.5 −4.5 −4.5 −4.3 −4.6 −4.5
17 Arabitol −5.1 −4.8 −4.9 −4.9 −4.4 −4.7 −4.9
18 Erythritol −4.3 −4.2 −4.5 −4.2 −4.1 −4.4 −4.5
19 Glycerol −3.8 −4.1 −4 −4 −3.9 −3.6 −4
20 Sorbitol −5.2 −5 −5.5 −4.5 −5.1 −4.9 −5.5
21 Sucrose −6.0 −5.9 −6.1 −6.0 −6.5 −5.8 −6.1
22 Mannitol −4.8 −5 −4.7 −4.7 −5.2 −4.7 −4.7
23 Mannose −5.7 −5.2 −5.6 −4.1 −5.3 −5.3 −5.6
24 Trehalose −6.3 −6.6 −6.4 −6.1 −3 −6.6 −6.4
25 Glycerophosphocholine −5.1 −4.6 −5.1 −5.1 −5.2 −4.6 −5.1
26 Sarcosine −3.8 −3.7 −3.9 −3.8 −3.7 −3.9 −3.9
27 Trimethylamine N-oxide −3 −3 −2.9 −2.8 −3 −3 −2.9

Table 2 Binding affinity of
chemical chaperones to native
serpin serpin like antithrombin,
antitrypsin, neuroserpin, anti-
chymotrytpsin, HCFII, PAI and
PC1-Inhibitor. Predicted free
energies of binding (kcal mol−1)
of antithrombin with
corresponding chemical chaper-
one were calculated using
Autodock Vina
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interaction with Phe321 and Arg322 (strand 6A), sucrose
formed hydrogen bond interaction with Arg322 and Arg324
of strand 6A and Pro429 at the N-terminal end. These residues
are at the upper portion of the shutter region very near to the
region where RCL inserts as strand 4A during inhibition.
Helix D is involved in transformation of the conformational

change in antithrombin for full exposure of RCL on account
of heparin binding [27]. Interaction of carbohydrate based
chemical chaperone in areas important for the translocation
of conformational change and inhibitory mechanism allowed
us to test these chemical chaperone for reducing polymeri-
zation and its effect on inhibition.

Mannose (-5.7 kcal/mol) 
(Asp278, Ser138, Ala134, Leu130)

Trehalose (-6.3 kcal/mol) 
(Arg322, Phe323) 

Sorbitol (-5.2 kcal/mol)  
(Leu130, Glu414, Ser138)

Sucrose (-6.0 kcal/mol) 
(Pro429, Arg322, Arg324) 

S.No. Chemical
Chaperone 

Residues with 
polar contacts with chaperones 

Interaction  
type 

Distance 
(Å) 

Asp278 (s2B) Side chain 3.14 

Leu130 (Helix D) Main chain 2.70 
Ala134 (Upper edge of Helix D) Main chain 3.13 

1. Mannose 

Ser138 (s2A) Main chain 3.13 
Arg322 (at the edge of s6A) Side chain 3.11 2. Trehalose 

Phe323(s6A) Main chain 3.02 

Glu414 (s3B) Side chain 2.82 

Leu130 (Helix D) Main chain 2.97 

3. Sorbitol 

Ser138 (s2A) Main chain, 
         Side chain 

2.88 
3.14 

Pro429 (N terminal) Main chain, 
Side chain 

2.82 
3.07 

Arg322 (at the edge of s6A) Side chain 3.09 

4. Sucrose 

Arg324 (s6A) Main chain 3.04 

Fig. 2 Binding affinity and
hydrogen bond interactions of
mannose, trehalose, sorbitol and
sucrose with native monomeric
antithrombin.
Structures of antithrombin
native state (1TIF) showing the
autodock analysis with
mannose, trehalose, sorbitol
and sucrose. AutodockVina
analysis and hydrogen bond
distances were calculated as
detailed in Materials and
methods
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Effect of chemical chaperones on the rate of polymerization

We purified antithrombin from human plasma as detailed in
the Materials and methods section and conditions were
provided to the purified ATIII to induce polymer formation
in the absence and presence of chemical chaperone at
different time intervals. Figure 3 summarizes the results
showing screening of chemical chaperone with antithrom-
bin. Figure 3a with native antithrombin without chemical
chaperone showed that antithrombin band is clearly visible
at the 0 time period point. However as soon as the heating
is done polymer bands start to appear and there is a
progressive increase in the strength of the polymerization
band with increase in the incubation temperature. Under the
same condition at appropriate concentration of sucrose,
mannose, sorbitol and trehalose (Figs. 3b to e), we observed
a single band at 5 min interval, and that high molecular
weight polymer bands have almost completely disappeared
due to hindrance in the process of polymerization.

Kinetics of polymer transition in the presence and
absence of chemical chaperone was assessed under the
condition that forms polymers. It is clear from the graph
(Fig. 3f) of residual antithrombin activity versus time that

single band observed in the polymer transition experiments
shows appreciable antithrombin inhibitory activity. Native
antithrombin in the absence of chemical chaperone almost
completely loses the ability to inhibit thrombin when
incubated for 20 min in polymerization condition. Sorbitol,
trehalose and sucrose when incubated with antithrombin
maintained its native inhibitory activity even at 90 min in
polymerization condition, but in the presence of mannose
antithrombin inhibitory activity was reduced by 40 %.
These results are a clear indication that retardation of
polymerization leads to increased inhibitory activity when
incubated with chemical chaperone. Isolating a lead
compound that can effectively bind serpins can provide a
structural scaffold that may be used for designing organic
compounds that can effectively hinder polymerization
without modulating the inhibition rates and cofactor
binding abilities.

Conclusions

Previous evidence suggests that chemical chaperones can
be promising in reducing the rate of polymerization in

Fig. 3 Polymer formation in the presence and absence of chemical
chaperones: Polymer formation in the native antithrombin in the
presence and absence of chemical chaperone was determined by
heating at 2 uM in 50 mM Tris buffer, pH 6.0 at 60 °C for the time
shown in the figures. Aliquots were removed and frozen prior to
assessment on non-denaturating PAGE. Each gel picture has a native
control along with the 0 min where the aliquot was withdrawn
immediately after incubation at 60 °C. (a) Represents 2 uM native
antithrombin without chemical chaperone. (b) 1.5 M sorbitol, (c)

1.0 M trehalose, (d) 1.5 M mannose and (e) 1.25 M sucrose were
incubated with native antithrombin. Rate of loss of inhibitory activity
of antithrombin was measured under the same conditions as described
in Material and methods section. Native antithrombin was completely
inactive at 20–25 min, whereas under the same conditions, in the
presence of sorbitol, trehalose and sucrose antithrombin was 97%
active at 90 min incubation, in the presence of mannose it was 60%
active. Each graph was average of two independent experiments
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serpins but its effect on the structure function remains
largely unknown. In the present work we have studied the
surface cavities to identify targets for chemical chaperone.
A shutter region cavity which invariably is the largest
cavity in the native state of many serpins may be the ideal
target to block polymerization. Carbohydrate based
chemical chaperones seems to be most effective in
binding many serpin with high affinity and reduces
polymerization without affecting the inhibition rates.
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Abstract CYP450 aromatase catalyzes the terminal and
rate-determining step in estrogen synthesis, the aromatiza-
tion of androgens, and its inhibition is an efficient approach
to treating estrogen-dependent breast cancer. Insight into
the molecular basis of the interaction at the catalytic site
between CYP450 aromatase inhibitors and the enzyme
itself is required in order to design new and more active
compounds. Hence, a combined molecular docking–molec-
ular dynamics study was carried out to obtain the structure
of the lowest energy association complexes of aromatase
with some third-generation aromatase inhibitors (AIs) and
with other novel synthesized letrozole-derived compounds
which showed high in vitro activity. The results obtained
clearly demonstrate the role of the pharmacophore groups
present in the azaheterocyclic inhibitors (NSAIs)—namely
the triazolic ring and highly functionalized aromatic
moieties carrying H-bond donor or acceptor groups. In
particular, it was pointed out that all of them can contribute
to inhibition activity by interacting with residues of the
catalytic cleft, but the amino acids involved are different for
each compound, even if they belong to the same class.
Furthermore, the azaheterocyclic group strongly coordinates
with the Fe(II) of heme cysteinate in the most active NSAI
complexes, while it prefers to adopt another orientation in less
active ones.

Keywords Molecular docking .Molecular dynamics .

Aromatase inhibitors . Binding interactions

Introduction

Aromatase is a CYP450 enzyme involved in the production
of estrogens that acts by catalyzing the conversion of
testosterone (an androgen) to estradiol (an estrogen).
Aromatase is located in estrogen-producing cells in the
adrenal glands, ovaries, placenta, testicles, adipose (fat)
tissue and brain. The growth of some breast cancers is
promoted by estrogens as, upon the binding of an estrogen
to the estrogen receptor (ER), the receptor activates the
transcription of its target genes, which are responsible for
cancer cell proliferation in estrogen-dependent breast
tumors. Inhibiting aromatase is an efficient approach to
treating estrogen-dependent breast cancer because the
aromatization of androgen is the terminal and rate-
determining step in estrogen synthesis [1, 2]. Aromatase
inhibitors (AIs) can be classified in terms of both their
structures and mechanisms of action. Two types of AIs can
be distinguished: irreversible steroidal inhibitors such as
exemestane, which forms a permanent bond with the
aromatase enzyme complex, and nonsteroidal inhibitors
(NSAIs)—mostly triazole derivatives such as anastrozole
(Arimidex®) and letrozole (Femara®)—that inhibit the
enzyme by reversible competition [3–7]. These new-
generation compounds appear to be better tolerated and
produce fewer collateral effects than the commonly used
tamoxifen. All of these compounds have been demonstrated
to be very potent and specific, but until now the structural
basis of drug recognition and association has not been
completely elucidated, since the 3D structure of aromatase
has only recently been reported in complex with its natural
ligand androstenedione (ASD) [6] (pdb code: 3eqm). While
some papers on the molecular basis of interactions between
aromatase and some of its inhibitors have already been
reported [8–14], most published docking studies deal with
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the 3D structure modeled for homology [15–17] (PDB code
1tqa). Among these studies, only a few papers refer to the
automated rigid docking of some steroid-based inhibitors to
the crystallographic 3D structure of aromatase [10, 18].
Very recently, Roy et al. performed a 3D-QSAR study of
various classes of CYP19 aromatase inhibitors [18]; that
study employed rigid docking and did not minimize the
energy of ligand–enzyme complexes. Other studies were
based upon indirect approaches such as QSAR [14].
Detailed knowledge of the intermolecular interaction at
the catalytic site between the inhibitors and the enzyme is
essential if we are to better rationalize the strengths of
known drugs, and it would provide the starting point for the
proper rational design of new and more active compounds.
With this in mind, we carried out a combined molecular
docking/molecular dynamics study to model the molecular
Michaelis complexes of aromatase with a number of
currently used drugs, starting from the crystallized structure
of the enzyme (3eqm). The compounds considered in that
study—reported here—are some third-generation aromatase
inhibitors (AIs), the steroidal inhibitor exemestane, the
NSAIs letrozole, anastrozole, and other letrozole-derived
compounds that show high in vitro activity [19]. The final
goal was to compare their binding energies and their
intermolecular interactions with their experimental inhibi-
tion activities, in order to identify those with the highest
affinity for aromatase.

Computational details

Preparation of inhibitors and complexes
of them with the enzyme

The association complexes described in the present article
were constructed starting from the crystallographic struc-
ture of human aromatase bound to its natural ligand
androstenedione (pdb code 3eqm) available at the Broo-
khaven Protein Data Bank. Missing hydrogens were added
to the X-ray crystallographic structure using the CHIMERA
software package [20]. The pdb structure was protonated
assuming a pH of 7.4 and using the following physical
conditions: salinity 0.15, internal dielectric 6, external
dielectric 80 [21]. The crystallographic water molecules
present were retained, as it has already been pointed out
[22–25] that the hydroxylation mechanism (the first two
reaction steps catalyzed by aromatase) directly involves the
catalytic water molecules, the binding of which is promoted
by dioxygen binding as in P450cam [26–28], yielding a
C19-aldehyde derivative of androstenedione via 19,19-
gem-diol formation with retention of the pro-S hydrogen.
At this point, for the sake of clarity, we will focus on
current knowledge of the human aromatase mechanism.

This enzyme is a cytochrome P-450 which functions in
association with an NADPH-dependent reductase. The
overall process of androgen to estrogen conversion consists
of several steps (five), the first two of which (the
hydroxylation of C-19) are “classical” cytochrome P-450
hydroxylations, as confirmed by the experimental work of
Beunsen [29]. The details of the third step (leading to the
aldehydic intermediate) and the last two (the real aromati-
zation of the D ring) are currently unclear, even though an
attempt to provide an explanation at the DFT level has been
made [30] (a detailed QM/MM study of the last two steps
of the aromatization reaction are currently being investigated
by our group in collaboration with Prof. Bottoni’s group at
Bologna University).

Keeping this knowledge in mind, the docking MD
protocol to localize the Michaelis association complexes
for ASD, exemestane and all the other NSAIs considered in
this study was carried out with explicit water inside the
catalytic cleft and without it, in order to assess the role of
the solvent during the association process. As a result, for
ASD, exemestane and anastrozole, no differences in the
geometries of the complexes were found, demonstrating
that water does not interfere with the association between
the steroid ligand and aromatase itself; it is only directly
involved in the subsequent reaction steps according to
literature data [22–29]. In contrast, as will be discussed
widely in the “Results” section, some differences were
observed for letrozole and its derivatives when the docking
was performed in the presence and absence of explicit
water molecules inside the cleft.

Furthermore, for all of the MD simulations carried out in
the absence of explicit water, the overall effect of the
solvent was accounted for by using the GB/SA model for
water (ε=78.5) to emulate the solvent electrostatic effect
[31]. We chose an implicit solvation model instead of an
explicit one to reduce the computation time.

The 3D structures of the studied inhibitors were built
using the Macromodel 5.5 software package [32], and were
fully minimized using the AMBER force field (AMBER*)
[33]. Subsequently, all of the ligands were placed inside the
catalytic site, and the natural ligand ASD was substituted at
random orientations and random torsion values, thus
allowing a search for flexible conformations of the
compounds during the docking process.

Molecular docking

The docking program Autodock 4.0 was used to perform
the automated molecular docking [34–36].

A Lamarckian genetic algorithm (LGA) was applied to
deal with the inhibitor–enzyme interactions. A grid map
with 70×70×70 points spaced equally at 0.375 Å was
generated using the Autogrid program to evaluate the
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binding energies between the compounds and the protein.
Docking parameters were set to default, except for the
number of GA runs (200), the energy evaluations
(25,000,000), the maximum number of top individuals that
automatically survive (0.1), and the step size for translation
(0.2 Å). The docked inhibitor–enzyme complexes were
ranked according to the predicted binding energy and
arranged into clusters according to the RMS values. For
each compound, the most representative structures of each
cluster, which also included the lowest energy complex,
were used as the starting point for further MD simulations.
This allowed the binding pocket and the inhibitor to relax
and arrange themselves into the best Michaelis association
complex.

MD simulation protocol: reaching the final Michaelis
complex

After the cluster analysis, the best representative structures
for each substrate–inhibitor complex were then used for
MD simulations as starting geometries after complete
minimization performed by the AMBER force field [33],
as implemented in MMOD 5.5 [32], in which the heme
parameters were added according to literature data [37].
Minimization and MD simulations were carried out on a
core of unconstrained atoms around the active site (8 Å),
and on a shell of constrained atoms [energy penalty force
constant of 100 kJ/(Å2 mol−1)] surrounding the core (6 Å).
An initial minimization (2000 steps, steepest descent) and a
subsequent constant-temperature MD simulation (2 ns,

298 K, 1.0 fs time step) were carried out. An equilibration
time of 40 ps was allowed before data collection was
initiated. The SHAKE algorithm was used to constrain
stretching bonds involving hydrogen atoms [38]. The
coordinates of the system were saved on a trajectory file
every 10 ps, giving a total of 200 structures for further
analysis. Each obtained structure was fully minimized first
by steepest descent and then by conjugate gradient with a
derivative convergence criterion of 0.05 kJ/(Å2 mol−1). The
lowest-energy structure was considered to be representative
of the Michaelis complex or the lowest-energy association
complex. This molecular modeling protocol has already
been shown to yield reliable results when studying other
inhibitor complexes [39–43].

The computational effort described above was necessary
to build a reasonable association complex, which is key
information that cannot be obtained from crystallographic
data, as it cannot reproduce the dynamics of the active site.

Results and discussion

Molecular interaction of the natural steroidal ligand
androstenedione

Starting from the crystallographic 3D structure of aromatase
in complex with its natural ligand androstenedione (ASD)
(pdb code 3eqm), the structure of the initial Michaelis
complex was modeled. A 2 ns MD simulation was
performed at 298 K (see “Computational details”), which
allowed the residues to relax and find their lowest-energy
structural conformations along the PES. This computational
protocol is necessary in order to remove the rigid
constriction which occurs in the crystal, thus leading to a
better optimized structure after the addition of hydrogens.

In the optimized molecular complex structure, a catalytic
cleft was observed that appears to be particularly rich in
both polar and apolar hydrophobic residues such as Ile305,

Fig. 1 Superimposition of the 3D crystallographic (3eqm) structure
and the same molecular structure after MD simulation and minimiza-
tion (the Michaelis complex). ASD in the original 3eqm is shown in
green, while ASD in the Michaelis complex is shown in pink. The
heme is shown in black. Only residues within 6.0 Å from ASD are
displayed

Fig. 2 Structure and atom numbering system of androstenedione
(ASD)
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Ala306, Asp309, Arg115 (from the l helix), Phe221, Trp224
(from the F helix), Ile133, Phe134 (B_C loop), Val370,
Leu372, Val373 (from the K helix–b3 loop), Met374 (from
b3), Leu477 and Ser478 (from the b8–b9 loop). This amino
acid assembly is particularly effective at stabilizing both
polar and apolar ligands, particularly those containing
aromatic moieties. Those findings mostly confirm the
crystallographic observations of Gosh et al. [6], even
though we noticed a difference in the interaction distances
ascribed to both the relaxation of the lateral chains of the
residues in the catalytic cleft and the relative position of the
natural ligand (Fig. 1). It is worth mentioning that that after
MD stabilization, the H-bond between the C-17 carbonyl
oxygen (acceptor) and the Met374 backbone N–H (donor)
strengthens (d=1.82 Å vs. 2.8 Å). All of these interactions

were observed in both the association complex containing
water inside the catalytic cleft and that without it, due to the
same orientation of ASD at the binding site.

This observation confirms that water does not interfere
in the process of ligand association; it only becomes active
in the subsequent reaction steps, as already reported in the
literature [22–29]. Furthermore, the C-3 carbonylic group
lies in the pocket formed by the residues Asp309, Thr310
and Ala306. Asp309 has been suggested to be involved in
the aromatization step involving the abstraction of H2β
from the A ring of ASD (Fig. 2).

The residues Thr310 and Ala306 are stabilized and
locked into their respective positions by an inter-residue H-
bond between Thr310–NH and O=C–Ala306 (dH...O =
2.15 Å), while the carboxylate of the lateral chain of the

Fig. 3 Interactions with ASD at the catalytic site. The ligand is highlighted in green. Only those residues involved in ASD stabilization are shown

Fig. 4 Molecular structures of
ASD and exemestane
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catalytic residue Asp309 is oriented towards the C-3
carbonylic group (A ring) (dO...O=3.74 Å) (Fig. 3). As
shown in Fig. 3, the B and C rings of ASD are also
stabilized by hydrophobic interactions with the lateral
chains of the residue Val370 and the heme moiety (the
latter directly involving the C-19 methyl group) on the one
side and Trp224 on the other.

Molecular interaction of the steroidal inhibitor exemestane
(SAIs)

In order to focus on the binding of the irreversible steroidal
inhibitor exemestane (Fig. 4), the association complex
starting from 3eqm was again modeled. The ligand
androstenedione was replaced with exemestane and auto-
mated docking with Autodock was initially performed,
followed by MD simulation and minimization in order to
identify the lowest-energy conformer (see “Computational
details”). Since this molecule is classified as an irreversible
inhibitor that prevents the aromatization reaction, we

expected it to bind deeper inside the catalytic cleft than
ASD. Once again we performed the docking/MD procedure
for the complex containing water inside the binding cleft
and the complex without it. As obtained for ADS, the
docked positioning of exemestane and its interactions with
catalytic residues were not affected by the presence of
explicit catalytic water molecules. Thus, herein we report
the results obtained for the association complex with
explicit solvent.

Ghosh et al. [6], in their study of the crystallographic
structure of 3eqm, also attempted to discuss the binding
interactions of exemestane by simply replacing the natural
ligand ASD inside the catalytic site. However, no modeling
of the complex was carried out, and discrepancies were
found for some distances, which were less than the van der
Waals contact radii. We observed that the main interactions
observed for androstenedione are conserved, namely H-
bonding involving C-3 carbonyl oxygen and Met374N–H
(1.82 Å), the heme stabilization of the C-19 methyl, the
hydrophobic stabilization of the A ring by residues Thr310
and Ala306 (which in addition interact together through an
H-bond involving Ala306 C=O and Thr310 O–H; dH...O =
1.88 Å), and the hydrophobic interaction between the B and
C rings of the steroid and the lateral chains of Val370 and
Val373. Finally, some additional stabilization interactions
were also observed that directly involve the exocyclic C-6
methylidene group, which is buried deeply in a shallow
hydrophobic cavity formed by the lateral chains of residues
Thr 310, Ser 478, Phe221, Val269 and Val370 (Fig. 5).

The distance between the Phe221 C–H and the C-
methylidene is 2.92 Å, while the distance from Cγ-Thr310
to the same exemestane carbon atom is 4.25 Å. This is
longer than that observed in the crystallographic structure
(3.0 Å), which is in fact lower than the van der Waals
contact distance, as already pointed out [6]. This improved
adjustment of the structure is due to the relaxation of the
lateral chains during the MD simulation. Another aspect
that must be taken into account is that in this association
complex, the lateral chain of Asp309 is directed far from
the C-17 carbonyl group. This is particularly interesting,
since this residue seems to be directly implicated in the

Fig. 5 Interaction between exemestane and the catalytic residues in
the minimized association complex. The ligand is highlighted in green
and only those amino acids that interact directly with it are shown

Fig. 6 Molecular structures of
anastrozole and letrozole
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catalytic process (namely proton abstraction), so this different
orientation, together with the high stabilization arising from
the fact it is buried inside the hydrophobic site, may play an
important role in explaining the irreversible binding of
exemestane (a DFT/MM investigation of the catalytic
mechanism is currently being performed by our group).

Docking of some new-generation competitive non-steroidal
inhibitors (NSAIs): letrozole, anastrozole, and some derived
azaheterocycle-containing compounds

Anastrozole and letrozole are two of the most important
non-steroidal aromatase inhibitors (NSAIs), which exhibit
significantly improved efficacies compared to tamoxifen,
the drug most commonly used in this context [44–46]. A
common substructure in NSAIs is a nitrogen-containing
heterocycle that is a very effective pharmacophore group
which interacts directly and coordinates with Fe(II) of the
heme group [47–50]. In particular, anastrozole and letrozole
can also be classified as type II inhibitors, in contrast to
type I inhibitors, which include the natural ligand andros-
tenedione and steroid-derived compounds (such as exemes-
tane), since their binding to aromatase usually induces a
bathochromic change in the Soret UV band compared to
type I compounds. This bathochromic shift has been
tentatively ascribed to the resulting coordination of the
heme iron with an heteroatom such as the nitrogen of the
triazolic ring [49, 50]. However, there have been no
structural, crystallographic or computational studies to
definitively assess this behavior. A hydrogen-bonding
acceptor group has been considered another relevant
pharmacophore element; in anastrozole and letrozole, this
element is provided by the butyronitrile and benzonitrile
groups, respectively (Fig. 6), as well as the aromatic phenyl
moieties.

Recently, Jackson et al. [12] reported both the synthesis
and the activities of some new NSAIs based on a biphenyl
scaffold [(5-triazolyl methyl-2-cyano)-biphenyl], and they
carried out a molecular automated docking study in order to
confirm the suggested pharmacophores. However, they
used the 3D model of aromatase obtained from homology
modeling [15, 16], directly orienting the triazole ring
towards heme and constraining the NSAI inhibitor position
by imposing a distance constraint between the heterocyclic
nitrogen and Fe(II) without checking for the presence of
any other energetically favored orientation. The same
protocol was also applied by the group [51] when docking
letrozole into the homology model of aromatase. Further-
more, it must be pointed out that the theoretical model of
aromatase (1tga) shows many discrepancies with respect to
the experimental model 3eqm, not in relation to the
backbone but mainly to the orientations of the lateral
chains of residues. This fact can lead to misunderstanding
of the real molecular interactions between the ligand and
the residues in the active cleft. Finally, the analysis of the
rigid docking carried out by Roy et al. [18] showed a
tendency for the azaheterocycle to orient towards heme,
even if it is not properly coordinated with iron. In addition,
they also pointed out the presence of several steric bumps
which were ascribed to the low activities of the inhibitors
considered, but which may also be due to a different
preferential pose of the ligand and to fact that the complex
geometries were not optimized. All of this computational
evidence sheds light on some aspects of the association
between the AI and aromatase, but it is not exhaustive as it
does not consider the catalytic residues and ligand

Fig. 8 Molecular interactions for the lowest-energy anastrozole–
aromatase complex. The ligand is highlighted in green, and only those
residues that interact directly with it are shown

Fig. 7 Cluster analysis for anastrozole after automated docking
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relaxation during and after the complexation process.
Therefore, in our study, docking was carried out by
considering all possible orientations of the two ligands at
the active site as starting points and, as already pointed out
in the “Computational details” section, in both the presence
and absence of water molecules.

Initially, automated docking (Autodock 4.0) was per-
formed without imposing any distance restraint, which results
in the clustering of conformers generated. Then, for each
representative structure of each cluster obtained, and inde-
pendent of their predicted binding energies, MD simulation/
MM stabilization of the association complexes was carried
out. This computational protocol is particularly important,
since the energy calculated by Autodock has an intrinsic error
which could be associated with the partial charges calculated
(according to Gasteiger–Marsili) for the ligand [52] and with
the lack of amino acid lateral chain relaxation. This latter
information can be obtained from a further MD simulation.
However, we also noticed that this energetic discrepancy is
particularly important when the energy differences of the
docked clusters are <0.5 kcal mol−1. For anastrozole, we did
not observe any differences when explicit solvent was
included inside the cleft in the cluster analysis (Fig. 7) and
in the association complexes compared to when it was not,
while for letrozole and its derivatives some discrepancies
were found.

In fact, for anastrozole, whether in the presence of water or
not, the cluster analysis showed the existence of two possible
clusters, and thus two association complexf geometries were
identified: one with the azaheterocycle pointing away from
the heme and the other with the same ring oriented towards Fe

(II). Thus, a representative structure of each cluster was
chosen as the initial MD association complex. The results
obtained strongly confirm the previously suggested pharma-
cophores [18], since the energy of the complex with the
ligand oriented towards heme is much lower than the other
one. Furthermore, ΔEbinding between these two association
geometries increased significantly after molecular dynamical
stabilization. These results confirm the need to perform an
accurate MD simulation and trajectory analysis in order to
evaluate the real interactions and energies that occur at the
active site [53].

Upon thoroughly analyzing the molecular interactions that
occur at the binding cleft, it becomes apparent that in the
lowest-energy complex, the heterocyclic group points towards
the heme moiety coordinating the Fe(II) (dNaza...Fe = 3.3 Å),
and one of the two cyanobutyryl groups forms an H-bond (as
acceptor) with the lateral chain of Arg115 (dNH...NC=1.88 A).

Fig. 9 Molecular interactions for the highest-energy anastrozole–
aromatase complex

Fig. 10 a Cluster analysis for letrozole (with catalytic water) in
automated docking. b Cluster analysis for letrozole (with water
removed) in automated docking
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Moreover, the same group is also stabilized by strong
hydrophobic interactions involving the two methyls and the
lateral chains of residues Phe134, Val370, Leu372, and
Leu477. The other cyanobutyryl group does not form any H-
bond but is stabilized by the residues Phe221 and Thr310.
Furthermore, the phenyl moiety of anastrozole forms a π-
stacking interaction with Trp224 (Fig. 8).

In the other highest-energy orientation, weaker stabiliz-
ing interactions were observed. The azaheterocycle group
points away from the heme and is surrounded by the
hydrophobic residues Leu372, Leu477, Met374 and
Arg115, which is also involved in H-bonding with one
cyanobutyryl group (dN–H...NC=2.26 Å) and the azahetero-
cycle, which in turn is also involved in H-bonding with
Met374. Finally, one cyanobutyryl group is also stabilized
by the lateral chain of Ala306 while the other is instead
surrounded by Val369 and Phe221, which are unable to
stabilize the cyano moiety. The central phenyl moiety is
once again stabilized by a π-stacking interaction with
Trp224 (Fig. 9).

Besides anastrozole, letrozole was also docked to 3eqm,
together with some recently synthesized letrozole-derived
compounds which have shown interesting activity. Eventu-
ally, we considered some letrozole-derived compounds [19]
that have been well characterized and evaluated. In their
research work, however, the authors did not perform any
modeling study to assess the binding interactions. Some of
the most representative compounds were therefore chosen
for a docking study using our model and the same

Table 1 Distances of interest between the triazolic ring and water
molecules inside the catalytic cleft (HOH 604, 605, 607, 621, 624,
630) during MD simulations of letrozole

Distance After docking
(Å)

MD 2 ns
(Å)

MD 4 ns
(Å)

d(N(triazole)...Fe) 7.2 6.9 5.1

d(O(604)...Fe) 13.1 14.8 15.0

d(O(605)...Fe) 11.3 11.4 12.5

d(O(607)...Fe) 13.1 17.6 18.5

d(O(621)...Fe) 20.1 20.3 20.5

d(O(624)...Fe) 8.7 10.3 11.1

d(O(630)...Fe) 18.4 18.6 18.7

Fig. 11 Letrozole-stabilizing interactions in the association complex. The ligand is highlighted in green
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computational protocol as described above. The aim was to
definitively assess the pharmacophore requirements of
azaheterocycle-containing compounds.

In particular, for letrozole, slightly different results were
obtained when the docking process was conducted in the
presence and in the absence of catalytic solvent molecules.
In fact, docking results obtained in the presence of water
showed the existence of several clusters, with the first two
being almost isoenergetic (ΔE=0.15 kcal mol−1) (Fig. 10a).
In the first cluster, letrozole is oriented with the triazolic
ring pointing far from heme iron, while the triazolic ring
coordinates with it in the second cluster. The latter
orientation is in agreement with the experimental bath-
ochromic shift observed. In the absence of water, the results
of the cluster analysis show the existence of only one
significant populated cluster, which has the heterocyclic
ring coordinated with the heme (Fig. 10b).

In order to clarify this peculiar behavior, we carried out
further MD simulations, starting from representative struc-
tures for each cluster resulting from docking in the presence
of water, and at the end of the simulation we observed a
significant displacement of the solvent molecules located
inside the cleft from the ligand. Thus, we decided to go
further and perform a longer MD run monitoring the
positions of the water molecules. Indeed, the MD trajecto-
ries in both cases show water molecules moving towards
the opening of the cleft (Table 1) as well as stronger binding
of the triazolic ring to the heme iron. In particular, at the
beginning, the herocyclic ring is far from the heme, but as
the simulation progressed it reoriented towards the iron

while the water moved away from it (Table 1), meaning that
the ligand oriented itself as in the cluster 1 association
complex (RMSD=0.12 Å). This behavior is not particularly
unexpected; as already mentioned, NSAIs are competitive
inhibitors, and the steric hindrance associated with them is
much greater than that afforded by SAIs. Thus, during the
formation of the association complex, water molecules can
initially interfere with the correct positioning of the
inhibitor inside the cleft, but during ligand binding they
move further away to allow the inhibitors accommodate
themselves more snugly inside the binding cavity. This
influence of water, which was not observed for anastrozole,
may be ascribed to the smaller steric molecular dimensions
of anastrozole than letrozole and its derivatives, which have
two phenyl moieties instead of one (Fig. 6). Finally, we
should also point out that in the presence of water, the
lowest-energy association complex after MD simulations
has a geometry that is fully in agreement with experimental
data, with the triazolic ring coordinated to heme. This
position of the ligand is perfectly superimposable on that

Fig. 12 Structures and activity
data for the letrozole-derived
inhibitors 5–7 that were docked
into our model [19]

Table 2 Experimental IC50 and calculated Ebinding values for
compounds 4–7

Compound Ebinding (kcal/mol) IC50 [19]

4 −9.01 0.9 nM

5 −7.74 2457 nM

6 −7.76 178 nM

7 −9.12 0.6 nM
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obtained in the absence of water. Thus, the molecular
interactions observed are reported here.

First of all, as already stated in the paper, the orientation of
the ligand agrees with experimental findings [49, 50], since
the triazole ring is directly involved in strong coordination

with the heme iron (dN...Fe=2.80 Å), thus explaining the
observed bathochromic shift of the cytochrome Soret UV
band [47–50].

One of the two cyanophenyl groups points towards the
hydrophobic pocket surrounded by residues Val369, Val373,
Leu477 and Thr310, and is stabilized by a π-stacking
interaction with the lateral chain of Phe221 and by an H-
bond with Ser478 (dOH...NC=2.08 Å) (Fig. 11). Instead, the
other cyanophenyl moiety is involved in an H-bonding
interaction with Met374 (dN-H...NC=1.89 Å) and in hydro-
phobic and π-stacking stabilization of the phenyl ring
through interactions with the residues Ile133, Phe134,
Trp224, Val370 and Leu477.

All of these findings were subsequently compared with
the geometries of the association complexes of three
letrozole-derived compounds (5–7) (Fig. 12). These com-
pounds were chosen according to their activity data, since
compound 7 is more active than letrozole, while the other
two (5–6) are much less active. The aim was to correlate
their activity with the interactions occurring in the
stabilized lowest-energy complex. Ebinding was calculated,
and it is reported together with the experimental IC50 in

Fig. 14 Interactions for the bromophenol derivative 7 association complex. The ligand is highlighted in green. Only those residues interacting
with letrozole are shown

Fig. 13 Cluster analysis for compound 7 after automated docking
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Table 2. As can be observed, the computed order of activity
for compounds 4–7 is in good agreement with that for the
experimental data.

However, these four compounds show different binding
preferences. For the most active bromophenyl derivative
(7), the cluster analysis shows the presence of four groups
of orientations (Fig. 13), with the first two being the closest
in energy, and highly populated. Due to their very small

difference in energy (ΔEbinding cl1–cl2=0.1 kcal mol−1), MD
stabilization of the representative structures of both clusters
was performed, and in this case the MD data analysis
clearly demonstrated a strong energetic preference for the
first of the two.

If we consider the molecular interactions at the binding
cleft, in this association complex (as it is for letrozole),
compound 7 is oriented with the triazolic ring towards the

Fig. 16 Interactions of the association complex of the p-diphenol derivative 6. The ligand is highlighted in green

Fig. 15 Cluster analysis for
compounds 6 and 7
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heme iron (dN...Fe=5.2 Å), although this interaction appears
weaker than that observed for letrozole. The cyanophenyl
moiety is again oriented towards the hydrophobic cleft
surrounded by residues Phe221, Val369, Thr224 and
Leu477. In addition, the lateral chain of Asp309 is oriented
perpendicular to the phenyl stabilizing it by π-stacking
interactions. Moreover, His480 is involved in an H-bonding
interaction with the cyano group itself (dN-H...NC=2.58 Å).

The bromophenyl moiety interacts with Leu372, forming
a strong H-bond (dC=O...HO=1.74 Å), and with the lateral
chain of Arg115 (Fig. 14). On analyzing the poses of the
other two (less active) inhibitors 5 and 6, it is surprisingly
to observe that they do not show a preference in terms of
the coordination of the triazolic ring with the heme Fe(II).
In particular, for derivative 6, clustering into three families
that are well separated in energy is observed, with the first
cluster being the most populous (Fig. 15).

In the lowest-energy association complex, the triazolic ring
is oriented far from the heme, pointing instead towards the
hydrophobic residues Leu477, Phe221 and Trp224 (the latter
is involved in a π-stacking stabilization with the heterocyclic
ring). Another strong stabilization concerns one of the two p-
phenyl moieties, since the hydroxylic group forms three H-
bonds with residues Leu372 (dC=O...HO=1.78 Å), Met374
(dN–H...OH=2.04 Å) and Arg115 (dNH...OH=1.91 Å). Further-

more, the lateral chain of Val370 is oriented towards the
aromatic ring. The other p-phenol group is perpendicular to
the heme and involved in a weak H-bonding interaction with
one of its nitrogens (dOH...N=2.30 Å), while the aromatic
ring is surrounded by the hydrophobic chains of Ile133 and
Thr310 (Fig. 16).

Finally, the results obtained for meta-phenol (5) show
complex clustering into eight families (Fig. 15). However,

Fig. 18 RMS superimposition of triazole-containing NSAIs in their
lowest-energy association complexes

Fig. 17 Interactions of the association complex of the meta-diphenol derivative 7. The ligand is highlighted in green
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the first cluster is very different in energy and characterized
by a very high population density. The lowest-energy
association complex found for 5 belongs to this cluster
family (see Fig. 15), and the molecular interactions
observed in it are even more surprising than those observed
for compound 6. In fact, the most important structural
feature is the presence of coordination between one of the
two m-phenol oxygens and Fe(II) (dO...Fe=2.50 Å), while
the triazole ring preferentially orients itself towards the
residues Phe221, Ser478, Val369 and Val370 (Fig. 17). The
other m-phenol group is instead surrounded by Ile133 and
Leu477 and stabilized by stacking interactions with
residues Phe134 and Trp224. Its hydroxyl group is oriented
towards the sulfur of Met374 (dOH...S=3.72 Å), thus
yielding dipolar electrostatic stabilization.

Conclusions

From all of these observations, it is clear that the aza moiety
is an important pharmacophore group, as it always shows
notable stabilizing interactions in the association complex,
and is involved directly in the coordination with the Fe(II)
of heme, as suggested by experimental data. At the same
time, we have demonstrated that aromatic functionalized
groups compete with the aza moiety to stabilize the
association complexes, and together these determine the
activities of the NSAIs (Fig. 18). This aspect is not
secondary, since the catalytic cleft is rich in both π-
stacking stabilizing residues (Phe134, Phe221, Trp224)
and H-donor or -acceptor amino acids (Arg115, Met 374,
Ser478). However, it is worth mentioning that all of the
inhibitors with nanomolar activity considered show a direct
interaction of the heterocyclic group with Fe(II), while less-
active NSAIs do not. Thus, in order to better assess the
relevance of this coordination, and to better identify the role
of the heterocyclic ring, we are currently studying the
docking of other NSAIs containing azaheterocyclic groups
that are different from the triazole.
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Abstract A constant pressure ab initio MD technique and
density functional theory with a generalized gradient
approximation (GGA) was used to study the pressure-
induced phase transition in wurtzite ZnTe. A first-order
phase transition from the wurtzite structure to a Cmcm
structure was successfully observed in a constant-pressure
molecular dynamics simulation. This phase transformation
was also analyzed using enthalpy calculations. We also
investigated the stability of wurtzite (WZ) and zinc-blende
(ZB) phases from energy–volume calculations, and found
that both structures show quite similar equations of state
and transform into a Cmcm structure at 16 GPa using
enthalpy calculations, in agreement with experimental
observations. The transition phase, lattice parameters and
bulk properties we obtained are comparable with experi-
mental and theoretical data.

Keywords Ab initio calculation . High pressure . Phase
transformation . Semiconductors

Introduction

The structural and electronic properties of II–VI semicon-
ductor compounds have been extensively studied in the last
30 years because such compounds are of technical and
scientific importance. The general phase transition property
of II–VI semiconductor compounds is that they transform
from the zinc-blende (ZB) or wurtzite (WZ) phase to the

rocksalt (RS) before transforming to the β-Sn phase.
However, a significant alteration to this generally accepted
series of structural changes has been reported recently.
Pressure-induced polymorphism requires theoretical and
experimental studies to understand the observed changes,
including the semiconductor–metallic transformation
exhibited by many II–VI materials under hydrostatic
pressure. These first-order structural transitions increase
the zero-pressure metal coordination in the lattice and thus
narrow the band gaps.

ZnTe crystallizes under ambient conditions in the
hexagonal wurtzite (WZ) and the zinc blende (ZB)
structures with space groups P63mc and F43m, respectively.
The high-pressure behavior of ZnTe has been the subject of
a few experimental and theoretical studies [1–10], but it
will require additional studies to be fully understood.
Raman spectra showed evidence for a phase transition
around a pressure of 94 GPa in ZnTe [1]. Côté et al.
reported that the transformation pressure range for the ZnSe
cinnabar was 10.2–13.4 GPa, based on pseudopotential
calculations for ZnSe and ZnTe [2]. Recently, Nelmes and
colleagues used angle-dispersive techniques and image-
plate detectors and found that ZnTe also has an unusual
orthorhombic structure with Cmcm symmetry under an
applied pressure of 16 GPa [3]. This result is rather
important for both experimentalists and theorists studying
the structural stability of II–VI semiconductors under
pressure. Lee and colleagues applied the ab initio pseudo-
potential plane-wave method within the local density
approximation (LDA) to study the structural phase tran-
sitions of ZnTe, and found that in the orthorhombic phase
of ZnTe with space group Cmcm, the primitive unit cell
consists of eight basis atoms [4]. The cinnabar and Cmcm
structures can each be regarded as a distorted NaCl
structure, and the transition from the cinnabar to the Cmcm
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is weakly first order [4]. Wurtzite GaAs is found to be
stable at ambient pressure for temperatures up to 473 K,
with a structure that is only slightly distorted from ideal. On
recompression, the c/a ratio is constant with pressure, and
wurtzite GaAs transforms to the orthorhombic Cmcm phase
at 18.7 GPa [6]. ZnTe has been studied at high pressures up
to 76 GPa and at room temperature in a diamond anvil cell
using angle-dispersive X-ray diffraction with synchrotron
radiation and an imaging plate detector. The equation-of-
state parameters of the high-pressure phase of ZnTe were
derived for the first time, with B0=134 GPa for the Cmcm-
type phase [11]. Calculations in previous studies have
shown that the zinc-blende phase of ZnTe is the most stable,
and the structure transforms to the cinnabar phase and again
to the Cmcm phase as the pressure increases [4]. It was also
shown that the phase of Cmcm ZnTe has a site-ordered
orthorhombic structure with space group Cmcm and
unusual fivefold coordination, which can be understood as
a strong distortion of the NaCl structure [3]. HgTe and CdTe
convert to Cmcm at high pressure as ZnTe. However, ZnTe
differs only in that it has no intermediate NaCl phase.

In this paper, we use a constant-pressure ab initio MD
technique to study the pressure-induced phase transition in
ZnTe. We show that wurtzite ZnTe undergoes a first-order
phase transition (Fig. 1) into a Cmcm structure. We also
investigate the stabilities of the wurtzite (WZ) and zinc-
blende (ZB) phases from energy–volume calculations.

Methods

The calculation was carried out with the ab initio program
SIESTA [12]. We used the density functional theory (DFT)
with the generalized gradient approximation (GGA) of
Perdew, Burke and Ernzerhof for the exchange-correlation
energy [13]. The norm-conservative Troullier–Martins
pseudopotentials [14] were employed for core electrons,
and valence electrons were described with a split-valence
double-ξ basis set expanded with polarized functions. A
uniform mesh with a plane wave cut-off of 150 Ry was
used to represent the electron density, the local part of the
pseudopotential, and the Hartree and exchange-correlation

Fig. 1 Crystal structures of
ZnTe: a the wurtzite phase at
zero pressure, b the zinc-blende
phase at zero pressure, c, d the
Cmcm phase formed at 50 GPa
(the atoms Zn and Te are shown
in black and yellow, respectively)
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potentials. The simulation cell consisted of 72 atoms with
periodic boundary conditions. We used Г-point sampling
for the supercell’s Brillouin zone integration. The molecular
dynamics (MD) simulations were performed using the NPH
(constant number of atoms, constant pressure, and constant
enthalpy) ensemble. The reason for choosing this ensemble
was to remove thermal fluctuations, which makes it easier
to examine the structure during the phase transformation.
The system was first equilibrated at zero pressure, and then
the pressure was gradually increased in increments of
10.0 GPa. For each value of the applied pressure, the
structure was allowed to relax and find its equilibrium
volume and the lowest energy by optimizing its lattice
vectors and atomic positions together until the stress
tolerance was less than 0.5 GPa and the maximum atomic
force was smaller than 0.01 eV Å−1. To optimize the
geometries, a variable cell shape conjugate-gradient method
under a constant pressure was used. For the energy volume
calculations, we considered the unit cell for ZnTe phases.
The Brillouin zone integration was performed with an
automatically generated 10×10×10 k-point mesh for the
phases following the convention of Monkhorst and Pack
[15]. In order to determine the symmetries of the high-
pressure phases formed in the simulations, we used the
KPLOT program [16], which provides detailed information
on the space group, the cell parameters and the atomic
positions of a given structure. In the symmetry analysis, we
used tolerances of 0.2 Å, 4° and 0.7 Å for bond lengths,
bond angles and inter-plane spacing, respectively.

Results

Enthalpy calculations

Transition pressures in constant pressure simulations are
generally overestimated, just as in superheating molecular
dynamics simulations. This implies a high intrinsic activa-
tion barrier for transforming one solid phase into another in
simulations. When particular conditions such as the finite
size of simulation cells and the lack of any defects and
surfaces in simulated structures are considered, such over-
estimated transition pressures are anticipated. Structural
phase transformations in simulations do not proceed by
nucleation and growth; they occur across all of the
simulation cells. This means that the systems have to cross
a significant energy barrier to transform from one phase to
another one, and hence simulated structures have to be
overpressurized in order to obtain a phase transition.
Additionally, the absence of thermal motion (relaxation of
the structure at constant pressure) in our simulations shifts
the transitions to a higher pressure. On the other hand, to
determine the most stable structure at finite pressure and

temperature, the free energy G=Etot+PV − TS should be
used. Our density functional calculations were essentially
performed at zero temperature, and entropic contributions
could be neglected. Therefore, the enthalpy values, H=E+
pV, including pressure–volume effects, were calculated. We
performed energy–volume calculations to study the stability
of the WZ, ZB and Cmcm phases. The structures were
equilibrated at several volumes, and their energy–volume
relations were fitted to the third-order Birch–Murnaghan
equation of states. The energy–volume curves for the
structures are presented in Fig. 2. The ZB crystal has the
lowest energy. The total energy difference between the ZB
and WZ phases is, however, rather small—about 0.58 eV/
atom. Such a small energy difference between these phases
was anticipated, because both structures have similar
tetrahedral bonds up to the second-neighbor distances. This
behavior is compatible with a phase transition between
these structures, which is also clearly reflected in the
enthalpy calculation.

A simple comparison of the static lattice enthalpies of
the wurtzite state, zinc-blende state and the Cmcm state
leads to the transition pressure between them. The point at
which the three enthalpy curves cross indicates a pressure-
induced phase transition between these phases. The
computed enthalpy curves for the WZ, ZB and Cmcm
phases are plotted as a function of pressure in Fig. 3. As can
be seen from the figure, the enthalpy curves of the WZ
phase and ZB phase have the same enthalpy and cross that
of the Cmcm phase at 16 GPa, indicating a first-order phase
transition between these phases. Figures 2 and 3 are similar
to those seen in [5, 17]. This transition pressure agrees with
the experimental value of 16 GPa [3]. On the other hand,
the previous theoretical result was 13.9 GPa [5]. From the
energy–volume data, we also calculated the bulk moduli of
these phases. For the WZ state, the calculated bulk modulus
was 63.83 GPa, which is relatively close to the theoretical

Fig. 2 The calculated energies for the WZ, Cmcm and ZB phases as a
function of volume
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value of 55.3 GPa [7]. The bulk modulus can vary a great
deal according to the methodology of the study. The bulk
modulus of the Cmcm phase was calculated to be 75.3 GPa
and the bulk modulus of the ZB phase was calculated to be
63.4 GPa. The experimental and theoretical results for
different structures of ZnTe are also given in Table 1 [2, 5,
7, 10, 11, 18, 19]. In general, our results agree with other
reported experimental and theoretical results.

Constant-pressure simulation

The pressure–volume relation for ZnTe obtained through
constant-pressure simulation can be seen in Fig. 4. The
figure shows that the volume monotonically decreases with
increasing pressure up to 40 GPa. When the pressure is
increased further, from 40 to 50 GPa, the structural phase
transition begins, and the volume decreases noticeably,

which is typical of a first-order phase transition. The
structural analysis indicates that wurtzite ZnTe converts
into a Cmcm structure. The transition pressure obtained
from constant-pressure simulation is, on the other hand,
considerably larger than the experimental result of 16 GPa
[3] and the static enthalpy result of 16 GPa calculated in the
previous section. This overestimate was anticipated consid-
ering some of the aspects of the simulations: the use of an
ideal structure, the size of the simulated structure, etc.
Consequently, simulated systems have to cross a significant
energy barrier to transform from one phase to another one.
The high energy barrier can be only crossed when the
simulation box is overpressurized in order to achieve such a
phase transition [20, 21].

In this study, we were particularly interested in under-
standing the transformation mechanism that controls struc-
tural phase transitions. Therefore, as a next step, we studied
the movements of atoms during phase transformation by
analyzing the changes in the simulation cell and plotting the
simulation cell lengths and angles at 50 GPa as a function
of minimization step in Fig. 5. The simulation cell vectors
A, B, and C were originally oriented along the [100], [010]
and [001] directions, respectively. The magnitudes of these
vectors are plotted in the figure. It is clear from the figure
that the mechanism of transformation from the WZ to the
Cmcm structure in ZnTe is straightforward, and involves
noticeable decreases in |B| and |A|, a noticeable increase in |
C|, and a change in the α-angle (between the A and B
lattice vectors) from 120° to 126°, which occur simulta-
neously. Structural analysis using the KPLOT program [16]
indicates that this new state has an orthorhombic structure
with Cmcm symmetry. The lattice constants of the Cmcm
phase are a=3.221, b=6.235 Å and c=6.634 Å. When the
Cmcm structures are compared, the wurtzite phase is

Fig. 3 The calculated enthalpy curves for the WZ, Cmcm and ZB
phases of ZnTe

Phase Bo(GPa) a (Å) b (Å) c (Å) c/a u Reference

WZ 63.83 4.254 4.254 6.989 1.643 0.373 This study

55.3 4.234 1.648 0.373 [7]

ZB 63.4 6.047 6.047 6.047 This study

55.4 6.002 [7]

47.7 6.158 6.158 6.158 [5]

54.7 6.013 [2]

50.54 6.063 [18]

51.2 6.174 [19]

45.25 6.17 [10]

76.4exp [11]

Cmcm 75.3 3.221 6.235 6.634(sixfold) This study

62.2 5.655 6.277 5.267(fivefold) [5]

58.79 5.739 6.318 5.265(fivefold) [10]

134exp [11]

Table 1 Lattice parameters (a,
b, c), atomic positions u (ux, uy,
uz), c/a values and bulk moduli
(B0=−{change in pressure/frac-
tional change in volume}) for
ZnTe structures
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initially fourfold coordinated, while the resultant Cmcm
phase is sixfold coordinated. For ZB, on the other hand, the
ZB phase is fourfold coordinated at the beginning, while
the resultant Cmcm phase is fivefold coordinated [5, 10].
Figure 6 shows the variations in simulation cell length as a
function of pressure.

Discussion

The WZ-to-Cmcm phase change is a reconstructive phase
transformation that involves large displacements of atoms.
Therefore, a WZ-structured system can transform from one
phase to another by passing through various closely related
paths during the transformation. In other words, the

transformation mechanism might follow various paths or
involve several intermediate states. Some structures, such
as wurtzite or zinc-blende (ZnSe, BeO, ZnS, etc.),
transform into the RS structure [8, 9, 22]. In previous
studies, the transformation of ZnTe into the RS structure
was not observed. Unlike other similar species, ZnTe
transforms into the Cmcm structure. However, the limited
number of structures considered so far has not yielded
predictions of stable phases of ZnTe beyond Cmcm [23].
The fact that ZnTe is the only member of the IIB–VIA
family for which the NaCl phase has not been observed at
room temperature is related to the fact it possesses the
lowest ionicity of that family [23]. In our previous study,
we found that SnSe undergoes a second-order structural
phase transition from threefold-coordinated Pnma to
fivefold-coordinated Cmcm in the constant-pressure simu-
lation [24]. In our current study, the lattice parameters
calculated for the wurtzite phase were a=4.254 Å and c=
6.989 Å, in agreement with the theoretical value a=
4.234 Å, while c/a is 1.643 [7]. The calculated lattice
parameters were a=6.047 Å for the zinc-blende phase, in
agreement with the experimental value a=6.089 Å [9]. The
transition volumes at which the transition occurs were Vi∼
0.73V0 and Vf ∼ 0.60V0, with the equilibrium volume V0=
27.7 Å3 /atom. The volume reduction (ΔV/V0) during the
phase transition from the WZ to Cmcm phases was found to
be about 12.17%, comparable with the experimental result
for the volume compression at the transition, which is on
the order of 13% at the zinc blende to cinnabar transition,
and 13% at the cinnabar to Cmcm transition [25]. The bulk
modulus we calculated for the WZ state was 63.83 GPa,
and its pressure derivative B′0 was 4.4; these parameters
were calculated to be 75.3 GPa and 3.9 for the Cmcm
phase, and 63.4 GPa and 4.2 for the ZB phase (B′0=3.0 in
[11] and B′0=5.0 in [25]). In general, our results agree with
previous experimental and theoretical results. Our study
shows that the initial wurtzite phase of ZnTe is fourfold
coordinated, while the resultant Cmcm phase is sixfold
coordinated.

Fig. 5 Changes in the simulation cell lengths and angles as a function
of minimization step at 50 GPa

Fig. 4 Pressure–volume curve of wurtzite ZnTe as a function of
pressure in the constant-pressure simulation

Fig. 6 Variations in simulation cell lengths as a function of pressure
(the y-axis contains normalized values)
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Conclusions

We have used an ab intio constant-pressure MD technique
within a generalized gradient approximation (GGA) to
study the pressure-induced phase transition of wurtzite
ZnTe. A first-order phase change into a Cmcm structure was
successfully reproduced in the constant-pressure simula-
tion. The WZ-to-Cmcm transformation mechanism of ZnTe
is different from previously proposed mechanisms. Addi-
tionally, we investigated the stabilities of the wurtzite and
zinc-blende phases based on energy–volume calculations.
We also found that both structures have quite similar
equations of state and transform into a Cmcm structure at
16 GPa using enthalpy calculations. Our theoretical
calculations agree with the structural phase transformations
of ZnTe observed experimentally. Our calculated transition
phase, lattice parameters and bulk moduli are in agreement
with experimental and theoretical data. We obtained the
sixfold coordinated Cmcm structure of ZnTe in this study.
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Abstract Quantum chemical calculations using the density
functional theory (B3LYP/6-31G* DFT) and semi-empirical
AM1 methods were performed on ten pyridine derivatives
used as corrosion inhibitors for mild steel in acidic medium
to determine the relationship between molecular structure
and their inhibition efficiencies. Quantum chemical param-
eters such as total negative charge (TNC) on the molecule,
energy of highest occupied molecular orbital (EHOMO),
energy of lowest unoccupied molecular orbital (ELUMO) and
dipole moment (μ) as well as linear solvation energy terms,
molecular volume (Vi) and dipolar-polarization (π*) were
correlated to corrosion inhibition efficiency of ten pyridine
derivatives. A possible correlation between corrosion
inhibition efficiencies and structural properties was
searched to reduce the number of compounds to be selected
for testing from a library of compounds. It was found that
theoretical data support the experimental results. The results
were used to predict the corrosion inhibition of 24 related
pyridine derivatives.

Keywords Pyridine derivatives . AM1 . B3LYP. Corrosion
inhibition . DFT. Linear solvation energy

Introduction

The study of corrosion processes and their inhibition by
organic inhibitors is a very active field of research [1–21].
Many researchers report that the inhibition effect mainly
depends on some physicochemical and electronic properties
of the organic inhibitor which relate to its functional
groups, steric effects, electronic density of donor atoms,
and orbital character of donating electrons, and so on [22,
23]. The effect of concentrations, functional groups and
halide ions of quaternary ammonium inhibitors as well as
the effect of some nitrogen- and sulfur-containing organic
compounds such as substituted benzothiazoles and
various types of organic sulfur-containing compounds
on the corrosion of iron and steel have been studied [8–
10]. The inhibition efficiency of 3,5-bis(N-pyridyl)-4-
amino-1,2,4-triazoles [11–14], thiophenol, phenol and
aniline [15], 2,5-bis(N-pyridyl)-1,3,4-thiadiazole [16],
2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole [17], 2-
mercaptothiazoline and cetyl pyridinium chloride [18]
have been reported. The influence of heterocyclic anils
on corrosion inhibition of metals has also been reported
[19–21]. The inhibiting mechanism is generally explained
by the formation of a physically and/or chemically
adsorbed film on the metal surface [24, 25]. It is well
known that organic compounds which act as inhibitors are
rich in heteroatoms, such as sulfur, nitrogen, and oxygen
[26, 27]. These compounds and their derivatives are
excellent corrosion inhibitors in a wide range of media
and are selected essentially from empirical knowledge
based on their macroscopic physico-chemical properties.
The efficiency of an organic inhibitor of metallic corrosion
does not only depend on the structure characteristics of the
inhibitor, but also on the nature of the metal and
environment. The selection of a suitable inhibitor for a
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particular system is a difficult task because of the selectivity of
the inhibitors and wide variety of environments.

Recently, theoretical prediction of the efficiency of corro-
sion inhibitors has become very popular in parallel with the
progress in computational hardware and the development of
efficient algorithms which assisted the routine development of
molecular quantum mechanical calculations [28].

Quantitative structure activity relationships (QSAR) has
been a subject of intense interest in the field of medicinal
chemistry in determining the molecular structure as well as
elucidating the electronic structure and reactivity [29], but to
a less extent in the field of corrosion [30–65]. The concept
of assessing the efficiency of a corrosion inhibitor with the
help of computational chemistry is to search for compounds
with desired properties using chemical intuition, experience
and a mathematically quantified and computerized form.
Once a correlation between the structure and activity or
property is found, any number of compounds, including
those not yet synthesized, can be readily predicted employ-
ing computational methodology [66] via a set of mathe-
matical equations which are capable of representing
accurately the chemical phenomenon under study [67, 68].

Since, the development of new corrosion inhibitors is a
necessity; the aim of this work is to correlate the structural
characteristics of some pyridine derivatives with their corro-
sion inhibition efficiencies at different concentrations of

inhibitors in aqueous acidic solutions. The development of
equations for calculating the corrosion inhibition efficiencies
may lead to a prediction of the inhibition efficiencies of some
related derivatives in order to help in selecting compounds for
testing from the large number of compounds that can be
developed by the concept of combinatorial chemistry and
constructed libraries of compounds. For this purpose relation
between the inhibition efficiencies and quantum chemical
calculation parameters, EHOMO, ELUMO, dipole moment, total
negative charge on molecules and linear solvation energy
relationship have been investigated.

Methods of calculations

Quantum calculations were carried out using wave function
restricted-closed-shellAM1 semi-empirical SCF-MO meth-
ods and DFT (B3LYP/6-31G*) single point and structure
optimized in the Gaussian 2003 program implemented in
CS ChemOffice packet program version 11 for windows
[69]. Calculations were performed on IBM compatible
which is implemented on PC, Intel Pentium IV 2.8 GHz
computer. AM1 and B3LYP quantum theoretical calcula-
tions were started without any geometry constraints for full
geometry optimizations using program default calculation
setting. Single point calculation was obtained for the full

Fig. 1 Compounds 1–10 which
have experimental inhibition
efficiencies
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optimized AM1 structure using B3LYP/6-31G* method.
The study of the effects of protonation and the effect of both
intramolecular H-bonding and tautomerism on the inhibitor
compounds are avoided in order to decrease the required time
for calculation. The following quantum chemical indices,
depending on the trial and error in the SPSS program in solving
the non-linear equations: the energy of the highest occupied
molecular orbital (EHOMO), the energy of the lowest unoccu-
pied molecular orbital (ELUMO), the dipole moment (μ), and
total negative charge (TNC: obtained by summation of
negative charge on the atoms of the molecule) on the
molecule, as well as the linear solvation energy relationships
(LSER) parameters: intrinsic molecular volume (Vi/100) and
dipolar-polarizability factor (π*) were considered [70]. Surface
area (Å2), volume (Å3), partition coefficient (log P, the
partition coefficient is a ratio of concentrations of un-ionized
compound between the two solutions. To measure the partition

coefficient of ionizable solutes, the pH of the aqueous phase is
adjusted such that the predominant form of the compound is
un-ionized. The logarithm of the ratio of the concentrations of
the un-ionized solute in the solvents is called log P),
refractivity (Å3) and polarizability (Å3) were calculated using
QSAR calculation by HyperChem program version 8.07.
Statistical analyses were performed using SPSS program
version 15.0 for windows. Non-linear regression analyses
were performed by unconstrained sum of squared residuals for
loss function and estimation methods of Levenberg-Marquardt
using SPSS program version 15.0 for windows.

Results and discussion

The pyridine derivatives 1–10 (Fig. 1) were reported as
corrosion inhibitors for mild steel in acidic medium. Their

Fig. 2 Structure of compounds
11–13, which used for models
validations and compounds
14–37, which used for prediction
of inhibition efficiencies using
models 6–9
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inhibition efficiencies were reported as Eexp (%) based on the
weight loss methods for compounds 1, 2 [71], 3 [72], 4 [73],
5 [74] and 6 [75], 7 [76], 8, 9, 10 [72], and 11, 12, 13 [77].

Quantum chemical parameters, of compounds 1–10,
validated compounds 11–13 and the selected compounds
14–37 for predicting their efficiencies (Figs. 1 and 2;
Tables 1, 2, 3), surface area (Å2), volume (Å3), log P,
refractivity (Å3), polarizability, (Å3) EHOMO (eV), ELUMO

(eV), μ (Debye), TNC and linear solvation energy param-
eters (LSER), the intrinsic (van der Waals) molecular
volume Vi (cm3 mol-1) and dipolar-polarizability term (π*)
in the LSER model that scales the solute electrostatic
stabilization of molecular charge by using methods of
Hickey and Passino-Reader [70].

Correlation analysis between quantum parameters
obtained and Eexp (%) for compounds 1–10 show signifi-

Table 1 Quantum chemical parameters (QSAR) of compounds 1 to 37 in gas phase using AM1 semi-empirical calculation and LSER parameters
(Vi, π*) calculation

compound Vi π* Vol log P Sur. Area Ref. Polariz. EHOMO ELUMO EL-H μ TNC χ η ΔN
cm3/M Å3 Å2 Å3 Å3 eV eV eV Debye

1 0.472 0.87 317.66 0.12 199.03 27.39 9.730 -8.4320 0.4890 8.921 2.709 -1.165 4.897 5.035 0.209

2 1.551 1.83 616.23 -0.21 383.28 55.21 20.79 -9.0973 -0.1191 8.978 2.520 -2.043 4.608 4.489 0.266

3 1.361 1.82 679.33 2.44 379.23 65.71 24.45 -10.021 -0.5356 9.486 1.953 -1.675 5.278 4.743 0.181

4 1.068 1.87 634.63 0.14 329.20 69.08 22.72 -8.9068 -0.4298 8.477 1.519 -1.834 4.668 4.238 0.275

5 1.325 2.35 734.41 1.24 345.37 85.67 28.26 -8.5779 -0.8891 7.689 2.375 -1.817 4.734 3.844 0.295

6 0.942 1.85 559.10 0.52 244.51 61.83 21.38 -9.0414 -0.7186 8.323 3.024 -1.229 4.880 4.161 0.255

7 1.621 2.41 875.72 -0.98 364.58 113.4 37.16 -8.5433 -1.2186 7.325 3.557 -2.247 4.881 3.662 0.289

8 1.701 3.63 862.16 -1.88 434.11 98.16 34.58 -8.6522 -1.4600 7.192 6.976 -3.125 5.056 3.596 0.270

9 1.446 2.68 749.22 -3.29 376.48 83.33 29.47 -9.2214 -0.9111 8.310 5.951 -3.324 5.066 4.155 0.233

10 1.526 2.35 796.06 0.12 462.81 86.03 31.03 -8.7091 -0.8579 7.851 6.920 -1.785 4.784 3.926 0.282

11 1.089 2.61 664.22 2.97 323.49 66.62 24.53 -9.5820 -1.3910 8.191 1.672 -1.805 5.489 4.096 0.185

12 1.089 2.61 660.76 -0.04 323.70 66.08 24.31 -9.4550 -1.2910 8.164 0.172 -2.756 5.373 4.082 0.199

13 1.089 2.61 660.58 -0.04 322.36 66.08 24.01 -9.9110 -1.4090 8.501 3.100 -2.853 5.660 4.251 0.158

14 0.535 1.00 352.57 -0.16 195.66 30.66 11.08 -8.5707 0.4867 9.057 1.892 -1.077 4.042 4.529 0.327

15 0.535 1.05 350.78 -1.47 196.54 31.01 11.08 -8.0888 0.8249 8.914 2.862 -0.979 3.632 4.457 0.378

16 0.535 1.10 350.74 -1.59 196.37 30.94 11.08 -8.9040 0.4036 9.308 3.282 -1.093 4.250 4.654 0.295

17 0.631 1.19 408.65 -0.98 227.54 36.38 12.91 -9.0983 0.1915 9.290 2.511 -1.291 4.453 4.645 0.274

18 0.631 1.24 408.89 -1.07 226.74 35.10 12.91 -9.0046 -0.0952 8.909 1.820 -1.292 4.550 4.455 0.275

19 0.631 1.29 404.44 -1.07 227.38 35.10 12.91 -9.0341 0.0544 9.089 0.808 -1.106 4.490 4.544 0.276

20 0.795 1.61 491.32 -2.14 257.91 42.89 16.16 -9.4857 -0.0527 9.433 2.573 -1.394 4.769 4.716 0.236

21 0.795 1.56 496.28 -2.05 264.57 44.16 16.10 -9.5528 -0.0704 9.482 1.405 -1.393 4.812 4.741 0.231

22 0.795 1.51 498.97 -0.93 259.92 44.21 16.10 -9.5340 0.0030 9.537 3.506 -1.392 4.765 4.769 0.234

23 0.795 1.61 494.78 -1.02 257.61 42.94 16.10 -9.5756 -0.0141 9.562 1.024 -1.409 4.795 4.781 0.231

24 0.771 1.33 479.84 1.30 297.30 44.39 16.40 -8.7358 -0.0597 8.676 3.599 -1.087 4.398 4.338 0.300

25 0.771 1.27 477.00 0.11 297.40 44.32 16.40 -9.0026 0.0918 9.094 2.878 -1.057 4.455 4.547 0.280

26 0.771 1.32 477.83 0.11 297.67 44.32 16.40 -9.1275 0.0860 9.214 1.570 -1.071 4.521 4.607 0.269

27 1.014 1.83 618.92 0.97 382.76 42.89 16.10 -9.0016 -0.1391 8.862 3.290 -2.016 4.570 4.431 0.274

28 1.014 1.88 615.10 -0.21 378.38 55.21 20.79 -9.0587 -0.1266 8.932 2.028 -2.029 4.593 4.466 0.270

29 0.853 1.74 520.60 0.85 262.77 53.88 18.68 -9.0656 -0.3862 8.679 2.982 -1.229 4.726 4.340 0.262

30 0.853 1.84 508.99 -0.62 260.46 52.41 18.68 -9.3645 -0.6214 8.743 3.228 -1.222 4.993 4.372 0.230

31 0.853 1.94 509.08 -0.74 259.29 52.33 18.68 -9.9397 -0.7484 9.191 0.040 -1.225 5.344 4.596 0.180

32 1.124 1.92 655.74 -1.50 309.50 72.85 24.15 -8.2730 -0.1650 8.108 3.002 -2.205 4.219 4.054 0.343

33 1.056 1.83 622.65 0.21 302.39 69.30 22.80 -8.5093 -0.5067 8.003 1.468 -1.718 4.508 4.001 0.311

34 1.212 2.89 705.17 -0.72 345.45 83.60 26.92 -9.1577 -0.3751 8.783 2.994 -1.588 4.766 4.391 0.254

35 1.310 2.55 679.96 -2.30 316.23 76.95 27.00 -9.4564 -1.0920 8.364 3.978 -2.994 5.274 4.182 0.206

36 1.509 3.23 773.45 -2.25 387.81 88.65 30.91 -8.7110 -1.5336 7.177 7.662 -2.871 5.122 3.589 0.262

37 1.383 2.45 729.30 -0.64 415.99 76.86 26.99 -8.7400 -0.8591 7.881 7.668 -1.897 4.800 3.940 0.279
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cant correlations (p<0.001) for some of the studied
quantum parameters. In some correlation analysis we omit
one or two points, in order to get better correlation, due to
incompatibility of these points with the other points. Trends
for inhibition efficiency for compounds 1–10 is not as
simple as we think because there are many parameters with
and against the correlation but there are relations which can
be seen in Figs. 3, 4, 5, some have positive and some have
negative correlations with experimental inhibition efficien-
cy. The experimental inhibitions exhibit good correlations
with the LSER and QSAR parameters obtained by Hyper-

Chem program (Fig. 3), for example, Eexp (%) has R2=
0.975 with Vi/100, R2=0.910 with volume, R2=0.878 with
surface area, R2=0.851 with polarizability, R2=0.785 with
π* and R2=0.770 with refractivity. Compounds with high
values of Vi/100, π*, volume, polarizability, surface area
and refractivity show high corrosion inhibition efficiencies
(Table 1). The inhibition efficiency increases if the
compound can easily donate electrons from its HOMO
level to the LUMO level of the metal whereby chelation on
the metal surface occurs. The parameters obtained by AM1
calculation show good correlation with TNC (R2=0.867), μ

Compound EHOMO ELUMO EH-L μ TNC χ η ΔN
Hartree Hartree Hartree Debye

1 -0.25831 -0.0395 -0.219 2.6520 -1.468 0.149 0.109 0.495

2 -0.24167 -0.0479 -0.194 1.2867 -5.347 0.145 0.097 0.580

3 -0.25801 -0.0932 -0.165 3.0845 -5.136 0.176 0.082 0.495

4 -0.21627 -0.0746 -0.142 2.0801 -4.653 0.145 0.071 0.789

5 -0.18866 -0.0991 -0.090 2.8240 -7.207 0.144 0.045 1.266

6 -0.24425 -0.0651 -0.179 3.9414 -7.298 0.155 0.090 0.573

7 -0.20094 -0.0871 -0.114 4.2983 -8.421 0.144 0.057 0.994

8 -0.23384 -0.1055 -0.128 7.1264 -3.817 0.170 0.064 0.682

9 -0.24061 -0.0811 -0.160 7.6375 -11.639 0.161 0.080 0.604

10 -0.23601 -0.0896 -0.146 9.4887 -14.452 0.163 0.073 0.645

11 -0.25816 -0.1221 0.136 0.2166 -1.906 0.190 0.068 0.493

12 -0.25430 -0.1042 0.150 1.4703 -3.992 0.179 0.075 0.520

13 -0.27452 -0.1009 0.174 1.4002 -4.517 0.188 0.087 0.401

14 -0.22564 -0.0365 -0.189 2.2977 -2.246 0.131 0.095 0.667

15 -0.22516 -0.0235 -0.202 3.6637 -1.582 0.124 0.101 0.659

16 -0.25947 -0.0105 -0.249 4.2917 -2.999 0.135 0.124 0.491

17 -0.26361 -0.0098 -0.254 3.0229 -1.748 0.137 0.127 0.475

18 -0.27538 -0.0122 -0.263 2.4606 -2.422 0.144 0.132 0.431

19 -0.26210 -0.0094 -0.253 1.5900 -3.457 0.136 0.126 0.481

20 -0.23641 -0.0016 -0.235 3.2194 -2.524 0.119 0.117 0.589

21 -0.23108 -0.0056 -0.226 1.4693 -3.913 0.118 0.113 0.616

22 -0.23191 -0.0129 -0.219 3.9556 -3.822 0.122 0.109 0.616

23 -0.22966 -0.0137 -0.216 0.9234 -4.358 0.122 0.108 0.628

24 -0.23613 -0.0434 -0.193 4.0462 -2.967 0.140 0.096 0.610

25 -0.23108 -0.0296 -0.202 1.4693 -3.913 0.130 0.101 0.629

26 -0.25228 -0.0305 -0.222 2.1890 -3.276 0.141 0.111 0.522

27 -0.24255 -0.0433 -0.199 3.6457 -4.878 0.143 0.100 0.574

28 -0.24716 -0.0482 -0.199 2.9455 -5.044 0.148 0.100 0.551

29 -0.24483 -0.0592 -0.186 3.8579 -2.475 0.152 0.093 0.567

30 -0.25636 -0.0242 -0.232 4.2370 -1.963 0.140 0.116 0.504

31 -0.26686 -0.0030 -0.264 0.0545 -2.468 0.135 0.132 0.464

32 -0.20567 -0.0646 -0.141 3.9109 -5.257 0.135 0.071 0.866

33 -0.21255 -0.0810 -0.132 1.8735 -4.165 0.147 0.066 0.840

34 -0.21314 -0.0902 -0.123 3.6516 -4.535 0.152 0.061 0.859

35 -0.25481 -0.0885 -0.166 5.0664 -11.612 0.172 0.083 0.515

36 -0.23601 -0.1079 -0.128 7.9844 -5.168 0.172 0.064 0.666

37 -0.22641 -0.0882 -0.138 9.6869 -7.612 0.157 0.069 0.723

Table 2 Quantum chemical
parameters of compounds using
gas phase single point
B3LYP/6-31G*
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(R2=0.853), ELUMO –EHOMO (R2=0.838), EHOMO (R2=
0.802), the number of transferred electrons (ΔN, R2=
0.791) and ELUMO (R2=0.703) (Fig. 4). The ΔN was
calculated depending on the quantum chemical method [78,
79] as represent in Eq. 1:

ΔN ¼ #Fe � # inhð Þ
2 hFe þ hinhð Þ ð1Þ

where χFe and χinh denote the absolute electronegativity of
iron and the inhibitor molecule, respectively; ηFe and ηinh
denote the absolute hardness of iron and the inhibitor

molecule, respectively. These quantities are related to
electron affinity (A) and ionization potential (I)

# ¼ I þ Að Þ=2 ð2Þ

h ¼ I � Að Þ=2 ð3Þ
I and A are related in turn to EHOMO and ELUMO

I ¼ �EHOMO

A ¼ �ELUMO

Compound EHOMO ELUMO EL-H μ TNC χ η ΔN
Hartree Hartree Hartree Debye

1 -0.2571 -0.0528 0.204 2.663 -1.269 0.155 0.102 0.501

2 -0.2507 -0.0580 0.193 2.865 -4.114 0.154 0.096 0.534

3 -0.2661 -0.1169 0.149 2.550 -4.843 0.192 0.075 0.440

4 -0.2283 -0.0964 0.132 2.054 -3.365 0.162 0.066 0.720

5 -0.2143 -0.0960 0.118 2.832 -3.867 0.155 0.059 0.863

6 -0.2423 -0.0662 0.176 3.849 -5.283 0.154 0.088 0.585

7 -0.2009 -0.0871 0.114 4.298 -8.421 0.144 0.057 0.994

8 -0.2390 -0.0963 0.143 4.895 -7.447 0.168 0.071 0.628

9 -0.1457 -0.1049 0.041 10.081 -11.363 0.125 0.020 3.235

10 -0.2360 -0.0896 0.146 9.504 -11.867 0.163 0.073 0.645

11 -0.2565 -0.0940 0.163 3.379 -1.904 0.175 0.081 0.505

12 -0.2646 -0.1160 0.149 3.540 -3.845 0.190 0.074 0.451

13 -0.2652 -0.1402 0.125 3.427 -4.417 0.203 0.063 0.436

14 -0.1190 -0.0423 0.077 2.197 -2.398 0.081 0.038 2.301

15 -0.1793 -0.0296 0.150 3.876 -1.943 0.104 0.075 1.021

16 -0.2315 -0.0211 0.210 4.656 -2.762 0.126 0.105 0.623

17 -0.2274 -0.0382 0.189 2.994 -3.063 0.133 0.095 0.658

18 -0.2354 -0.0422 0.193 2.461 -2.422 0.139 0.097 0.613

19 -0.2423 -0.0352 0.207 2.552 -3.004 0.139 0.104 0.572

20 -0.2320 -0.0365 0.195 3.615 -4.211 0.134 0.098 0.629

21 -0.2311 -0.0456 0.186 1.469 -3.913 0.138 0.093 0.641

22 -0.1412 -0.0026 0.139 4.166 -2.353 0.072 0.069 1.337

23 -0.2173 0.0407 0.258 1.322 -4.011 0.088 0.129 0.655

24 -0.2240 -0.0508 0.173 4.966 -2.720 0.137 0.087 0.692

25 -0.2526 -0.0405 0.212 3.415 -3.159 0.147 0.106 0.522

26 -0.2339 -0.0711 0.163 1.955 -3.037 0.153 0.081 0.643

27 -0.2309 -0.0640 0.167 2.098 -3.012 0.147 0.083 0.658

28 -0.2400 -0.0415 0.199 2.756 -2.946 0.141 0.099 0.587

29 -0.2502 -0.0365 0.214 3.570 -2.033 0.143 0.107 0.533

30 -0.2976 -0.0053 0.292 4.229 -1.969 0.151 0.146 0.362

31 -0.2654 -0.0761 0.189 0.001 -4.156 0.171 0.095 0.457

32 -0.2057 -0.0646 0.141 3.911 -5.257 0.135 0.071 0.866

33 -0.2125 -0.0810 0.132 1.878 -3.372 0.147 0.066 0.840

34 -0.2131 -0.0902 0.123 3.650 -2.912 0.152 0.061 0.859

35 -0.2448 -0.1094 0.135 5.082 -11.093 0.177 0.068 0.592

36 -0.2604 -0.0893 0.171 4.261 -9.539 0.175 0.086 0.482

37 -0.3083 -0.0166 0.292 10.591 -8.163 0.162 0.146 0.325

Table 3 Quantum chemical
parameters of compounds 1 to
37 using gas phase optimized
B3LYP/6-31G*
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Values of χ and η were calculated by using the values
of I and A obtained from quantum chemical calculation.
Using a theoretical χ value of 7 eV mol-1 (0.30435 Hartree
mol-1) and η value of 0 eV mol-1 (0.0 Hartree mol-1) for
iron atom [79] and ΔN, the fraction of electrons
transferred from inhibitor to the iron molecule was
calculated. Plot of Eexp % vs ΔN (Fig. 4f) clearly shows
that the inhibition efficiency increased with the ΔN
increase. According to other reports [78, 79], values of
ΔN showed inhibition effect resulted from electrons
donation. Agreeing with published study [78], the inhibi-
tion efficiency increased with increasing electron-donating
ability at the metal surface. In this study, compounds 1–10
were the donators of electrons, and the iron surface was
the acceptor. These compounds were bound to the iron
surface and thus formed inhibition adsorption layer against
corrosion.

The efficiency increases with the increase of μ, TNC and
ΔN. Consequently, the compounds with lower energy gab
(ELUMO–EHOMO), lower ELUMO and higher EHOMO have
good efficiency (Fig. 4a-f).

Figure 5 shows the correlations between the experimen-
tal inhibition efficiency of compounds 1–10 and their
quantum chemical parameters obtained by single point
calculation using DFT (B3LYP/6-31G*). Strong correlation
coefficient with experimental inhibition efficiency are
obtained for ELUMO (R2=0.879), ELUMO–EHOMO (R2=
0.856), μ (R2=0.847), TNC (R2=0.843), EHOMO (R2=
0.793) and ΔN (R2=0.745). Inhibition efficiency increases
with the increase of EHOMO and decrease of ELUMO (Fig. 5a
and b). On the other hand, the inhibition % decreases with
the increase of the energy gab (ELUMO–EHOMO) (Fig. 5c),
while increase in μ, TNC and ΔN led to increase of the
inhibition efficiency (Fig. 5d, e, f). The correlation results

Fig. 3 Plotted of QSAR calculated parameters using HyperChem program version 8.07 versus Eexp %
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obtained between the experimental inhibition for com-
pounds 1–10 and the calculation parameters obtained by
DFT (B3LYP/6-31G*) single point calculation are in
agreement with that obtained by the AM1 calculation.

Figure 6 represents the results of the correlations
between the experimental efficiency of compounds 1–10
and their quantum chemical parameters obtained by
geometry optimized DFT (B3LYP/6-31G*) calculation.
Significant correlation with the efficiency are obtained for
ELUMO–EHOMO (R2=0.911), TNC (R2=0.900), μ (R2=
0.897), ELUMO (R2=0.831), EHOMO (R2=0.737) and ΔN
(R2=0.640). Similarly as mentioned above, the efficiency is
increased with the increase of EHOMO and decrease of
ELUMO (Fig. 6a and b). On the other hand, the efficiency
decreased with the increase of the energy gab (ELUMO–
EHOMO) (Fig. 5c), while increased with the increase in μ,

TNC and ΔN (Fig. 5d, e, f). These results for DFT (B3LYP/
6-31G*) geometry optimized calculation are similar to the
results obtained from single point and AM1 calculation,
which may make the AM1 calculation preferred due to it
short time calculation comparing with single point and
optimized DFT calculations, which required much longer
time to complete.

The effectiveness of 5, 7, 8, 9 and 10 compared to others
as corrosion inhibitors may be attributed to the presence of
an additional –C=C– and/or –N=N– groups in conjugation
with the pyridine ring and –C=N– beside high functionality
group in 8, 9 and 10 that may play an important role in
increasing molecular adsorption to metal surface through
the extensive delocalization of the π-electrons of aromatic
ring, –C=C– group and lone pair of electrons on N and O
atoms.

Fig. 4 Plotted of AM1 calculated parameters using ChemOffice program version 11 versus Eexp %
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Although a number of satisfactory correlations [78,
80–88] have been reported for the inhibition efficiency of
various inhibitors and selected quantum chemical param-
eters, no simple relation or direct trend relationship can
be derived for such classes of inhibitors. A non-linear
regression analysis was used to correlate quantum
chemical parameters (EHOMO, ELUMO, μ, TNC, Volume,
Surface area, log P, polarizability, Refractivity), LSER
(Vi, π*) and inhibitor concentrations (Ci) with the
experimental inhibition efficiencies obtained by weight
loss methods for compounds 1–10. Thus, a composite
index of more than one quantum parameter which might
affect the inhibition efficiency of molecules has been
correlated with the experimental corrosion inhibition
efficiencies.

The nonlinear equation has been derived from the linear
model [88] which approximates corrosion inhibitor effi-
ciency (Ecal %):

Ecal %ð Þ ¼ ExpAxjCiþB ð4Þ
where A and B are constants obtained by regression
analysis; xj a quantum chemical index characteristic for
the molecule j; Ci denotes the experiment's concentration.
Eq. 4 are used to derive Eq. 5 which is the non-linear model
(NLM) proposed by Lukovits and co-worker [89] for
studying the interaction of corrosion inhibitors with metal
surface in acidic medium.

In the non-linear method of analysis, multiple regres-
sions were performed on inhibition efficiencies for com-
pounds 1–10 at concentrations range from 1 to

Fig. 5 Plotted of single point B3LYB-6-31G* calculated parameters using Gaussian 03 program versus Eexp %
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500,000 μM. Trial and error methods were used to obtain the
best model. Non-linear Eqs. 6 and 7 were obtained for AM1
where xj is a composite index of selected quantum chemical
parameters EHOMO, ELUMO, TNC, log P, polarizability,
surface area and Vi/100 in Eq. 6, and EHOMO, ELUMO,
TNC, log P, polarizability and Vi/100 in Eq. 7. Calculated
efficiencies from such equations at different concentrations
of compounds 1–10, illustrated good correlation with
experimental efficiencies (Eexp %) with correlation coeffi-
cients R2=0.967 and 0.962, respectively (Fig. 7a and b).

The non-linear model Eq. 8 proposed for single point
DFT (B3LYP/6-31G*) calculation on compounds 1–10
show also significant correlation between Eexp (%) and Ecal

(%), R2=0.966 (Fig. 7c). The xj represented a composite
index of selected quantum parameters EHOMO/ELUMO, π*,
Surface area, log P, TNC/Vi/100 and polarizability/refractiv-
ity in Eq. 8.

The non-linear model for geometry optimized DFT
(B3LYP/6-31G*) are represented in Eq. 9 with correlation
coefficient R2=0.966 (Fig. 7d) between the Eexp (%) and
Ecal (%), where xj is the quantum parameters EHOMO/
ELUMO, π*, surface area, log P, TNC/Vi/100, polarizability/
refractivity and volume/μ.

Table 4 represents the Ecal % obtained at different
concentrations from the four predicted models, Eqs. 6–9.
The results obtained from the different methods of
calculations are found to be very close to the Eexp %
which is very clear in Table 4 and Fig. 8. On the other
hand, significant correlation coefficient are obtained
between the Eexp % and the average Ecal % obtained from
Eqs. 6–9 (R2=0.970) (Fig. 9).

Ecal %ð Þ ¼ ExpðAxiþBÞCi

1þ ExpðAxiþBÞCi
� 100 ð5Þ

Fig. 6 Plotted of B3LYB/6-31G* optimized calculated parameters using Gaussian 03 Program versus Eexp %
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AM1 Calculation

Ecal% ¼ Expð2:94�EHOMOþ7:083�ELUMO�5:525� vi
100þ2:746�logPþ0:687�Polarizþ0:005�Sur:Area�8:175�TNC�2:09Þ�Ci

1þ Expð2:94�EHOMOþ7:083�ELUMO�5:525� vi
100þ2:746�logPþ0:687�Polarizþ0:005�Sur:Area�8:175�TNC�2:09Þ�Ci

� 100 ð6Þ

Ecal% ¼ Expð�4:869� vi
100þ2:746�logPþ0:708�Polarizþ2:923�EHOMOþ7:38�ELUMO�8:407�TNC�2:122Þ�Ci

1þ Expð�4:869� vi
100þ2:746�logPþ0:708�Polarizþ2:923�EHOMOþ7:38�ELUMO�8:407�TNC�2:122Þ�Ci

� 100 ð7Þ

B3LYP/6-31G* single point calculation

Ecal% ¼ Exp
ð38:769�ELUMO

EHOMO
�4:543�p

»þ0:028�Sur:Area�1:406�logPþ0:482�TNC
vi
100

þ38:719�Polariz
Ref �29:166Þ�Ci

1þ Exp
ð38:769�ELUMO

EHOMO
�4:543�p

»þ0:028�Sur:Area�1:406�logPþ0:482�TNC
vi
100

þ38:719�Polariz
Ref �29:166Þ�Ci

� 100 ð8Þ

R2=0.966

Fig. 7 Plot of Eexp % versus Ecal % produced from predicted Eqs. 6–9
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Table 4 Experimental inhibition efficiency obtained using weight loss of compounds 1 to 13 and calculated inhibition efficiency obtained by the
proposed equations for AM1, semiempirical calculation and DFT (B3LYP/6-31G*)

Comp. No. Conc. (μM) Eexp (%) Ecal (%): B3LYP/31-6G* Average of Ecal % SD-1 SD-2

AM1 Single point Optimized

Eq 6 Eq 7 Eq 8 Eq 9

1 100 3.00 2.00 2.09 2.54 2.38 2.25 0.25 0.53

250 6.00 4.85 5.07 6.12 5.75 5.45 0.59 0.39

500 8.00 9.26 9.65 11.54 10.87 10.33 1.06 1.65

2 100 33.00 21.05 22.74 22.27 25.44 22.88 1.85 7.16

250 47.00 40.00 42.39 41.74 46.04 42.54 2.54 3.15

500 58.00 57.15 59.54 58.89 63.05 59.66 2.48 1.17

3 100 69.50 69.50 66.85 72.04 73.76 70.54 3.02 0.73

4 25 29.11 20.24 19.43 19.68 24.46 20.95 2.36 5.77

100 42.95 50.37 49.10 49.50 56.43 51.35 3.42 5.94

300 74.10 75.28 74.32 74.62 79.53 75.94 2.43 1.30

5 5 48.62 52.01 52.19 55.11 58.81 54.53 3.19 4.18

10 72.89 68.43 68.58 71.06 74.06 70.53 2.64 1.67

15 80.68 76.48 76.61 78.65 81.07 78.20 2.16 1.75

25 87.50 84.42 84.51 85.99 87.71 85.66 1.55 1.30

40 91.00 89.66 89.72 90.76 91.95 90.52 1.08 0.34

60 93.47 92.86 92.91 93.64 94.48 93.47 0.76 0.00

100 95.20 95.59 95.62 96.09 96.62 95.98 0.48 0.55

6 50000 45.87 31.79 32.62 34.32 36.37 33.78 2.03 8.55

100000 53.28 48.25 49.19 51.10 53.34 50.47 2.25 1.99

7 10 64.80 63.22 69.74 68.14 67.24 67.09 2.78 1.62

20 74.10 77.47 82.17 81.05 80.41 80.28 2.01 4.37

60 92.30 91.16 93.26 92.77 92.49 92.42 0.90 0.08

80 93.50 93.22 94.86 94.48 94.26 94.20 0.70 0.50

100 94.00 94.50 95.84 95.53 95.36 95.31 0.57 0.92

8 5 57.60 65.78 67.52 69.04 70.74 68.27 2.12 7.55

100 87.60 97.47 97.65 95.71 96.03 96.71 0.99 6.44

200 91.00 98.72 98.81 97.81 97.97 98.33 0.51 5.18

9 100 82.10 77.35 82.32 78.72 85.09 80.87 3.51 0.87

10 100 74.80 72.16 63.79 84.23 87.68 76.97 11.02 1.53

11 200 79.20 63.31 57.30 71.47 73.52 66.40 7.50 9.05

400 82.80 77.53 72.85 83.36 84.74 79.62 5.49 2.25

800 83.80 87.35 84.30 90.93 91.74 88.58 3.43 3.38

1200 85.50 91.19 88.95 93.76 94.34 92.06 2.48 4.64

12 200 83.00 72.90 72.72 85.24 76.38 76.81 5.87 4.38

400 87.00 84.32 84.21 92.03 86.61 86.79 3.66 0.15

800 89.00 91.50 91.43 95.85 92.82 92.90 2.07 2.76

1200 91.60 94.16 94.12 97.19 95.10 95.14 1.44 2.51

13 200 37.00 35.20 34.90 41.88 30.51 35.62 4.69 0.97

400 48.30 52.08 51.74 59.03 46.75 52.40 5.05 2.90

800 54.00 68.49 68.20 74.24 63.72 68.66 4.31 10.37

1200 76.20 76.53 76.28 81.21 72.48 76.63 3.57 0.30

Average: The average of the calculated inhibition efficiency obtained by the proposed models; SD 1: standard deviation between the results
obtained by the proposed equations; SD 2: standard deviation between the experimental inhibition efficiency obtained by weight loss and average
of the calculated inhibition efficiency obtained by the proposed equations
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B3LYP/6-31G* Optimized structure calculation

Ecal% ¼ Exp
ð29:401�ELUMO

EHOMO
�2:283�p

»þ0:056�Sur:Area�0:093�logPþ1:687�TNC
vi
100

�86:367�Polariz
Ref �0:047Volm þ17:321Þ�Ci

1þ Exp
ð29:401�ELUMO

EHOMO
�2:283�p

»þ0:056�Sur:Area�0:093�logPþ1:687�TNC
vi
100

�86:367�Polariz
Ref �0:047Volm þ17:321Þ�Ci

� 100 ð9Þ

R2=0.966

The average of Ecal (%) obtained for each concentration
is correlated with the Eexp (%) with correlation coefficient
R2=0.970 (Fig. 9) with standard deviations ranged from
±0.00 to ±8.55. Moreover, the standard deviations between
the Ecal obtained from different proposed model are ranged
from ±0.25 to ±11.02 (Table 4). The high correlation
coefficients (R2=0.970) obtained from the four proposed
QSAR Eqs. 6–9 are strong evidence for the participation of
quantum parameters EHOMO, ELUMO, dipole moment, TNC,
surface area and polarizability and LSER in the inhibition
efficiency for compounds 1–10.

The higher the value of EHOMO of the inhibitor indicates
the ability of the molecules to offer electrons to d orbitals of
metallic steel and the higher inhibition efficiency of the
inhibitor for steel in acidic medium. The coefficients of
ELUMO in Eqs. 6–9 are negative indicating that d orbitals of
steel gave electrons to the d orbital of the pyridine
derivative compounds leading to the presence of a feed-
back bond. The presence of feed-back bond leads to an
increase in chemical adsorption of inhibitor molecules on
the steel surface and so increases the inhibition efficiency of
these compounds (Tables 1 and 3).

Compounds 11–13 were computed using the same
methods applied to compounds 1 – 10 and the computa-
tional data obtained (Table 1–3) are used to test the validity

of Eqs. 6–9 to predict inhibition efficiency (Table 4).
Surprising, the inhibition efficiency results obtained are in
good agreements with the experimental data obtained by
weight loss and EIS methods [77]. The standard deviations
between the results obtained for compounds 11 – 13 by
Eqs. 6–7 are ranged between ±1.44 and ±7.5 as well as the
standard deviations between the average of the results
obtained and the experimental data are ranged between
±0.15 and ±10.37, which represent the applicability of all
the proposed models (Table 4).

The above results have attracted our attention to predict
the corrosion inhibition of some analogues of the pyridine
derivatives 1–10 in order to reduce the number of tested
compounds for inhibition efficiency. Consequently, the
inhibition efficiency can be treated as a controlled property
via the change of electronic properties of compounds by
changing their functional groups. Thus, 24 proposed
pyridine derivatives 11–34 (Fig. 2) were subjected to
similar methods of quantum calculations (Tables 1–3).
The four proposed models (Eqs. 6–9) were applied at
concentration 50 mM and the results are reported in Table 5.
All four equations give a very near corrosion inhibition for
most of the 24 proposed compounds with standard
deviation range from ±0.11 to ±11.18 (Table 5, Fig. 10).
Pyridine derivatives 11–20 show Ecal % lower than pyridine
even at higher concentration except compounds 11 and 12
which have Ecal % more than pyridine. However, introduc-
tion of NH2 or CH2NH2 substituted group to pyridine

Fig. 9 Plot of Eexp % versus average Ecal % of the predicted
inhibition from Eqs. 6–9

Fig. 8 Comparison between the predicted inhibition efficiencies
obtained from Eqs. 6–9
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decrease the inhibition efficiency. While, addition of
CH2CH2SH function group to pyridine increase the
inhibition efficiency and the substitution at ortho- and
meta-position gave enhanced efficiency more than para-
position. Change the position of substitution in compound 2
to have 27 and 28 which led to an enhanced calculated

inhibition efficiency. Converting compound 6 to 29 led to
an enhanced efficiency while converting 6 to 30 and 31 led
to loss of efficiency. Substituting two OH groups in 4 by
two NH2 groups or by only one NH2 group enhanced the
calculated efficiency. Replacing two Cl atoms in 10 by two
F atoms (compound 34) led to loss of efficiency at low
concentration while it enhanced at high concentration.

Conclusions

A comparison of the inhibition effectiveness of the pyridine
derivatives indicated that their inhibition effect has been
closely related to orbital energies (EHOMO and ELUMO),
dipole moment, polarizability, surface area, TNC and LSER
parameters Vi and π*. Inhibition efficiency of pyridine
derivatives mainly increases when the EHOMO of inhibitors
increases, and ELUMO and energy gap decrease. Increase in
dipole moment, TNC and ΔN led to increase of the
inhibition efficiency. A composite index of more than five
quantum chemical parameters and one of LSER parameter
should be included in the proposed models. Highly

Fig. 10 Comparison between the results obtained from Eqs. 6–9 for
compounds 14–37

Comp. No. Conc. (mM) Ecal (%): B3LYP/6-31G* Average SD-1

AM1 Single point Optimized

Eq 6 Eq 7 Eq 8 Eq 9

14 50 72.71 74.90 74.18 72.24 73.51 1.24

15 50 59.76 63.97 71.21 62.37 64.33 4.90

16 50 1.23 1.35 5.32 2.35 2.56 1.90

17 50 9.31 9.54 10.31 11.32 10.12 0.91

18 50 1.37 1.29 11.71 6.44 5.20 4.96

19 50 0.80 0.76 3.39 0.70 1.41 1.32

20 50 0.24 0.24 10.87 1.59 3.24 5.13

21 50 0.22 0.22 7.82 0.00 2.07 3.84

22 50 7.68 7.78 6.46 10.02 7.99 1.48

23 50 5.50 5.63 5.57 0.00 4.17 2.78

24 50 97.28 96.41 84.28 99.73 94.42 6.90

25 50 58.74 52.74 68.88 76.09 64.11 10.40

26 50 51.47 45.45 69.05 65.25 57.80 11.18

27 50 99.96 99.94 86.10 89.60 93.90 7.13

28 50 99.96 99.95 97.68 90.25 96.96 4.60

29 50 76.10 74.82 78.81 90.74 80.12 7.27

30 50 0.41 0.36 10.03 22.65 8.36 10.55

31 50 0.02 0.02 0.25 0.00 0.07 0.12

32 50 99.99 99.99 99.84 99.77 99.90 0.11

33 50 99.77 99.78 99.92 93.68 98.29 3.07

34 50 97.55 97.58 99.81 100.00 98.73 1.36

35 50 98.58 98.99 99.28 92.49 97.34 3.25

36 50 98.77 98.80 100.00 96.99 98.64 1.24

37 50 97.55 96.71 99.99 98.13 98.09 1.39

Table 5 Calculated inhibition
efficiency [Ecal (%)] for
compounds 14–37 obtained by
the proposed models for AM1
semiempirical calculation and
B3LYP/6-316G*
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significant multiple correlation coefficient (R2>0.96) was
obtained between experimental and calculated efficiencies
for all the proposed models.

Correlation between experimental efficiencies obtained
by weight loss and the QSAR parameter gave good
correlation coefficient for some of the parameters obtained
by AM1 and DFT calculation.

These correlations may be useful in designing new
inhibitors by selecting the substitutions on the parent
molecules. QSAR approach may be used to find the
optimal group of parameters that might predict the structure
and molecule suitability to be an inhibitor. The quantum
mechanical approach may well be able to foretell molecule
structures that are better for corrosion inhibition purposes if
it is taken into account that the effect depends only on the
inhibitor molecule properties.
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Abstract In the last step of penicillin biosynthesis, acyl-
CoA:isopenicillin N acyltransferase (IAT) (E.C. 2.3.1.164)
catalyzes the conversion of isopenicillin N (IPN) to
penicillin G. IAT substitutes the α-aminoadipic acid side
chain of IPN by a phenylacetic acid phenolate group (from
phenylacetyl-CoA). Having a three-dimensional (3D) struc-
ture of IAT helps to determine the steps involved in side
chain exchange by identifying the atomic details of
substrate recognition. We predicted the IAT 3-D structure
(α- and β-subunits), as well as the manner of IPN and
phenylacetyl-CoA bind to the mature enzyme (β-subunit).
The 3D IAT prediction was achieved by homology
modeling and molecular docking in different snapshots,
and refined by molecular dynamic simulations. Our model
can reasonably interpret the results of a number of experi-

ments, where key residues for IAT processing as well as
strictly conserved residues most probably involved with
enzymatic activity were mutated. Based on the results of
docking studies, energies associated with the complexes,
and binding constants calculated, we identified a site
located in the region generated by β1, β2 and β5 strands,
which forms part of the central structure of β-subunit, as
the potential binding site of IPN. The site comprises the
amino acid residues Cys103, Asp121, Phe122, Phe123,
Ala168, Leu169, His170, Gln172, Phe212, Arg241,
Leu262, Asp264, Arg302, Ser309, and Arg310. Through
hydrogen bonds, the IPN binding site establishes interac-
tions with Cys103, Leu169, Gln172, Asp264 and Arg310.
Our model is also validated by a recently revealed crystal
structure of the mature enzyme.

Keywords Penicillin biosynthesis . Acyl-CoA:
isopenicillin-N acyltransferase . Ligand binding-site .

Protein-ligand interaction . Homology modeling .Molecular
docking . Long-term molecular dynamic simulations

Introduction

Isopenicillin N (IPN) conversion to penicillin G is the only
step in fungi like Penicillium chrysogenum that is capable
of producing hydrophobic penicillins. Acyl-CoA:isopeni-
cillin-N acyltransferase (IAT) substitutes an α-aminoadipic
acid side chain from IPN for a phenylactic acid phenolate
group (from phenylacetyl-CoA). This substitution takes
place either directly or in two steps. In the latter case, 6-
animopenicillanic acid (6-APA) is formed as an intermedi-
ary [1–4]. In vitro, IAT not only converts IPN to penicillin
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G, but can also perform several other transfer reactions,
such as the exchange of acyl side chains among several
penicillins, due to its transacylase penicillin activity [5]. IAT
uses a wide variety of hydrophobic and hydrophilic acyl
derivatives of coenzyme A (CoA) as substrates, as well as
non-CoA related thioesters [6–8]. In some exceptional
cases, it also accepts some precursors with modifications
in the acetyl group and its benzene ring [9].

The gene for IAT, penDE, encodes a 357 residue
proenzyme with a molecular weight of 40 kDa, which is
processed autocatalytically to generate two polypeptides of
102 residues (α-subunit) and 255 residues (β-subunit) [10–
14]. The α and β subunits constitute the mature form of the
heterodimeric enzyme. The β-subunit contains in its
extreme C-terminus a typical peroxisomal targeting se-
quence, known as ARL-COOH. If this sequence is
removed, IAT is not fully compartmentalized in the
peroxisome, with no penicillin production as a consequence
[15–17]. This implies that a peroxisomal location is
apparently essential for penicillin biosynthesis. Several co-
expression experiments indicate that both subunits are
necessary to maintain proper protein folding and enzymatic
activity [17]. However, several studies [2–4, 10, 18, 19]
indicate that the β-subunit has the acyltransferase activity,
whereas the α-subunit does not play a major role in the
catalytic activity. All these data expose the need to
determine unambiguously the role that each subunit plays
in IAT activity.

Site-directed mutagenesis experiments on IAT have
identified several important residues required for autopro-
cessing capacity and enzymatic activity. In this context,
residues Ser227 and Ser309 have been determined as very
important for IAT enzymatic activity; however, the former is
also required during the autoprocessing reaction [20].
Another important residue for the IAT processing reaction
and preservation of its catalytic activity is Cys103 [21].
Additionally, a drastic reduction in enzymatic activity has
been reported when introducing a non-polar group like Val
at position 150, replacing a glycine (Gly150Val). The same
is observed when placing a basic polar residue like Lys at
position 258, originally Glu—a residue that stabilizes the
structure of its conformational neighbors—because of its
acid characteristics [18].

Due to the difficulty of obtaining higher protein
concentrations, and the low solubility of the mature form
of the enzyme (which translates into severe aggregation
problems), efforts to elucidate the three-dimensional (3D)
structure of IAT have been minimal. In this sense, Hensgens
et al. [22] reported the crystallization and X-ray diffraction
of the Cys103Ala IAT mutant. In a subsequent study, the
latter group also reported an experimental technique to
solve the aggregation problems that occur during IAT
purification [23], but it was not possible to solve the 3D

structure in any case. When our manuscript was in
preparation, three crystal structures (PDB entry 2X1C,
resolution=1.85 Å; 2X1D, resolution=1.64 Å; 2X1E,
resolution=2.00 Å) of the mature enzyme were revealed
by Bokhove et al. [24]. To identify the atomic details of
how IAT recognizes its substrates, and to determine how
the enzyme catalyzes the side chain exchange among
them, a 3D IAT model is required. It is known that for an
enzyme to perform its function, it has to be properly
folded [25]. This folded form has a 3D structure that is
representative of a collection of folded forms with the
same value of minimum energy. Anfinsen et al. [26] were
the first to establish that unfolded proteins are inactive,
and that their activity can be restored when they are
refolded. This means that a linear amino acid sequence
contains all the necessary information to maintain the
correct folded form and its enzymatic activity. When a 3D
structure of a protein cannot be obtained using experi-
mental methods, it is possible to use computational tools
in order to generate a model (from information contained
in the primary structure) that is generally trustworthy [27–
30]. To contribute to the knowledge of events governing
the process of enzyme-substrate recognition, we generated
a 3D IAT structure using homology modeling, and refined
this structure by molecular dynamics (MD) simulations, as
well as docking simulations to show its recognition by
IPN and phenylacetyl-CoA. The structure was validated
using the structures recently deposited into the Protein
Data Bank (PDB).

Methods

40 kDa proenzyme sequence search

We searched for the linear IAT aminoacid sequence (ID
P15802) using the biological database Swiss-Prot (http://
www.expasy.org/sport/) [31].

Search for α and β subunit homologue structures

After amino acid sequences were retrieved, a search for
homologous structures for both subunits, α and β, was
performed using the PHYRE server (http://www.imperial.
ac.uk/phyre) [32]. The sequences were sent separately to
identify templates to be used in the homology modeling of
each subunit.

Multiple alignment and template selection

Once sequences and templates from the target proteins were
obtained, alignment was performed using CLUSTALW2
(http://www.ebi.ac.uk/clustalw/) [33] and BLAST (basic
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local alignment search tool) [34] to determine percentage
identity and similarity. Finally, to select the template for
building the target protein, the criterion was to use high
percentage sequence identity, and a high crystallographic
resolution of the structure [35, 36].

Determination of the tendency of the α- and β-subunits
to form secondary structures

The tendency of both IAT subunits to form secondary
structures was evaluated at each amino acid residue using
the servers APSSP (Advanced Protein Secondary Structure
Prediction Server, http://www.imtech.res.in/raghava/apssp2)
[37], Predict Protein (http://www.predictprotein.org/) [38],
and JPred (http://www.compbio.dundee.ac.uk/∼www-jpred/)
[39–41].

Molecular modeling by homology

Both subunits were modeled separately using molecular
modeling by homology. As templates, we used 3D
structures from the PDB (http://www.rcsb.org/pdb). The
α-subunit was modeled using the spatial coordinates of the
atomic structure of a transcriptional regulator from the tetR
family of Streptomyces coelicolor (PDB code: 2REK,
1.86 Å resolution) [42]. The β-subunit was solved using a
Clostridium perfringens hydrolase (PDB code: 2BJG,
2.10 Å resolution) [43]. Molecular modeling was per-
formed using three different programs: Swiss-Model (http://
swissmodel.expasy.org/) [44], EsyPred3D (http://www.
fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/) [45],
and Modeller 8.2 (http://salilab.org/modeller) [46].

Geometry optimization of the proposed models

Once the 3D models were prepared, hydrogen atoms were
added and side chain orientations optimized through energy
minimization using the steepest descent method, employing
2,000 cycles using the CHARMM27 parameters found in
NAMD [47–49].

Molecular dynamics simulation

The system was embedded in a water box with 0.2 M NaCl
to relax the 3D IAT model. All water molecules reached
every protein atom that was not hydrogen, with a distance
of 3.8 Å. The entire system was subjected to an
equilibration process before the MD. Equilibration con-
sisted of an initial minimization of water molecules with the
fixed atoms of the polypeptide backbone, followed by a
minimization with an α carbon restriction, and finally short
MD simulations (10 ps) to reduce the initial irregular
contacts and fill up the empty ones. Next, the entire system,

under periodic boundary conditions in all three directions,
was simulated at 310 K along 5 ns (Langevin dynamic and
restricted constant pressure). From that moment on, the
simulation was continued in the NTP ensemble for 70 ns.
The trajectory was stored every picosecond, and analyzed
using the VMD program [50]. To study the recognition
energetics, and the manner of ligand binding, we took
snapshots every 0.5 ns from the MD simulations. All MD
simulations were performed using NAMD [48, 49], with
the CHARMM27 force field [47]. The cut-off used for the
long-term interaction was 10 Å.

Stereochemical quality evaluation of the models

Before runningMD simulations, the coordinate files of the 3D
models were sent to iMolTalk- Structural Bioinformatics
Toolkit (http://i.moltalk.org) to produce a Ramachandran plot
(φ and ψ angles), reflecting polypeptide chain distortion in
the non-allowed region [51]. We also sent the coordinate files
to MolProbity (http://kinemage.biochem.duke.edu) to identi-
fy side chains with less common conformations, possibly as
a result of local protein tension [52]. The quality of the
models was further validated using two additional tools:
ANOLEA (http://protein.bio.puc.cl/cardex/servers/anolea/)
[53, 54] and PROCHECK (http://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/) [55, 56].

In silico generation of two β-subunit mutants, Gly150Val
and Glu258Lys

In silico mutations of residues at positions Gly150 and
Glu258 were introduced using HYPERCHEM (Version 8.0,
Hypercube, http://www.hyper.com). We then searched for a
low-energy geometry for the new residue by local minimi-
zation, using a second order method known as the Newton-
Raphson Method, which imposes a finalization condition of
a root mean square (RMS) gradient of less than
0.001 kcal mol−1 Å−1 [57].

Identification of normal vibrational modes in the β-subunit

To analyze intrinsic movements in the β-subunit struc-
ture, we determined the normal low-frequency vibrational
modes using the ElNemo server. This tool allows
visualization of the associated conformational changes
in the molecule’s natural mobility (http://igs-server.cnrs-
mrs.fr/elnemo/index.html) [58–60]. The key parameters
used were: DQMIN=−100, DQMAX=100, DQSTEP=20
and NRBL=auto. We requested a total of 100 low-
frequency normal modes, and examined the essential
characteristics of the low frequency normal modes of a
protein, with collectivity of atomic movements, and the
observed overlapping conformational changes.
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Validation of the docking procedure

We used AutoDock 3.0.5, a computational simulation method
that has rendered successful results [61]. This is a method for
molecular recognition or docking used widely in the
identification of binding sites of protein structures [62–65].
For our work, we validated the docking method using three
different crystallographic complexes: streptavidin and biotin
(PDB retried 1STP), triosephosphate isomerase (TPI) from
Trypanosoma brucei and 3-phosphoglycerate (3-PA) (PDB
retried 1IIH), TPI from Trypanosoma cruzi and C8 (PDB
retried 1SUX).

Simulation of molecular recognition of IPN
on the β-subunit

Once the method was standardized and the parameters
defined, we worked with the complex of interest: the β-
subunit and one of the natural substrates of IAT:
isopenicillin-N (IPN). Docking studies were performed
using AutoDock 3.0.5, employing the Lamarckian Genetic
algorithm. The search space was restricted with a rectan-
gular parallelepiped, which covers the entire protein. A
rectangular grid (126×126×126 Å) with separated points at
0.375 Å was generated. The docking parameters were of
100 tests, with 10 million energy evaluations per each test,
and a population size of 100 individuals.

Preparation of the α-subunit

The β-subunit files used were those obtained when using
molecular homology modeling. Before initiating docking
evaluations, the Kollman charges for all protein atoms and
polar hydrogens were assigned using AutoDockTools 1.5.0
(http://autodock.scripps.edu).

Preparation of the ligand

We used AutoDockTools 1.5.0 to add atomic charges
assigned via the Gasteiger-Marsili formalism and hydrogen
atoms located in polar atoms. The ligand structure with the
minimum energy was obtained by density functional theory
(DFT) calculations, using the B3LYP/6-31 G+(d, p) base,
aided by Gaussian98 software [66].

Results and discussion

Sequence alignment and molecular homology modeling

According to PHYRE, the precision of template estimation
for the α-subunit was over 45%, whereas for the β-subunit
it was 100%. The percentages of identity and similarity of

the templates with the test sequences provided by BLAST
were 33.3% and 51% for the α-subunit, respectively, and
37% and 50% for the β-subunit, respectively. Sequence
alignment by CLUSTALW2 is shown in Fig. 1 [67, 68].
According to the literature, if protein sequences share more
than 30% identity, one can be confident that they are
structurally similar [36]. Since sequence identity percen-
tages were over 30%, the quality of the models was quite
high, as shown by the results of several stereochemical
quality evaluations as mentioned below.

α-Subunit

The α-subunit model shows three α-helices connected by
highly flexible loops (Fig. 2). Previous estimations of the
tendency to form secondary structure, based only on
sequence information, matched the proposed structure in
83%. The analysis of structural characteristics of the α-
subunit model determined that 82.2% of its residues were at
the nuclear region of each secondary structure of the
Ramachandran plot (α-helices, folded parallel and anti-
parallel β-sheet). In addition, 12.2% of the residues were in
allowed zones, and 4.4% were in zones considered
“generous” (Phi and Psi angle values meaning that they
do not have much tension on the side chain of the residue,
and neither generates the most acceptable conformations).
The stereochemical quality evaluation of the model identi-
fied a single side chain at a non-allowed zone of the plot,
which was Ser52 (data not shown). No tension was
observed on the polypeptide backbone, or in side chain
residues. Pro63 is part of a helix, although its Phi and Psi
angles are not within unstable regions. Generally, α-helices
are composed of charged residues, like Lys and Arg, which
confer stability on α-helices. Loops in this subunit are
highly flexible, as revealed in an analysis of normal
vibrational modes of the molecule (data not shown). In
general terms, we have an energetically favored structure
(−7,412.87 kcal mol−1), with a preserved planarity character
of its peptide bonds, and with a suitable environment for its
hydrophobic or hydrophilic residues, and no inadequate
atom–atom contacts. Considering these results, we can trust
our model, so it can be used in studies to determine the role
that certain residues play in the structure and, hence, in the
enzymatic function.

β-Subunit

The template used for molecular modeling of the β-subunit
structure is from a 329-amino-acid residue hydrolase, a
conjugated bile salt acid hydrolase (CBAH or glycosyl
hydrolase) that belongs to the C-N linear amide hydrolase
family. This family is a member of the clan of the N-terminal
nucleophile aminohydrolases (NTN). All the clan enzymes
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show an unusual folding, where the nucleophile and the other
catalytic group occupy equivalent sites, facilitating nucleo-
philic attack and the possibility of autocatalytic processing
[69, 70]. Since several other structures were evaluated during
molecular modeling by homology of the β-subunit (the
PHYRE server located five other hydrolase structures:
penicillin V acylase, Bifidobacterium longum bile salt
hydrolase, glutamyl acylase, penicillin amide hydrolase,
and glutaryl 7-aminocephalosporanic acid acylase—all
members of the NTN superfamily), it is important to
consider data regarding active sites and their catalytic
residues for which there is experimental evidence to propose
a potential active site in the IAT β-subunit structure.

We observed four regions in the proposed model, two α-
helices and two β-strands (anti-parallel β-strands) with an
α/β folding, and a multilayer architecture (4 layers, α-β-β-
α) [71] consisting of a central part with nine β-strand

Fig. 2 Two views of the IAT α-subunit model obtained with
molecular modeling by homology, after a 2 ns simulation with
molecular dynamics (MD) using NAMD, with the CHARMM27
force field. Blue N-terminus, red C-terminus

Fig. 1 Sequence alignment of the acyl-CoA:isopenicillin-N acyl-
transferase (IAT) subunits with other fungal sequences. a Transcrip-
tional regulator sequence of the tetR family from Streptomyces

coelicolor (PDB code: 2REK, chain B), aligned against the α-
subunit. b Clostridium perfringens hydrolase (PDB code: 2BJG, chain
A) aligned against β-subunit
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members, and six α-helices packed on both sides of the β-
sheet (Fig. 3). In this case, previous estimations of the
tendency to form secondary structure matched the model of
the structure in 91% of residues. Evaluation of this
conformation revealed no tensions on the polypeptide
backbone, or on the side chains of the residues. Besides,
we observed that the α-helices are composed of charged
residues like Lys, Arg and His, which confers more stability.
This model also maintains the planarity of the peptide
bonds, and has an appropriate environment for hydrophobic
and hydrophilic residues, without showing inadequate
atom–atom contacts, which determines that the conforma-
tion is energetically favored (−9,479.2 kcal mol−1).

Stereochemical quality evaluation revealed that 82.4% of
the residues are in zones that correspond to nuclear regions
representing physically accessed conformations (α-helices,
parallel and anti-parallel β-sheets), 12.7% of the residues are
in allowed zones in the plot (regions adjacent to the nucleus),
and 3.9% are in zones considered as generous. Thanks to this
evaluation, we were able to determine that only two residues
in the model (Ser195 and Glu325) are in non-allowed zones of
the plot. Ser195 is located on a loop that connects α-helices 1
and 2, and it apparently forms part of a cavity, whereas
Glu325 is located at the terminal carbonyl in a highly
flexible loop (data not shown). It is important to mention
that, as a consequence of the geometry optimization of
the obtained models, the exposed hydrophobic surface
was minimized, increasing the hydrophobic residue
packing. The hydrophilic surface solvent and the number
of hydrogen bonds were exposed, which, in general,
resulted in good stereochemistry.

To evaluate the packing degree related to the number and
volumes of the cavities in the protein structure, we used
CASTp (Computed Atlas of Surface Topography of
Proteins) (http://cast.engr.uic.edu/cast/) [72, 73]. We did
not observe any substantial difference in the volume values

of the cavities in the β-subunit structure, indicating a level
of packing of the proposed model near to the found in
experimentally determined structures. The spatial location
of such cavities provided a first approximation of the
availability of several potential binding sites of molecules
as small as ions or water, or larger molecules like substrates
or inhibitors. On the other hand, analysis of the normal
vibrational modes of the molecule showed that this subunit
is highly flexible. We were able to identify, in a very
approximate manner, movements of the protein structure.
Visualizing the vibrational modes altogether provides with
an approximate idea about how zones are displaced within
the protein. Particularly, we observed in one of the normal
vibrational modes (mode 11) that the α-helix 3 (residues
Met242, Val243, His244, Thr245, Asn246 and His247) and
a fragment of the β-strand 9 (Gly311, Ala312, Thr313,
Leu314 and Phe315) have extended collective movements
that could facilitate the access of a ligand to a binding site
in these protein zones. This was demonstrated, as it is
described later, using docking to identify potential binding
sites in the β -subunit structure.

Molecular recognition between β-subunit and IPN

Due to its location, and determination of the potential
binding site characteristic of the β-subunit structure, we
were able to estimate details of the recognition process
between the β-subunit and IPN describing the
preliminary mechanism of the reaction during catalysis.
When docking was performed on the β-subunit surface,
we identified five potential binding sites. The first was
located in the interface region of the β-sheet that
constitutes the central part of the β-subunit (A site,
33% occupation). The second was found in a region
between β-strand 1 and α-helices 4 and 5 (B site, 22%
occupation), the third was found surrounded by α-helices
1 and 2 (C site, 20% occupation), the fourth between α-
helices and β-strand 9 (D site, 14% occupation), and the
fifth at a more superficial region between β-strands 2
and 9 (E site, 11% occupation) (Fig. 4). Composition of
the binding sites is detailed in Table 1. We can observe that
they are composed primarily of polar charged and non-
charged residues, as well as aromatic systems from
hydrophobic residues. In general, the distribution of
functional groups in the binding sites confers the ability
to set hydrogen bonds and hydrophobic-type interactions.
Polar residues establish interactions mediated by hydrogen
bonds or by van der Waals forces, while hydrophobic
residues participate in π–π interactions, where the π
system of aromatic chains from Phe, Tyr and Trp interacts
with the π system of the ligand, as reported in previous
publications [74–78]. Thus, π–π interactions are due to
the aromatic moiety of the Phe residue, which interacts

Fig. 3 View of the β-subunit model, obtained by molecular modeling
by homology, after 10 ns of MD simulation using NAMD with the
CHARMM27 force field. Blue N-terminus, red C-terminus
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with the β-lactam-thiazolidine ring of IPN. This could
explain why complexes with a very negative docking
energy generally present this type of interaction. It is clear
that, besides the hydrophobic effect and the effect of the
hydrogen and saline bonds, π–cation and π–π interactions
must be considered to evaluate the force of ligands
binding to a receptor.

Identification of the binding site in IPN in the β-subunit
structure

Based on the results of our docking studies, the energies
associated to the complexes, and the binding constants
calculated, we identified the site located in the interfacial
region generated by the β1, β2 and β5 strands, which form
part of the central structure of the β-subunit, as the
potential binding site of IPN. At time zero, the site
comprises the amino acid residues Cys103, Phe122,
Phe123, Leu169, His170, Gln172, Arg241, Leu262,
Asp264, Arg302, Ser309, Arg310, and has a volume of
987 Å (site A). Using hydrogen bonds, the IPN binding site
establishes interactions with Cys103, Leu169, Gln172,

Asp264 and Arg310. It is worth mentioning that Ser309,
located in the IPN binding site, is also considered important
for IAT activity (red residue, Fig. 5a) besides Cys103. Some
in vitro experiments indicate that substitution of Ser309 for
a Cys does not cause any observable change in its catalytic
activity. However, when replacing it by an Ala, the enzyme
activity is completely lost. This would indicate that a
nucleophilic side chain is necessary at this position in order
to keep catalytic activity. In this context, it has been
suggested that this residue is involved in the substrate
acylation process. Ser309 is part of an amino acid sequence
that contains a G-X-S-X-G consensus motif, which is
similar to the active site consensus sequences of multiple
thioesterases (and of several of the templates used in the
molecular modeling process for this subunit). Presumably,
Ser is one of the catalytic residues, because acyl thioester
activated groups are transferred to a hydroxyl group in its
side chain. Regarding the reaction catalyzed by IAT, the
acyl group from phenylacetyl-CoA, or other acyl thioesters,
could be transferred to Ser309, and even to Cys, with a
mechanism of action analogous to that of other thioes-
terases [20].

Fig. 4 Spatial location of potential binding sites to isopenicillin N
(IPN) on the β-subunit surface. IPN molecules are shown in different
colors to highlight the five binding sites A–E: green A, magenta B,

orange C, yellow D, violet E. β-subunit back (a) and front (b) views
enable the visualization of the distribution of IPN molecules on the
structure

Table 1 Summary of the characteristics of the five potential binding sites (A–E) located on the β-subunit surface, predicted by AutoDock 3.0.5
(http://autodock.scripps.edu) at time zero

Site Residues that integrate with the binding site

A Cys103, Phe122, Phe123, Leu169, His170, Gln172, Arg241, Leu262, Asp264, Arg302, Ser309, Arg310.

B T105, Y107, C108, Q109, L110, M272, E273, D280, Q284, Q288, D292, Y296.

C E148, A188, L189, S191, T192, S193, S195, A196, Y197, G206, G216, N217.

D D294, F298, Y304, A312, T313, L314, N316, I318, L330, G331, P333, N335, P336.

E N112, G113, A114, L115, W290, I318, Y319, D320, H321, A322, R323.
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Spatial location of residues involved in the interaction
mechanism between two natural IAT substrates: IPN
and phenylacetyl-CoA

Site A is adjacent to sites B and D. Site B contains one of
the four conserved Cys of the IAT sequence, Cys108. As
mentioned above, this residue could provide a sulfhydryl
group that, after hydrolysis of the thioester bond (yellow
residue, Fig. 5a), would react with acyl groups of activated
precursors. On the other hand, site D has the aromatic
residues Phe298 and Tyr304. Previous results from our
group indicate that there is a high possibility that
phenylacetyl-CoA binds to this site, interacting with its
hydrophobic part with the aromatic rings in Phe298 and
Tyr304 through π–π type contacts (blue residues, Fig. 5a).
These three sites could be involved in IAT substrate fixation
for further catalytic processing. In this context, the research
group of J.F. Martín proposed a mechanism of action for
IAT, IPN, and phenylacetyl-CoA that states the existence of
three binding sites [5]. A first site would receive acyl
groups and some activated forms like phenylacetyl,
phenoxyacetyl, and other acyl forms that would interact in
it, which could be used to form penicillin (site 1, Fig. 5b).
A second site would bind an IPN, and probably it would be
the same site that binds the intermediary 6-APA (site 2,
Fig. 5b). Finally, a third site with a sulfhydryl group would
receive acyl groups from their activated precursors after

thioester bond hydrolysis (site 3, Fig. 5b). This model
proposes the formation of an IPN-enzyme complex at site
2, followed by IPN hydrolysis with the release of α-L-
aminoadipic acid, as the first step in the conversion of IPN
to benzylpenicillin.

The next step in the IAT-catalyzed reaction is less
known, although it has been postulated that an IAT
activity catalyzes acyl group transfer from phenylacetyl-
CoA to produce benzylpenicillin, with the release of
CoA. In 1982, Queener and Neuss [79] suggested the
existence of a binding site for acyl-CoA derivatives, which
would necessarily implicate the formation of a second
complex, phenylacetyl-CoA-enzyme (a hypothesis sup-
ported by experiments performed by the group of Martín
in 1993) [5]. It is important to consider that, in the case of
the enzymes used as templates for the β-subunit modeling
process, a Cys, Ser, or Thr residue of the side chain is
used, often as part of a β-sheet (located towards the amino
terminal), as nucleophile in the catalytic attack of a
carbonyl carbon [69, 70]. This information, together with
the already existing IAT information, enables us to propose
a potential active site for the β-subunit structure of IAT,
probably delimited by sites A, B and D, identified through
docking. Considering experimental data from point muta-
tions on the IAT structure, and the homology between the
enzyme and other hydrolases (enzymes with a folding that
facilitates a nucleophilic attack), mutation of residues not

Fig. 5 a Spatial location of residues in the β-subunit interacting with
IPN (site A, in green). Hydrophobic residues that could interact with
phenylacetyl-CoA, the other natural IAT substrate, through π–π type
contacts, are highlighted (site D, blue), as well as a cysteine with a
sulfhydryl group that could play a role in the recognition of previously
activated acyl groups (site B, yellow). Ser309 (red) is one of the
residues considered extremely important in maintaining IAT enzymatic
activity. b Proposed model for binding sites of two natural IAT

substrates: phenylacetyl-CoA and IPN. The biosynthesis of penicillin
G could either proceed directly, or in a two-step process, in which
case, 6-aminoadipic acid (6-APA) is formed as an intermediary. In the
latter case, the first step involves the formation of an IPN-enzyme
complex, followed by IPN hydrolysis with the release of α-
aminoadipic acid (site 2). In the second step, transfer of an acyl
moiety from phenylacetyl-CoA, to generate benzylpenicillin or
penicillin G, involves the loss of CoA (modified from [5])
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previously considered to form part of the active site could
provide information regarding its location and mechanism
of action. As mentioned before, IAT, IPN and
phenylacetyl-CoA molecular recognition simulation stud-
ies allowed us to infer additional details regarding the
nature of the binding sites, with the ability to establish
interactions with IAT natural substrates. In the case of IAT/
IPN, the established interactions were mediated predom-
inantly by hydrogen bonds, whereas in the case of IAT/
phenylacetyl-CoA, interactions were established through
π–π type contacts (data not shown). Besides those
previously determined in vitro by several research groups,
seven residues were identified in silico as relevant to the
protein–ligand interaction, and therefore for the enzymatic
activity: Leu169, Gln172, Asp264 and Arg310 (IAT/IPN),
Phe298 and Tyr304 (IAT/phenylacetyl-CoA), and also
Cys108. In vitro studies of mutants of some of these
residues could provide information regarding the role they
play in the location of the active site on one hand, and in
the molecular recognition mechanism of small ligands on
the other hand, as well as in determining the β-subunit
stability.

MD simulations identify conformational changes
in the β-subunit

We were able to identify and study many conformational
changes using data from MD simulations, as well as to
evaluate the time evolution of the system’s behavior;
specifically, movements and structural displacements. In
order to explore a significant number of low-energy
structures and to extract information about the zones
with larger fluctuations in the β-subunit, we performed a
MD simulation along 74 ns. From this trajectory, a group
of representative conformations were recovered -every
0.5 ns- and analyzed, observing a fundamental difference
among structures at the level of compaction and
resolution of some secondary structures, basically α-

helices. All structures were stereochemically validated,
finding a high percentage of interatomic distances,
binding angles, and acceptable torsion angles. Likewise,
using a structural alignment, we established equivalen-
cies between recovered β-subunit conformations from
the trajectory of the MD, and a structure from molecular
modeling by homology (0 ns). The root mean square
deviation (RMSD) shows the degree of divergence
among them, revealing a significant rearrangement in
the backbone of the protein and side chains during the
first 15 ns. Since RMSD values reflect not only protein
conformation but also the state of the angular rotations in
side chains, we can assume that the most significant
structural rearrangement of collective movements hap-
pens during the first few nanoseconds of MD simula-
tions. After 15 ns, β-subunit conformations do not differ
significantly among the observed structures, maintaining
an acceptable compaction level (Fig. 6).

Docking studies employing snapshots from MD

The reason for recovering β-subunit structures every 0.5 ns
was to use them for docking, to provide protein flexibility,
and to identify how the binding site conformation influen-
ces the recognition process. With this approach, we were
able to sample the complex protein–ligand conformation
space, reaching a flexible receptor–ligand system. When
docking was performed in each one of the β-subunit
structures from the MD trajectory, it showed that the ligand
reached site A in most cases (88.5%) in the initial structure
(0 ns). The protein–ligand complex at 10 ns had particularly
high binding energetics (−14.49 kcal mol−1) (Fig. 7),
indicating that when the structure of the receptor acquires
this conformation, the ligand can participate in more
appropriate chemical interactions.

We analyzed the binding sites of complexes with very
negative docking energies, and we were able to determine
the type of residues that constitute that zone, as well as the

Fig. 6 Root mean square devi-
ation (RMSD) calculation of the
β-subunit conformations, recov-
ering information every 0.5 ns
from MD performed for 74 ns.
For clarity, only the α-carbon
positions are considered as the
peptide bond has a minimally
varying planar conformation
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chemical interactions that are established within it. We
observed that the binding site residue composition alters
when the protein undergoes different conformational
changes, but in all cases the ligand reaches site A (0 ns,
Fig. 4a, Table 1). Considering that the amount and type of
atomic interactions depend on the characteristics of the
residues that form the site, we can say that, in our case, the
binding force of the ligand was higher in those with more
residues capable of forming hydrogen bonds (Table 2).

Comparison of the physical and chemical characteristics
of the binding site of the structures recovered every 0.5 ns
provided information regarding to the possible conforma-
tional changes associated with intrinsic movements of the
β-subunit, and their influence on the molecular recognition
between the β-subunit and IPN. We observed a rearrange-
ment of the residues involved in binding. For example, in
the β-subunit structure after 10 ns, we observed a spatial
rearrangement, with only residues Cys103, Phe122,
Phe123, Leu169, His170, Gln172, Arg241, Leu262,
Asp264, Arg302, Ser309, Arg310 maintaining the integra-
tion of Asp121, Ala168 and Phe212. We determined that
IPN established contact by a hydrogen bond with Cys103,
Leu169, Gln172, Asp264 and Arg310, with a binding
energy of −14.49 kcal mol−1. According to the docking
energy computed, these changes optimize the interaction of

the ligand with the β-subunit, since the number of
established contacts increases. In the case of the other three
complexes with higher energy (and in most of our results),
we observed interactions mediated predominantly by Arg
residues (Arg232, Arg268, Arg302, Arg308 and Arg310),
which carry a guanidine group with a very strong basic
character. It is worth mentioning that Arg310 was always
found with IPN binding residues. In vitro studies analyzing
the effect on the enzyme activity with point mutations of
this residue will provide information regarding the location
and conformation of the active site in IAT.

While our manuscript was in preparation, three crystal
structures (PDB entry 2X1C, resolution=1.85 Å; 2X1D,
resolution=1.64 Å; 2X1E, resolution=2.00Å) of the mature
enzyme were published by Bokhove et al. [24]. Our model
can thus be validated by comparison with these structures.
As can be seen in Fig. 8a, the overall tertiary structure of
the IAT in our model agrees well with Bokhove’s crystal
structure. The only major difference is observed in the loop
region. Because our model was refined by MD simulation
we assume that the origin of this discrepancy is that the
flexibility of the macromolecule was not completely
reproduced.

On the other hand, besides the correct tertiary structure,
it is encouraging to observe that our model also provides

Fig. 7 Docking energy of complexes formed between β-subunit and IPN. The β-subunit three-dimensional structures recovered every 0.5 ns
from MD simulations with a duration of 74 ns. Docking was made using AutoDock 3.0.5 (flexible ligand) (http://autodock.scripps.edu)

Time (ns) Docking energy (kcal/mol) Residues interacting with IPN

0 −12.11 Leu169, His170

10.0 −14.49 Cys103, Leu169, Gln172, Asp264, Arg310

11.0 −13.89 Cys103, Asp264, Arg302, Arg310

20.0 −13.73 Arg302, Lys308, Arg310

50.5 −13.71 Arg232, Gly240

Table 2 Identification of com-
plexes with higher docking en-
ergy in site A, and residues that
interact with isopenicillin N
(IPN) at different times of mo-
lecular simulation (ns)
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sufficient detail of the substrate binding pocket (Fig 8b).
For example, after 10 ns of MD simulations, a spatial
rearrangement was observed and residues Cys103, Asp121,
Phe122, Phe123, Ala168, Leu169, His170, Gln172,
Phe212, Arg241, Leu262, Asp264, Arg302, Ser309 and
Arg310 were conserved. Co-crystallization of mature IAT
with the β-lactam core 6-APA revealed that 6-APA binds
near Cys103, that its thiazole ring makes Van der Waals
interactions with Phe122 and Phe123, and its carboxylate
group makes a salt bridge with Arg310 (see Fig. 4A in [24])
allowing allocation of the substrate binding site. In our
case, the natural substrate IPN was found in the same place
but establishing interactions with C103, Asp264, and R310.

Effect on β-subunit structure of mutations at Gly150Val
and Glu258Lys residues

In 1994, Fernández-Perrino et al. [18] reported that introduc-
ing an apolar group like Val at position Gly150 can abolish
enzymatic activity. The same was observed when placing a
basic polar residue (Lys258), whose acid characteristics
would stabilize the structure at a position originally occupied
by Glu. These results have two possible explanations: (1)
both residues are part of the IAT active site, or (2) both may
participate in conformational stabilization of the enzyme.
Upon obtaining the β-subunit structure (wild type enzyme),
we evaluated the effect of point mutations (Gly150Val and
Glu258Lys) to determine the role of these residues in IAT
function and structure. As with the wild type enzyme, we
performed a series of local minimization experiments on the
replaced side chain. In the case of the Gly150Val mutant, the
presence of a branched amino acid such as Val, whose
isopropyl side chain not only has a distinct reactivity to the
hydrogen atom of Gly, but also flexibility and an adequate

molecular size, caused a reduction in the spatial conforma-
tion, with concomitant spatial restriction. This space reduc-
tion caused steric impediments and conformational tensions
that destabilized the β-subunit structure locally. Mutated
residues did not modify the conformation of the neighbors
significantly. However, structural neighbors with more
reactive side chains, such as Glu190 and Arg132, suffer
considerable changes. Of these, Glu132 had the most
significant effect. Rearrangement in this side chain with
negative charge altered the chemical environment, influenc-
ing the conformation of many of its neighbors, such as
Ser191 and Thr192 (Fig. 9). Adding up the effects of this
derived fluctuation in local conformation led to a loss of
structured packing. The effect of the mutation propagated not
only to neighboring residues—sequence and structure—but
also to other zones far from the structure. We were interested
in determining the conformational changes in residues of site
A (Fig. 10a). The thiol group in Cys103 was displaced a few
degrees, trying to avoid overlapping of its electronic cloud
with adjacent side chains. In this way, its neighbor Asp121
reoriented the carboxyl group in response to the rearrange-
ment of local chemical conditions. Ala168, with a methyl
group in its side chain, did not suffer any significant change,
probably due to the size of the substituted side chain.
However, the next residue, Leu169, suffered a displacement
in space, trying to compensate for the effect of the change in
its neighbors, buffering in this way any possible change in its
conformation. On the contrary, the imidazole group in
His170 changed the orientation plane of its ring, causing a
rearrangement in the Gln172 side chain, which had a very
strong effect on its next neighbor, Phe212, with a phenyl
group that suffered a modification in its plane. In the case of
Arg241, the guanidine group rearranged slightly, probably
due to its surrounding space, which did not perceive

Fig. 8 a Structure alignment of
IAT. The backbones of
Bokhove’s crystal structure [24]
and our model are rendered as
cyan and magenta ribbons, re-
spectively. b Substrate binding
pocket of IAT and illustration of
the key residues involved in the
binding of IPN
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significant changes. The sum of the conformational rear-
rangements and the chemical conditions close to Pro263
resulted in an observable change in its five-member ring.
This change directly affects Asp264, which must not only
rearrange its conformation, but also buffer spatial tension,
being displaced by a few Ångstroms (with respect to the wild
subunit), which apparently will absorb the conformational
cost. Finally, the Arg302 and Ser309 side chains, at the most
external part of site A, suffer slight modifications to their
conformations (Fig. 10b).

From the in silico side to this study, another four residues
considered as important for IAT structure and function also

exhibited important conformational modifications. Arg310, a
residue that played an important role in the IAT interaction
with IPN in all the cases analyzed, suffered considerable
modification in its guanidine group. Aromatic residues located
on site D, Phe298 and Tyr304, had slight modifications in the
plane of their aromatic rings, although the most important
change was the displacement of residues. Such displacements
could affect the establishment of π–π type interactions with
the natural substrate of IAT. Finally, Cys108 in site B suffered a
displacement of 3.8 Å regarding the wild protein (Fig. 11).

The effect of the mutation at position 150 resulted in
changes at different points in the β-subunit structure. The

Fig. 9 a Spatial location of Gly150 and Val150 residues on the β-
subunit surface. The β-subunit structures are visualized simultaneous-
ly, which allows to observe the effect of the point mutation. Gray Wild

β-subunit structure, cyan Gly150Val mutant. b Effects on side chain
residues close to position 150 as structural neighbors. A significant
effect was the 3.3 Å displacement suffered by the Glu190 side chain

Fig. 10 a Spatial location of
Gly150, Val150 and residues of
binding site A on the β-subunit
surface. Structures are visualized
simultaneously; gray wild β-
subunit, cyan Gly150Val mutant.
b Effects suffered by site A side
chains. One of the most signif-
icant effects was a displacement
and conformational change suf-
fered by the side chain of
Asp264, which is also one of the
residues that interacts with IPN,
through a hydrogen bond
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sum of the conformational rearrangements and the chemical
condition variations had a considerable impact on docking
studies, because the binding energy of the complexes
became less negative (data not shown), indicating reduced
ligand affinity towards the receptor. Evidently, side chain
conformation, and therefore binding site surface changes,
influence the recognition mechanism acting on both
molecules. Regarding the Glu258Lys mutant effect, this
mutation was much more severe from the structural point of
view. There was a charged-mediated destabilization due to
the substitution of a negatively charged residue (Glu) for a
positively charged residue (Lys). This destabilization was so

strong that it generated local conformational fluctuations that
propagated globally, thus destabilizing the functional confor-
mation of the β-subunit. We were able to observe a series of
modifications in the structure, which optimized necessary
spaces to avoid overlapping of atomic electronic clouds that
constitute adjacent residues of the mutated residue (Fig. 12a,
b). Due to the substitution of Glu for Lys, the generated
environment caused not only a redistribution of conforma-
tions in neighboring sequence residues, but also in structural
neighbors, and even on residues far from the active site
(Fig. 12c). The most significant conformational changes
were at residues considered as first neighbors. In the wild
structure, this region is stabilized by a set of positive and
negative charges, and free electrons (Lys254 (+), Asn255 (¨),
Glu256 (−), Lys257 (+), Glu258 (−), Leu259 (non-polar residue)

and Asp260 (−)), which interact by equilibrating the
conformational structure of the site. The effect of a new
positive charge from a newly mutated Lys significantly alters
the equilibrium, triggering events that initiate a repulsion of
similar charges. Lys257 has a positively charged chain and
literally avoids contact with the newly substituted Lys side
chain, directly affecting its neighbor Glu256 by changing the
carboxyl orientation of its side chain. Leu259, Asp260 and
Pro262 also experience conformational alterations. This

Fig. 11 Spatial location of four residues considered important in
establishing interactions between IPN substrates and phenylacetyl
CoA, and IAT, Arg310 (site A), Phe298, Tyr304 (site D), as well as
Cys108 (site B). Conformations are visualized simultaneously, allow-
ing the effect of the Gly for Val change at position 150 on side chains
of these residues to be observed. Gray Wild β-subunit structure, cyan
Gly150Val mutant

Fig. 12 a Spatial location of
Glu258 and Lys258 on the β-
subunit surface. Structures from
this subunit are simultaneously
visualized to observe the effect
of the punctual mutation on the
configuration. Gray Wild β-
subunit structure, green
Glu258Lys mutant. b Structural
neighbors at position 258. c
Effect on side chains of each of
the residues shown in b. One
significant event is the displace-
ment and reconfiguration of the
Asp264 side chain—a residue
establishing a hydrogen bond
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latter residue changes the plane of the five-membered ring
drastically, and the first two are displaced with slight
modifications of their side chain conformation. This affects
nearby residues, propagating the effect of the mutation. Thus,
Asp264 displaces its carboxyl group to avoid an electronic
density overlap of oxygen with the Ser265 hydroxyl group.
As a consequence, the Tpr266 indole group changes its plane
and the neutral amide group in Asn267 reorientates by a few
degrees, which, together with the reigning chemical envi-
ronment, is enough to cause a conformational change in
Arg268, causing further changes in the orientation of the
plane of His269, a weakly basic imidazole (Fig. 12c).

Possibly, some major role of β-subunit binding site
residues, and even phenylacetyl-CoA, are involved in this
breakdown pathway. In this study, we were able to establish
a direct impact on the affinity of IPN towards the receptor
due to the effect of modification on its spatial conformation.
It is important to mention that the effects of the Glu for Lys
mutation were observed not only in sequence neighbors,
but also in residues of the side chains of site A (Fig. 13a).
Arg310, Phe298, Tyr304 and Cys108 are residues marked
as important in the molecular recognition of both natural
substrates of IAT, which suffer modifications in their side
chains. Besides the displacement of the complete residue
with respect to the wild enzyme, Arg310 suffered a
significant modification in its guanidine conformation.
Phe298 and Tyr304, like Gly150Val, had slight modifica-
tions in their aromatic ring planarity, with residue displace-
ment as the most important change. Thus, it is again
possible to think that these displacements could affect the
establishment of π–π type interactions with phenylacetyl-
CoA, the other IAT natural substrate. On the other hand, the
thiol group in Cys108 did not experience substantial

modifications. It seems as if Arg310 should be more
susceptible to modification than other residues (Fig. 14),
since recent reports have revealed that the native state is a
conformational ensemble defined by multiple partially
unfolded forms [80]. The present work has shown that the
Gly for Val, or the Glu for Lys mutations could destabilize
the structure, causing the functional collapse of the enzyme
if these positions were very closer to zones where the
protein suffers folding/unfolding reactions. This would
explain why its mutation significantly affects IAT enzymatic
activity, although it is not part of the active site of both
natural substrates, which is located on the surface of the β-
subunit.

Conclusions

In conclusion, we obtained some reasonable structural
models of the 3D structure of IAT α and β subunits, as
well as the manner at which IPN binds to the IAT-β subunit.
It is encouraging to find that our models agree well with a

Fig. 13 a Spatial location of
Glu258 and Lys258, and resi-
dues that are part of site A on
the β-subunit surface. b Effect
on site A side chain residues of
the Glu for Lys mutation. Gray
Wild β-subunit structure, green
Glu258Lys mutant

Fig. 14 Spatial location of four residues important in the establish-
ment of interactions between IPN substrates and phenylacetyl-CoA
and IAT, Arg310 (site A), Phe298 and Tyr304 (site D), and Cys108
(site B). Conformations are simultaneously visualized to observe the
effect on the side chains of the Glu for Lys change at position 258.
Gray Wild β-subunit structure, green Glu258Lys mutant
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recently released crystal structure of IAT [24]. In addition,
our model can reasonably interpret the results of a number
of experiments where mutations were carried out on key
residues for IAT processing, as well as in strictly conserved
residues, most probably involved with the enzymatic
activity. Based on the results of docking studies, associated
energies to the complexes, and calculated binding con-
stants, we have identified the site located in the interfacial
region generated by the β1, β2 and β5 strands, which are
part of the central structure of the β-subunit, as the
potential binding site in IPN. The site comprises the amino
acid residues Cys103, Asp121, Phe122, Phe123, Ala168,
Leu169, His170, Gln172, Phe212, Arg241, Leu262,
Asp264, Arg302, Ser309, and Arg310. Using hydrogen
bonds, the IPN binding site establishes interactions with
Cys103, Leu169, Gln172, Asp264 and Arg310. Finally,
according to the results of molecular recognition by
docking studies, we believe that the Gly for Val mutation
(position 150), or Glu for Lys (position 258) causes
destabilization of the structure and a functional collapse of
the β-subunit because these positions are adjacent, and
even form part of the zone that suffers folding/unfolding
reactions. This would explain why this mutation signifi-
cantly affects IAT enzymatic activity, although it is not part
of the binding site of either of the identified natural
substrates on the β-subunit surface.
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Abstract Vascular endothselial growth factor (VEGF)
and its receptor tyrosine kinase VEGFR-2 or kinase
insert domain receptor (KDR) have been identified as
new promising targets for the design of novel anticancer
agents. It is reported that 4-(1H-indazol-4-yl)phenyl-
amino and aminopyrazolopyridine urea derivatives exhibit
potent inhibitory activities toward KDR. To investigate
how their chemical structures relate to the inhibitory
activities and to identify the key structural elements that
are required in the rational design of potential drug
candidates of this class, molecular docking simulations
and three-dimensional quantitative structure-activity rela-
tionship (3D-QSAR) methods were performed on 78 4-
(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine
urea derivatives as KDR inhibitors. Surflex-dock was used
to determine the probable binding conformations of all the
compounds at the active site of KDR. As a result, multiple
hydrophobic and hydrogen-bonding interactions were
found to be two predominant factors that may be used to
modulate the inhibitory activities. Comparative molecular
field analysis (CoMFA) and comparative molecular simi-
larity indices analysis (CoMSIA) 3D-QSAR models were
developed based on the docking conformations. The

CoMFA model produced statistically significant results
with the cross-validated correlation coefficient q2 of 0.504
and the non-cross-validated correlation coefficient r2 of
0.913. The best CoMSIA model was obtained from the
combination of steric, electrostatic and hydrophobic fields.
Its q2 and r2 being 0.595 and 0.947, respectively, indicated
that it had higher predictive ability than the CoMFA
model. The predictive abilities of the two models were
further validated by 14 test compounds, giving the
predicted correction coefficients rpred

2 of 0.727 for
CoMFA and 0.624 for CoMSIA, respectively. In addition,
the CoMFA and CoMSIA models were used to guide the
design of a series of new inhibitors of this class with
predicted excellent activities. Thus, these models may be
used as an efficient tool to predict the inhibitory activities
and to guide the future rational design of 4-(1H-indazol-4-
yl)phenylamino and aminopyrazolopyridine urea
derivatives-based novel KDR inhibitors with potent
activities.

Keywords Aminopyrazolopyridine ureas . CoMFA .

CoMSIA . 4-(1H-Indazol-4-yl)phenylamino derivatives .

KDR inhibitor . Surflex-dock

Introduction

Angiogenesis is a normal process for organ development
during embryogenesis, wound healing and female repro-
ductive cycling, in which new blood vessels are formed
from the pre-existing vasculatures [1, 2]. On the other hand,
it has been shown that angiogenesis is a rate-limiting step in
tumor development. That is, tumors cannot grow beyond 2–
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3 mm in the absence of new vasculatures [3]. This is
because tumors need new blood capillaries to create their
own nutrient supply, to remove metabolic wastes and to
facilitate metastasis of tumor cells to other sites [4, 5].
Among the many pro-angiogenic factors, vascular endothe-
lial growth factor (VEGF) and its receptor tyrosine kinase
VEGFR-2 or kinase insert domain receptor (KDR) have
been identified as one of the most important regulators for
tumor angiogenesis [6, 7]. As shown in many preclinical
and clinical studies [8–12], inhibiting of KDR may lead to
the development of molecules that are capable of inhibit-
ing angiogenesis, tumor progression, and dissemination.
These molecules, namely KDR inhibitors, may have high
potentials for the treatment of various diseases. For
example, Sutent (sunitinib) [13] and Nexavar (sorafenib
tosylate) [14] that have recently been approved by FDA as
KDR inhibitors, can be used in the treatment of gastroin-
testinal stromal tumors and advanced renal cell carcinoma.
Therefore, considerable interest has been attracted in the
development of novel KDR inhibitors.

Recently, Dai et al. reported a library of potent KDR
inhibitors based on 4-(1H-indazol-4-yl) phenylamino and
aminopyrazolopyridine urea derivatives 1–78 (Table 1)
[15, 16]. Among them, compound 19, i.e., ABT-869, is
currently under phase II trials. However, there is a lack of
quantitative structure-activity relationship (QSAR) study
on these compounds so that exactly how their chemical
structures relate to the inhibitory activities remains to be
established. To address this as well as to identify the key
structural elements that are required in the rational design
of potential drug candidates of this class, we performed
molecular modeling studies on these 78 4-(1H-indazol-4-
yl)phenylamino and aminopyrazolopyridine urea deriva-
tives as KDR inhibitors, using molecular docking and
3D-QSAR approaches, including comparative molecular
field analysis (CoMFA) [17] and comparative molecular
similarity indices analysis (CoMSIA) [18]. Molecular
docking was carried out to clarify the binding mode and
to identify the bioactive conformation of these compounds
with KDR, whereas CoMFA and CoMSIA were applied to
gain insights into how steric, electrostatic, hydrophobic
and hydrogen-bonding interactions modulated the inhibi-
tory activities.

Materials and methods

Data sets

Compounds 1–78 selected for the present study were
taken from the literatures [15, 16], and served as the
database in the molecular modeling. Their structures and
inhibitory activities are listed in Tables 1 and 2. Among

them, 14 compounds that are asterisk labeled in Table 1
served as the test set, and the rest as the training set. The
IC50 values (M) were converted to the corresponding
pIC50 (=−logIC50) and used as dependent variables in the
CoMFA and CoMSIA analyses.

Molecular modeling

All the molecular modeling and calculations were performed
by using Sybyl 7.3 molecular modeling package [19]. All 78
molecules were initially built in Sybyl 7.3. Structural energy
minimization process was performed using the Tripos force
field with a distance-dependent dielectric and Powell
gradient algorithm with a convergence criterion of 0.001
kcal mol−1. Partial atomic charges were calculated using
Gasteiger-Hückel method.

Molecular docking

To identify the probable bioactive conformations of these
inhibitors, the Surflex-Dock program [20, 21] that is
interfaced with Sybyl 7.3, was used to dock all the
compounds into the active site of the KDR (PDB code:
1YWN). This program docks a ligand automatically into
the binding site of a receptor, using a protomol-based
method and an empirically derived scoring function. The
protomol is a unique and important factor of the docking
algorithm and means a computational representation of a
proposed ligand that interacts with the binding site. Surflex-
Dock’s scoring function contains the factors that play a
crucial role in the ligand-receptor interaction, that is,
hydrophobic, polar, repulsive, entropic and solvation terms,
and it is a well-recognized method in the field [22, 23]. All
the default parameters, as implemented in the Sybyl 7.3,
were used. The highest-scored conformation based on the
Surflex-Dock scoring functions, was selected as the final
bioactive conformation. The alignment (Fig. 1) of these
compounds, except compounds 3 and 43 (vide infra), based
on the docked conformations, was used for CoMFA and
CoMSIA.

CoMFA and CoMSIA studies

Standard CoMFA and CoMSIA procedures were per-
formed. A 3D cubic lattice was created automatically by
extending at least 4 Å beyond all the investigated molecules
in all three axes (X, Y and Z directions) with 2.0 Å grid
spacing. The CoMFA steric (Lennard-Jones potential) and
electrostatic (Coulomb potential) fields at each lattice were
calculated using the standard Tripos force field method. A
distance dependent dielectric constant of 1.0 was used, and
an sp3 hybridized carbon atom with one positive charge and
a radius of 1.52 Å served as a probe atom to calculate the
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steric and electrostatic fields. The default cutoff value of
30.0 kcal mol−1 was adopted.

The CoMSIA method defines hydrophobic (H), hy-
drogen bond donor (D), and hydrogen bond acceptor (A)
descriptors, in addition to the steric (S) and electrostatic
(E) fields used in CoMFA. The CoMSIA fields were

derived, according to Klebe et al. [18], from the same
lattice box that was used in the CoMFA calculations,
with a grid spacing of 2 Å and a probe carbon atom with
one positive charge and a radius of 1.0 Å as implemented
in Sybyl. The default value of 0.3 was used as the
attenuation factor.

Table 1 Structures of compounds 1-78
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Table 1 (continued)
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PLS regression analysis and validation of QSAR models

Partial least squares (PLS) approach was used to derive the
3D QSAR models. The CoMFA and CoMSIA descriptors
were used as independent variables and the pIC50 values
were used as dependent variables. CoMFA and CoMSIA
column filtering was set to 2.0 kcal mol−1 to improve the
signal-to-noise ratio. The leave-one-out (LOO) cross-
validation was carried out to obtain the optimal number of
components (N) and the correlation coefficient q2. The
obtained N was then used to derive the final QSAR model
and to obtain the non-cross-validation correlation coeffi-
cient r2, standard error of estimate (SEE), and F-value. To
assess the predictive power of the derived 3D-models, a set
of test compounds that had known biological activities and

that were not included in the model generation, was used to
validate the obtained models.

Results and discussion

Dock analysis

To determine the probable binding conformations of these
compounds, Surflex-Dock was used to dock all the com-
pounds into the active site of KDR. The docking reliability
was validated using the known X-ray structure of KDR
complexed with a small ligand 79 (Fig. 2). The co-
crystallized 79 was re-docked into the binding site, and the
docked conformation with the highest total score was

Table 1 (continued)
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selected as the most probable binding conformation (Fig. 3).
The low root mean-square deviation (RMSD) of 0.63 Å
between the docked and the crystal conformations indicated
the high reliability of Surflex-dock in reproducing the
experimentally observed binding mode for these KDR
inhibitors. As shown in Fig. 3a, redocked 79 was almost in
the same position with co-crystallized 79 at the active site
of KDR. Therefore, Surflex-Dock method was used in
search for the binding conformations of the whole dataset.
All the compounds, except 3 and 43, were successfully
docked into the active site of KDR. Compounds 3 and 43
were outliers, possibly because they had different struc-

Table 2 The experimental pIC50 values, predicted pIC50 and their
residuals of the training and test set compounds

Compound Exp pIC50 CoMFA CoMSIA

Pred Resid Pred Resid

1 5.320 5.285 0.035 5.399 −0.079
2 4.903 5.091 −0.188 4.629 0.274

3a 4.665 – – – –

4 7.066 6.729 0.337 7.262 −0.196
5* 7.194 7.815 −0.621 7.891 −0.697
6 8.523 8.329 0.194 8.508 0.015

7 7.824 7.466 0.358 7.524 0.300

8 6.815 6.563 0.253 6.950 −0.134
9 7.086 7.513 −0.426 7.579 −0.493
10* 7.638 7.676 −0.037 7.548 0.090

11 7.174 7.546 −0.373 7.511 −0.337
12* 7.061 7.700 −0.640 7.640 −0.580
13 7.921 8.099 −0.179 8.276 −0.355
14 8.222 8.297 −0.075 8.399 −0.177
15 8.097 8.073 0.024 7.824 0.272

16 7.444 7.975 −0.531 7.680 −0.236
17 8.000 7.781 0.219 7.615 0.385

18 7.260 7.213 0.047 7.256 0.003

19 8.398 7.766 0.632 7.742 0.656

20 8.398 7.945 0.453 8.375 0.023

21* 7.444 7.563 −0.120 7.529 −0.085
22 7.046 7.437 −0.392 7.500 −0.454
23 7.959 7.586 0.373 7.645 0.313

24 6.222 6.283 −0.061 6.189 0.033

25 5.886 6.154 −0.268 5.883 0.003

26 5.510 6.110 −0.600 5.645 −0.135
27 8.523 7.907 0.616 8.215 0.308

28 7.585 7.614 −0.029 7.919 −0.334
29 8.301 8.098 0.203 7.969 0.332

30 8.000 7.921 0.079 8.090 −0.090
31* 7.420 7.930 −0.509 8.036 −0.616
32 7.456 7.545 −0.089 7.211 0.245

33 7.509 7.739 −0.230 7.704 −0.195
34 7.678 7.795 −0.117 7.782 −0.104
35 7.602 7.809 −0.207 7.563 0.039

36 7.678 7.335 0.343 7.677 0.001

37 7.886 7.874 0.012 7.747 0.139

38 7.678 7.168 0.510 7.278 0.400

39 7.131 7.238 −0.107 7.402 −0.272
40* 7.208 7.597 −0.389 7.863 −0.656
41 6.409 6.409 0.000 6.422 −0.013
42* 5.921 6.403 −0.483 6.400 −0.479
43a 4.079 – – – –

44 5.495 5.040 0.455 5.618 −0.124
45 6.333 6.681 −0.349 6.479 −0.147
46 7.745 7.702 0.043 7.949 −0.204

Table 2 (continued)

Compound Exp pIC50 CoMFA CoMSIA

Pred Resid Pred Resid

47 9.155 9.255 −0.100 9.133 0.022

48 8.921 8.915 0.006 8.959 −0.038
49* 8.678 9.172 −0.494 9.067 −0.389
50 9.000 9.028 −0.028 9.097 −0.097
51 9.155 9.173 −0.018 9.315 −0.16
52 8.337 8.282 0.055 8.200 0.137

53* 8.824 8.308 0.516 8.114 0.710

54 8.114 8.342 −0.228 8.321 −0.208
55 8.432 8.715 −0.283 8.396 0.036

56* 8.347 8.246 0.101 8.813 −0.466
57 7.456 7.957 −0.501 7.758 −0.302
58 8.699 8.773 −0.074 8.657 0.042

59 8.538 8.480 0.058 8.451 0.087

60 9.000 8.715 0.285 8.754 0.246

61 8.770 8.681 0.088 8.676 0.094

62 8.420 8.422 −0.002 8.415 0.005

63* 8.201 8.051 0.150 7.990 0.211

64 9.000 8.951 0.049 8.987 0.013

65 8.699 8.092 0.607 8.420 0.278

66 8.620 8.555 0.065 8.624 −0.004
67 8.959 9.095 −0.137 8.785 0.174

68* 8.699 9.434 −0.735 9.114 −0.415
69 8.745 8.770 −0.025 8.710 0.035

70 7.896 7.759 0.138 7.964 −0.068
71 6.939 7.479 −0.540 6.816 0.123

72 7.194 7.464 −0.270 7.135 0.059

73* 6.620 6.496 0.124 6.685 −0.066
74* 7.921 7.836 0.085 7.600 0.321

75 8.149 8.070 0.079 8.021 0.128

76 7.745 7.469 0.276 7.700 0.045

77 7.921 8.337 −0.416 8.325 −0.404
78 7.699 7.746 −0.048 7.603 0.096

a Outlier

* Test set
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tures from the other compounds. That is, compound 3 was
a sulfonamide and compound 43 had an acetylated 3-
amino group.

It should be noted that the overall conformations of
the successfully docked 76 compounds at the active site
of KDR were similar to that of ligand 79 in the X-ray
structure co-crystallized with KDR. Compound 22
(Fig. 2) having the same 2’-fluoro-5’-trifluoromethyl-
phenyl group with compound 79, was selected for
detailed analysis. Its most probable binding mode and
the main residues involved in the interaction are
displayed in Fig. 3b and c, respectively. It can be seen
that compound 22 has multiple H-bonding and hydro-
phobic interactions with the hinge-binding region of the
kinase. Specifically, the 3-NH2 of the 3-aminoindazole
forms an H-bond with Glu915 at the angle of 177.1 º and
the distance of 2.948 Å. The 1-NH and 2-nitrogen of the
3-aminoindazole form two H-bonds with Cys917-CO and
Cys917-NH at the angles of 132.4 º and 159.6 º, and the

distance of 3.438 Å and 3.059 Å, respectively. The NH
moieties of the urea form H-bonding interaction with the
backbone of Asp1044 at the angle of 122.2 º and the
distance of 2.847 Å, respectively, and CO moieties of the
urea form two H-bonding interactions with the carboxylic
acid residue of Glu883 at the angles of 134.2 º and 134.9 º and
the distances of 2.874 Å and 2.839 Å, respectively. In
addition, the terminal 2’-fluoro-5’-trifluoromethylphenyl
group is accommodated into the hydrophobic pocket that is
composed of residues Ile886, Leu887, Ile890, Val896 and
Leu1017.

CoMFA and CoMSIA results

Based on the docked alignment, CoMFA and CoMSIAwere
performed. Because compounds 3 and 43 were outliers,
they were removed from the dataset. Thus, totally 76
molecules were used to build the models. On the basis of
the diversity in both the structures and activities, these
compounds were divided into two groups, 62 compounds
as the training set and 14 compounds as the test set.
CoMFA and CoMSIA 3D-QSAR models were obtained
using standard procedures. The statistical results of CoMFA
and CoMSIA PLS analysis are presented in Table 3. The
CoMFA model gave a cross-validated correlation coeffi-
cient q2 of 0.504 with an optimal number of principal
components (N) of 5 and a non-cross-validated correlation
coefficient r2 of 0.913. The corresponding contributions of
steric and electrostatic fields were 57.4% and 42.6%,
respectively. The model was satisfactory from the viewpoint
of statistical significance. The predicted pIC50 values were
in good agreement with the experimental values (Table 2
and Fig. 4a), indicating the strong predictive ability of the
obtained model.

In CoMSIA analysis, the five different descriptor
fields, that is, the hydrophobic (H), hydrogen bond
donor (D) and acceptor (A), steric (S) and electrostatic
(E) fields, are not totally independent of each other. Such
dependency on individual field usually decreases the
statistical significance of the CoMSIA models. Studies
on the possible combinations of different fields
(Table S1) indicated that the best CoMSIA model with
the highest cross-validated correlation coefficient q2 was
obtained from the combination of steric, electrostatic and
hydrophobic fields (entry 9, Table S1). Thus, the
corresponding model was selected for further analysis
and for the prediction of the test compounds. From the
cross-validation results, it can be seen that the CoMSIA
model has better predictive ability than CoMFA model,
possibly because of the importance of the hydrophobic
field in the activity of these compounds. The statistical
details are summarized in Table 3. The CoMSIA model
gave a cross-validated correlation coefficient q2 of 0.595,

Fig. 1 Superimposition of 76
successfully docked compounds

Fig. 2 Structures of atom-numbered compound 22 and ligand 79 for
1YWN
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an optimal number of principal components of eight and a
non-cross validated correlation coefficient r2 of 0.947,
indicating that an acceptable CoMSIA model was success-

fully constructed. The corresponding contributions of steric,
electrostatic and hydrophobic fields were 25.1%, 42.2% and
32.7%, respectively. Table 2 lists the experimental and

Fig. 3 Binding conformations at
the active site of KDR. Key
residues are displayed and hydro-
gen bonds are displayed in dotted
lines. (a) Co-crystallized (ma-
genta) and re-docked (green) 79.
(b) Docked compound 22. (c)
MOLCAD lipophilic potential
surface of the binding pockets
with the docked compound 22

Table 3 Statistical parameters for the CoMFA and CoMSIA models

Field N q2 r2 SEE F rpred
2 Field contribution

S E H

CoMFA S, E 5 0.504 0.913 0.305 116.991 0.727 0.574 0.426 -

CoMSIA S, E, H 8 0.595 0.947 0.243 119.023 0.624 0.251 0.422 0.327

q2 : Cross-validated correlation coefficient

r2 : non-cross-validated correlation coefficient

rpred
2 : predictive correlation coefficient r2

SEE: standard error of estimate

F: the Fischer ratio

N: optimal number of principal components

S: steric field

E: electrostatic field

H: hydrophobic field

1214 J Mol Model (2012) 18:1207–1218



predicted activities, and the residual values of the training
set. Figure 4b shows the relationship between the predicted
and experimental pIC50 values from the CoMSIA model.

Validation of the 3D-QSAR models

The predictive powers of the CoMFA and CoMSIA models
were validated by the 14 test compounds. The predicted
activity of each compound is listed in Table 2 and shown in
Fig. 4. It can be seen that the predicted pIC50 values of the
test compounds were in good agreement with the experi-
mental data within an acceptable error range, with the rpred

2

being 0.727 and 0.624 for CoMFA and CoMSIA models,
respectively. This result indicates that the CoMFA and
CoMSIA models could be used to predict the inhibitory
activities and to guide the design of 4-(1H-indazol-4-yl)
phenyamino and aminopyrazolopyridine urea derivatives-
based novel KDR inhibitors with potent activities.

Contour analysis

To visualize the results of the CoMFA and CoMSIA
models, 3D coefficient contour maps were generated. The
CoMFA and CoMSIA results were graphically interpreted
by field contribution maps using the STDEV*COEFF field
type. Compound 22 was displayed in the map in aid of
visualization. All the contours represented the default 80%
and 20% level contributions for favorable and unfavorable
regions, respectively.

CoMFA contour maps

The CoMFA contour maps of steric and electrostatic fields are
shown in Fig. 5. In the map of steric field, the green contours
represent regions in which bulky groups confer an increased
activity, whereas the yellow ones represent regions where
bulky groups may lead to a decreased activity. Similarly, in the
map of electrostatic field, the blue contours indicate the regions
where the electropositive substitution increases the inhibitory
activity, whereas the red contours indicate the regions where
the electronegative substitution increases the activity.

It can be seen from Fig. 5 that the contours having
different physicochemical fields are mainly distributed near
the regions of the 3-aminoindazolyl and the terminal 2’-
fluoro-5’-trifluoromethylphenyl of the reference compound
22. This suggests that the functional groups located in these
two regions may play a crucial role in modulating the
affinity toward KDR. In the CoMFA steric contour map
(Fig. 5a), a large green contour near the 3’-, 4’-, and 5’-
positions of terminal 2’-fluoro-5’-trifluoromethylphenyl

Fig. 5 CoMFA STDEV*COEFF contour maps. (a) Favorable (green)
and unfavorable (yellow) steric fields. (b) Electropositive (blue) and
electronegative (red) fields. Compound 22 was overlaid in each map

Fig. 4 Graph of experimental versus predicted pIC50 of the training
(■) and test (▲) sets from the CoMFA (a) and CoMSIA (b) models
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group of compounds 22 suggests that introducing of bulky
groups at these positions would increase the activity.
Moreover, in the CoMFA electrostatic contour map, a small
blue contour near the 3’-position of 2’-fluoro-5’-trifluor-
omethylphenyl group of 22 indicates that introducing of
electropositive groups around this position would increase
the inhibitory activity. This, together with the green contour
discussed above, suggests that electropositive and bulky
groups in the vicinity of the 3’-position of the terminal
phenyl group are favored by the CoMFA model. In CoMFA
steric contour map, a big yellow contour near the 1- and 7-
positions suggests that steric bulkiness at these positions is
unfavorable by the model. For example, compound 53
bearing methyl group at the 1-position has low inhibitory

activity. A large blue contour near the 1- and 7-positions
indicates that introducing electropositive groups at these
positions would increase the inhibitory activity. Thus,
compounds 6 and 27 having electropositive hydrogen or
methyl group at the 7-position are more active than
compounds 31 and 42 having electronegative groups at
the same position. This, together with the yellow contour
discussed above, indicates that any bulky or electronegative
substitution at the 1- or 7-position may lead to significant
loss of the inhibitory activity. In addition, the small yellow
and red contours near the 6-position suggest that small and
electronegative groups are favorable in improving the
inhibitory activity, which is in agreement with the fact that
compound 49 is more active than its corresponding
compound 19.

Fig. 6 CoMSIA STDEV*COEFF contour maps. (a) Favorable (green)
and unfavorable (yellow) steric fields. (b) Electropositive (blue) and
electronegative (red) fields. (c) Favorable (yellow) and unfavorable
(white) hydrophobic fields. Compound 22 was overlaid in each plot

Table 4 Structures and predicted pIC50 values of newly designed
derivatives

HN
N

N

N
H

HN

O

R

NH2
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CoMSIA contour maps

The steric and electrostatic contour maps of CoMSIA are
shown in Fig. 6a and b, respectively. These contours are
quite similar to those of CoMFA. In addition to the CoMFA
contours, large green and blue contours near the 5-position
suggest that bulky and electropositive groups around this
position would increase the activity. This is supported by
the fact that incorporating of less bulky and electronegative
N into the 5-position leads to a decrease in the activity.

Figure 6c shows the hydrophobic contour map of
CoMSIA in which yellow and gray contours indicate the
regions where hydrophobic and hydrophilic groups are
favored by the model, respectively. A large yellow contour
near the 3’-, 4’- and 5’-positions of the terminal 2’-fluoro-
5’-trifluoromethylphenyl group of compound 22 indicates
that hydrophobic substitution at these positions would
increase the activity. This hydrophobic interaction may be
very important for improving of the binding affinity, since it
is also observed in the CoMFA and CoMSIA steric contour
maps. The gray contour near the 2’-position indicates that
hydrophilic substitution at this position is favorable. For
example, compounds 5 and 56 with hydrogen at the 2’-
position are more active than compounds 9 and 57 with F
or methyl group at the same position. The gray contour near
the 6-position indicates that hydrophilic groups located in
this place are favored by the model, which can be seen from
the fact that incorporating of hydrophilic N into the 6-
position leads to a increase in the activity. A yellow contour
near the 1-position indicates that hydrophobic groups that are
located at this place are favored by the model. This is in
agreement with the fact that compounds 6 and 27 having
methyl or hydrogen at the 7-position are more active than
compounds 31 and 42 having hydrophilic groups at the same
position. A gray contour near the 3-amino group reveals the
importance of the hydrophilic amino group on the indazolyl
ring in the enhancement of the inhibitory activities.

Design of new inhibitors

As shown above, molecular docking and 3D-QSAR
analyses provided detailed insight into the structural
requirements for potent activity of the inhibitors of this
class. That is, bulky or electronegative substitutions at the
1- or 7-position may lead to significant loss of the activity.
Incorporating of small and electronegative nitrogen atom
into the 5-position of indazolyl ring may lead to a decrease
in the activity, whereas incorporating of a nitrogen atom
into the 6-position may lead to an increase in the activity. In
addition, appropriately bulky and strongly hydrophobic
groups at the 3’-, 4’- and 5’-positin of the terminal phenyl
group may greatly increase the activity. To show the
practical values of these structure-activity relationships,

we designed a series of new inhibitors and predicted their
pIC50 values by the established CoMFA and CoMSIA
models (Table 4). It can be seen that all the designed
derivatives showed better activities than compound 19, and
most of the designed derivatives showed higher activities
than compounds 47 and 51, both of which were the most
active in the database. These results obtained from the
developed models serve as computational predictions which
can be used to guide the design of new potent inhibitors.

Conclusions

Molecular docking and 3D-QSAR analyses have been
successfully applied to a set of recently synthesized KDR
inhibitors based on 4-(1H-indazol-4-yl)phenylamino and
aminopyrazolopyridine urea derivatives. The binding mode
of these KDR inhibitors was clarified by Surflex-dock. The
results suggest that multiple hydrophobic and hydrogen-
bonding interactions are two predominant factors that may
be used to modulate the inhibitory activities. Based on the
docked alignments, highly predictive CoMFA and CoMSIA
models were developed. These two models showed
statistically significant results in terms of cross-validated
coefficient q2 and conventional coefficient r2, and their
predictive capabilities were verified by the test compounds.
Based on the obtained structure-activity relationships, a
series of new inhibitors with excellent activities predicted
by the developed CoMFA and CoMSIA models were
designed. Thus, these models can be used as a tool to
guide the future rational design of 4-(1H-indazol-4-yl)
phenylamino and aminopyrazolopyridine urea derivatives-
based novel KDR inhibitors with potent activities.

References

1. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674
2. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001)

Postnatal vasculogenesis. Mech Dev 100:157–163
3. Folkman J (1971) Tumor angiogenesis: therapeutic implications.

N Engl J Med 285:1182–1186
4. Hanahan D, Folkmann J (1996) Patterns and emerging mecha-

nisms of the angiogenic switch during tumorigenesis. Cell
86:353–364

5. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer
metastasis and angiogenesis: an imbalance of positive and
negative regulation. Cell 64:327–336

6. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial
growth factor pathway in tumor growth and angiogenesis. J Clin
Oncol 23:1011–1027

7. Ferrara N (2004) Vascular endothelial growth factor: basic science
and clinical progress. Endocr Rev 25:581–611

8. Baka S, Clamp AR, Jayson GC (2006) A review of the latest
clinical compounds to inhibit VEGF in pathological angiogenesis.
Expert Opin Ther Targets 10:867–876

J Mol Model (2012) 18:1207–1218 1217



9. Sepp-Lorenzino L, Thomas KA (2002) Antiangiogenic agents
targeting vascular endothelial growth factor and its receptors in
clinical development. Expert Opin Invest Drugs 11:1447–1465

10. Klebl BM, Müller G (2005) Second-generation kinase inhibitors.
Expert Opin Ther Targets 9:975–993

11. Supuran CT, Scozzafava A (2004) Protein tyrosine kinase
inhibitors as anticancer agents. Expert Opin Ther Pat 14:35–53

12. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular
endothelial growth factor receptor-2: structure, function, intracellular
signaling and therapeutic inhibition. Cell Signal 19:2003–2012

13. Sakamoto KM (2004) SU-11248 (SUGEN). Curr Opin Invest
Drugs 5:1329–1339

14. Ahman T, Eisen T (2004) Kinase inhibition with BAY43-9006 in
renal cell carcinoma. Clin Cancer Res 10:6388s–6392s

15. Dai YJ, Hartandi K, Ji ZQ, Ahmed AA, Albert DH, Bauch JL,
Bouska JJ, Bousquet PF, Cunha GA, Glaser KB, Harris CM,
Hickman D, Guo J, Li J, Marcotte PA, Marsh KC, Moskey MD,
Martin RL, Olson AM, Osterling DJ, Pease LJ, Soni NB, Stewart
KD, Stoll VS, Tapang P, Reuter DR, Davidsen SK, Michaelides MR
(2007) Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N’- (2-
fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based
orally active multitargeted receptor tyrosine kinase inhibitor. J Med
Chem 50:1584–1597

16. Dai YJ, Hartandi K, Soni NB, Pease LJ, Reuter DR, Olson AM,
Osterling DJ, Doktor SZ, Albert DH, Bouska JJ, Glaser KB,
Marcotte PA, Stewart KD, Davidsen SK, Michaelides MR (2008)

Identification of aminopyrazolopyridine ureas as potent VEGFR/
PDGFR multitargeted kinase inhibitors. Bioorg Med Chem Lett
18:386–390

17. Cramer RD 3rd, Patterson DE, Bunce JD (1988) Comparative
molecular field analysis (CoMFA). 1. Effect of shape on
binding of steroids to carrier proteins. J Am Chem Soc
110:5959–5967

18. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity
indices in a comparative analysis (CoMSIA) of drug molecules to
correlate and predict their biological activity. J Med Chem
37:4130–4146

19. SYBYL 7.3 is available from Tripos Associates Inc, 1699 S
Hanley Rd, St Louis, MO 631444, USA

20. Jain AN (2003) Surflex: fully automatic flexible molecular
docking using a molecular similarity-based search engine. J Med
Chem 46:499–511

21. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand
energetic modeling, ring flexibility, and knowledge-based search.
J Comput Aided Mol Des 21:281–306

22. Pan J, Liu GY, Cheng J, Chen XJ, Ju XL (2010) CoMFA and
molecular docking studies of benzoxazoles and benzothiazoles as
CYP450 1A1 inhibitors. Eur J Med Chem 45:967–972

23. Sun JY, Cai SX, Yan N, Mei H (2010) Docking and 3D-QSAR
studies of influenza neuraminidase inhibitors using three-
dimensional holographic vector of atomic interaction field
analysis. Eur J Med Chem 45:1008–1014

1218 J Mol Model (2012) 18:1207–1218



ORIGINAL PAPER

Homology modeling, molecular dynamics and QM/MM study
of the regulatory protein PhoP from Corynebacterium
pseudotuberculosis

Gleiciane Moraes & Vasco Azevedo & Marcília Costa & Anderson Miyoshi & Artur Silva &

Vivian da Silva & Diana de Oliveira & Maria Fátima Teixeira & Jerônimo Lameira &

Cláudio Nahum Alves

Received: 20 January 2011 /Accepted: 1 June 2011 /Published online: 24 June 2011
# Springer-Verlag 2011

Abstract Corynebacterium pseudotuberculosis is a facul-
tatively intracellular Gram-positive bacterium that causes
caseous lymphadenitis, principally in sheep and goats,
though sometimes in other species of animals, leading to
considerable economic losses. This pathogen has a TCS
known as PhoPR, which consists of a sensory histidine kinase
protein (PhoR) and an intracellular response regulator protein
(PhoP). This system is involved in the regulation of proteins
present in various processes, including virulence. The
regulation is activated by PhoP protein phosphorylation, an
event that requires a magnesium (Mg2+) ion. Here we
describe the 3D structure of the regulatory response protein
(PhoP) ofC. pseudotuberculosis through molecular modeling
by homology. The model generated provides the first

structural information on a full-length member of the
OmpR/PhoP subfamily. Classical molecular dynamics was
used to investigate the stability of the model. In addition, we
used quantum mechanical/molecular mechanical techniques
to perform (internal, potential) energy optimizations to
determine the interaction energy between the Mg2+ ion and
the structure of the PhoP protein. Analysis of the interaction
energy residue by residue shows that Asp-16 and Asp-59
play an important role in the protein–Mg2+ ion interactions.
These results may be useful for the future development of a
new vaccine against tuberculosis based on genetic attenua-
tion via a point mutation that results in the polar residue Asp-
16 and/or Asp-59 being replaced with a nonpolar residue in
the DNA-binding domain of PhoP of C. pseudotuberculosis.

Keywords Two-component regulatory system . PhoPR .

Molecular dynamics . Quantitative mechanics/molecular
mechanics . Molecular homology

Introduction

The bacterium Corynebacterium pseudotuberculosis is a
facultative intracellular parasite in the actinobacteria class that
is Gram-positive [1] and provokes disease in animals such as
sheep, goats and horses [2]. In small ruminants, it is the
causative agent of caseous lymphadenitis (CL), a chronic
disease that forms suppurative abscesses, which are normally
superficial, though they also frequently disseminate to
visceral organs [3]. Currently, the most common therapy
for CL is drainage of the superficial lymph nodes, followed
by antibiotic therapy. However, this form of treatment has
limited effectiveness, as it does not eliminate all of the
bacteria and is not viable when internal lymph nodes and

Electronic supplementary material The online version of this article
(doi:10.1007/s00894-011-1145-x) contains supplementary material,
which is available to authorized users.

G. Moraes : J. Lameira :C. N. Alves
Laboratório de Planejamento e Desenvolvimento de Fármacos,
Universidade Federal do Pará,
Belém, PA, Brazil

G. Moraes :A. Silva : J. Lameira (*)
Instituto de Ciências Biológicas, Universidade Federal do Pará,
Belém, PA, Brazil
e-mail: lameira@ufpa.br

V. Azevedo :A. Miyoshi :V. da Silva
Laboratório de Genética Celular e Molecular,
Universidade Federal de Minas Gerais,
Belo Horizonte, MG, Brazil

M. Costa :D. de Oliveira :M. F. Teixeira
Núcleo de Genômica e Bioinformática,
Universidade Estadual do Ceará,
Fortaleza, CE, Brazil

J Mol Model (2012) 18:1219–1227
DOI 10.1007/s00894-011-1145-x

http://dx.doi.org/10.1007/s00894-011-1145-x


organs are affected [4]. Another disadvantage is the high cost
of antibiotic treatments, as well as the difficulty involved in
getting the antibiotic into the abscess capsule [5]. There are
still no completely effective diagnostic methods, vaccines or
treatments for CL [1]. In the search for successful prophy-
lactic alternatives for sheep and goats, various strategies are
being tested, such as live recombinant vaccines and DNA
vaccines [6]. Currently, the commercially available vaccines
are based on the inactivation of phospholipase D (PLD) [1],
a potent exotoxin with sphingomyelinase activity that aids
the dissemination of this pathogen in the host; however,
revaccination is necessary every six months in goats [7, 8].
Therefore, new genomic targets that could be candidates for
CL vaccines are needed.

The gene phoP has been found in the genome of C.
pseudotuberculosis, which is currently well characterized in
Mycobacterium tuberculosis. It is known that in M.
tuberculosis—another actinobacteria—the gene phoP plays
an important role in pathogenicity, as it is involved in the
secretion of proteins involved in virulence [9, 10].
Consequently, this gene is a potential candidate for the
development of a CL vaccine. The gene phoP is part of the
two-component regulatory system (TCS) PhoPR; this
double system is composed of the histidine kinase sensor
(PhoR) and a regulatory protein (PhoP) [9]. This system is
capable of detecting, responding to and adapting to changes
in the environment, favoring bacterial survival in inhospi-
table environments [11].

The basic biochemical events involved in two-component
transduction systems were first established by Ninfa and
Magasanik [12] for the regulatory system (NR system) that
responds to available nitrogen sources in Escherichia coli.
The mechanism of operation of this TCS involves the
phosphorylation of the transmembrane protein (PhoR) in a
conserved histidine residue in response to external changes.
This signal is then transferred to the receptor domain
(N-terminal domain of PhoP) of the regulatory response
protein (PhoP) through the transfer of a phosphoryl group to
a conserved aspartate residue, resulting in regulatory domain
binding (C-terminal domain of PhoP) to DNA, which
controls transcription [13]. According to Buckler et al.
[13], phosphorylation of the aspartate residue (Asp-53) that
is conserved in PhoP occurs through autocatalysis, and
requires Mg2+ ions. Reversibility of phosphorylation and
dephosphorylation is a key mechanism through which
extracellular signals are translated into cellular responses.
Phosphorylation of the response regulator changes its
conformation and allows it to interact with other compo-
nents, resulting in changes that can regulate response
through binding to DNA, influencing transcription [14].

In other bacterial systems, the development of PhoP-
attenuated strains as vaccine candidates has been investi-
gated, for example in Salmonella. Hohmann et al. [15]

reported that a PhoP/PhoQ-deleted Salmonella typhi mutant
was safe and immunogenic when delivered as a single dose
in humans. This has been developed further as an oral
vaccine expressing heterologous antigens [16]. Similar
experiments could be carried out with PhoP-attenuated C.
pseudotuberculosis to test its potential as a candidate live
vaccine against pseudotuberculosis.

Little is known about the three-dimensional (3D) structure
of PhoP. Full-length structures of transcription regulators
homologous to PhoP are difficult to obtain, due to a highly
flexible interdomain that is composed of four beta sheets; this
interdomain is located between the domain receptor and the
domain regulator, which makes protein resolution difficult
[13]. However, in the Protein Data Bank (PDB) there are
crystallographic structures for homologous proteins, includ-
ing the full-length response regulator from M. tuberculosis
(access code 2OQR in PDB) and the response regulator from
Thermotoga maritime (access code 1KGS in PDB), both of
which belong to the OmpR/PhoB subfamily. Using the
available structures, new models of homologous proteins can
be constructed using homology modeling techniques.

Homology modeling allows the construction of the
secondary structure of a protein based on the primary
structure. This technique is only possible because the 3D
structures of homologous proteins are conserved during the
evolutionary process [17]—especially functional residues,
since preserving the structure is crucial to the maintenance
and performance of specific functions [17].

In this report, we provide the first structural information on
a full-length member of the OmpR/PhoP subfamily of the
two-component system. The model of regulatory protein
PhoP of C. pseudotuberculosis was obtained by molecular
homology methods. We have also investigated the stability of
the model using molecular dynamic (MD) simulation, where
the structural flexibility of the interdomain consisting of four
beta sheets was exploited. In addition, a hybrid quantum
mechanics/molecular mechanics (QM/MM) approach was
used to determine the interaction energy between Mg2+ ion
and PhoP protein, in order to quantify the interactions of this
ion with catalytic protein residues. Finally, calculations of
surface electrostatic potential maps were performed to
explore the interactions of the DNA–PhoP complex.

Methods

Modeling the PhoP protein of Corynebacterium
pseudotuberculosis

The primary structure of the PhoP protein was obtained
from the sequence generated with the complete genome
sequence of line CP1002 biovarovis of C. pseudotuberculosis
isolated from goats, provided by Dr. Roberto Meyer of
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the Immunology Laboratory of the Federal University of
Bahia [18].

Through alignment in the server P-fam [19], it was
found that the study sequence was part of a family of
transcription regulatory proteins that, together with a
histidine kinase sensor, composes a TCS [20]. The model
was obtained using homology modeling with the program
Modeller, taking into consideration special restrictions [21].
These restrictions can involve distances, angles, dihedral
angles, and pairs of dihedral angles. Automated construc-
tion of models by structural homology uses geometric
distance optimization techniques in order to accommodate
special restrictions, based on known homologous structures.

The template was selected through a search of the
Protein Data Bank (PDB) [22]. The known 3D structure
that was selected as a template was transcription factor
DrrD from T. maritima (access code 1KGS in PDB), which
was found to have 39% identity and 60% sequence
similarity with the target.

The Modeller program was applied to generate 20
satisfactory models for the PhoP protein of Corynebacteri-
um pseudotuberculosis. The model with the lowest energy
and the lowest restraint violation was selected to construct
the system. The models obtained by homology modeling
were also validated considering the root mean square
deviation (RMSD), which evaluates how much the model
deviates from the template (1KGS). The stereochemical
qualities of the models obtained were checked with
PROCHECK [23]. Furthermore, the quality of the model
was evaluated using Verify3D [24], ProSA [25] and
ANOLEA [26].

Molecular dynamics simulation (MD)

We have recently carried out MD simulations to study
protein–inhibitor interaction energies [27, 28]. In this
report, molecular dynamic simulations were carried out to
investigate the stability of the PhoP model obtained by
homology modeling. The computational model for MD
simulation was taken to be the best structure generated
through molecular modeling by homology, which we
termed “PhoPCp.” The Mg2+ ion was added to the structure
of PhoPCp because this ion is present in many two-
component regulatory systems [29].

Since the standard pKa values of ionizable groups can be
shifted by the local protein environment, accurate assign-
ment of the protonation states of all of these residues at pH
7 was carried out. The pKa values of the amino acids
residues were determined with PROPKA 2.0, considering
the pHto be 7 [30]. Except for Asp-15, which is protonated
at this pH, most of the residues were in their standard
protonated or unprotonated states. Asp-15 is located at the
active center of the protein.

After adding the hydrogen atoms to the structure, a series
of optimization algorithms (steepest descent conjugated
gradient and L-BFGS-B) were applied [31]. To avoid
denaturization and artificial configurations of the protein
structure, all heavy atoms of the protein and the inhibitor
were restrained by means of a Cartesian harmonic umbrella
with a force constant of 1000 kJ mol−1Å−2. Afterward, the
system was fully relaxed, but the peptidic backbone was
restrained with a lower constant of 100 kJ mol−1Å−2. The
optimized protein was placed in a cubic box of pre-
equilibrated waters (80Å on a side) using the principal axis
of the protein–Mg2+ complex as the geometrical center.

For the system, 5 ns of MD simulation were performed at
temperature of 300 K. The time evolution of the root mean
square deviation (RMSD) of the MD trajectory from the
model was computed to analyze the stability of the structure.
The simulation was performed using Langevin–Verlet molec-
ular dynamics at 300 K and a canonical thermodynamic
assembly (NVT), which fixes the number of atoms (N), the
volume (V), and the temperature (T) of the system [32] using
the Dynamo library [33]. The system was described using
molecular mechanics (MM) with the OPLS-AA [32] and
TIP3P [34] force fields for protein and water molecules.

QM/MM calculations

QM/MM potential energy optimization was carried out on the
structure obtained after 5 ns of MD simulation, using the
B3LYP function together with the 6-31+G(d,p) basis set to
describe the quantum region in the hybrid QM/MM scheme.
In these calculations, the Mg2+, two water molecules and the
side chains of Asp-16, Asp-59 and Met-61 were selected for
treatment with QM, whereas the OPLS-AA force field was
used for the MM part. In addition, the B3LYP functional
within the 6-31+G(d,p) basis set was employed to perform
QM/MM internal energy calculations in order to compute
interactions between the Mg2+ and the protein.

Herein, we have used the potential energy derived from the
standard QM/MM formulation (Eqs. 1 and 2) to determine
the interaction energy between Mg2+ and the environment.

EQM=MM ¼ < bH0

��� ���<D E
þ P

< qMM

re;MM

��� ���<D E
þPP ZQMqMM

rQM;MM

� �
þEvdW

QM=MM þ EMM

ð1Þ

EQM=MM ¼ Evac þ Eelect
QM=MM þ EvdW

QM=MM þ EMM ð2Þ

Here, EMM is the energy of the MM subsystem, EvdW
QM=MM

is the van der Waals interaction energy between the QM
and MM subsystems, Evac is the gas phase energy of the
polarized QM subsystem, and Eelect

QM=MM includes both
the coulombic interaction of the QM nuclei (ZQM) and
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the electrostatic interaction of the polarized electronic
wavefunction (Ψ) with the charge on the protein (qMM).

The interaction energy between Mg2+ and the environ-
ment, computed by residue, was evaluated as the difference
between the QM/MM energy and the energies of the

separated, noninteracting QM and MM subsystems with
the same geometry. Considering that the MM part is
described using a nonpolarizable potential, the contribution
of each residue (i) of the protein to the interaction energy is
given by

EInt
QM=MM;i ¼ Eelect
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In this calculation, the contribution of the interaction energy
of each residue of the enzyme takes into consideration the effect
of the polarization of the orbital, as the initial optimization of
the molecular orbitals of the quantum portion is affected
by the surrounding environment (protein and solvent);
this is held constant in order to calculate the electrostatic
interaction of each residue individually. More details can be
found in the “Electronic supplementary material” (ESM).

Results and discussion

Figure 1 shows the best model obtained by the Modeller
program; this model (PhoPCp) presents the largest number
of residues within favorable regions (94.6%) of the

Ramachandran graph (ESM), which means that this model
has the best stereochemical quality among those that were
evaluated. The RMSD of only 0.53 obtained from the
superposition of PhoPCp and the template signifies that the
target and template structures are well aligned. The
alignment between PhoP of C. pseudotuberculosis
(PhoPCp) and 1KGS is shown in Fig. 2. The degree of
superposition of the target with the template is shown in
Fig. 3. Based on these results, we can conclude that the
structures of the target and the template are conserved, as
they show 39% identity and 60% similarity.

Furthermore, the quality of the structures obtained by
homology modeling and MD were validated by calculating
the ProSA Z-score [25] (ESM). If the score was outside the
range characteristic of native proteins, the input structure
contains errors. Verify3D [24] (ESM) was used to analyze
the compatibility of an atomic model (3D) with its own
amino acid sequence (1D). The Z-scores of the structures
from homology modeling and MD were −8.18 and −7.88,
respectively, indicating that the structures are within the
range normally found for proteins of a similar size. The
PhoPCp model barely changed after MD, but the 3D
structure in the region that binds the receptor domain and
the flexible interdomain and the regulatory domain im-
proved after MD. The atomic empirical mean force
potential ANOLEA [26] was used to assess the packing
quality of the model. This program performs energy
calculations on a protein chain, evaluating the nonlocal
environment of each heavy atom in the molecule. Negative
energy values represent a favorable energy environment
whereas positive values show an unfavorable energy
environment for a given amino acid (ESM). According to
ANOLEA, molecular dynamics considerably improved the
model, as only a few amino acid residues of the α-4 helix
and the loop that binds to RNA polymerase had unfavor-
able energy environments.

The aspartate receptor of the activation signal is located
at the domain or N-terminal receptor (Asp-53 in 1KGS,
Asp-59 in PhoPCp) and at the domain or C-terminal
regulator, which are the sites that bind to the DNA,

Fig. 1 PhoPCp model generated with the program Modeller through
molecular modeling by homology
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regulating gene transcription. The domain receptor com-
prises five α-helices (α1, α2, α3, α4, α5) and five β-sheets
(β1, β2, β3, β4, β5); Asp59 is located in β-sheet β3, as
has been described for other homologous crystallographic
structures deposited in the PDB (2PKX, 1MVO, 1IDO,
2OQR, 1KGS, 1YS6). The flexible interdomain consists of
a group of four β-sheets (P1, P2, P3, P4), which correspond
to a highly flexible region that connects both the domain
and regulatory receptors; a small α-helix formed between
β-sheets P1 and P2, comprising the amino acid residues
Thr-150, Asp-149 and Asp-148. However, after MD, this
region was corrected such that it formed a loop, as found in
structures homologous to PhoP protein. Three α-helices
(T1, T2, T3), and two β-sheets (P5, P6) are found below

this flexible region, located at the C-terminal region of the
regulatory domain. The region consisting of the sequence
P5-loop-P6 forms the β-hairpin motif. According to
Ryndak et al. [9], this motif is important because it attaches
to the minor groove of the DNA through an arginine residue
in the β-hairpin loop. The equivalent arginine residue in
this region in PhoPCp is Arg-225.

The loop that connects the α-helices T2 and T3 located
in the regulatory domain is very important for this protein,

Fig. 3 3D alignment of 1KGS and PhoPCp, as performed with the
program Pymol to examine the structural divergence between the
target (purple) and the mold (light blue)

Fig. 2 Alignment between the
mold 1KGS and the sequence of
the regulatory protein PhoP.
Residues that are identical in
terms of sequences are shown in
black and catalytic residues are
indicated by arrows

Fig. 4 a–b Conserved structures in the regulatory domain PhoP of C.
pseudotuberculosis. a Residues that comprise the loop that connects
the α-helices T3 and T4; this loop interacts with RNA polymerase. b
α-Helix T4 (responsible for bonding to the minor groove of DNA),
emphasizing the recognition residues of this helix (Asn-200, Val-202,
Glu-203, Ser-204, Tyr-208)
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as there is an indication in the literature that this loop
interacts with RNA polymerase at the beginning of
transcription [35]. In PhoPCp, this loop contains nine
residues: Trp-191, His-192, Tyr-193, Asp-194, Phe-195,
Gly-196, Gly-197, Asp-198 and Gly-199. As it is a loop
region, there is a notable presence of glycine residues, which
are highly flexible. On the other hand, residues Trp-191 and
His-192 are basic, so they have the capacity to interact with
positive charges (Fig. 4a).

The α-helix T3 of PhoPCp corresponds to α-3 of 1KGS;
both proteins are homologous to the linkage domain
PhoPC of M. tuberculosis (access code 2PMU in PDB).
This is a recognition helix for attachment to DNA; it
allows attachment to the major groove of DNA during
transcription regulation. In 2PMU, the recognition residues
for interaction with DNA are Asn-212, Val-213, Glu-215,
Ser-216 and Tyr-220 [36], which correspond to the conserved
residues Asn-200, Val-202, Glu-203, Ser-204 and Tyr-208 in
PhoPCp (Fig. 4b).

According to Solà et al. [37], transfer of the phosphate
(signal transmitted by PhoR) occurs through autocatalysis
and is necessarily dependent on Mg2+. The structure of
PhoPCp has a cavity that allows the entry of magnesium at
the active site; this same cavity is found at the other two-
component protein-receptor domain.

During the MD simulation, the RMSD drift of the Cα
atoms in the initial PhoPCp protein structure was
determined (Fig. 5). When we examine the deviation
of the protein during MD simulation, it is clear that
PhoP has considerable stability. The PhoPCp structure
reaches a plateau after 3 ns of simulation. The B factor
(atomic displacement parameter) for an atom in the
protein structure reflects the fluctuation of the atom
about its average position. The distribution of B factors
along a protein sequence is regarded as an important indicator
of the protein’s structure, reflecting its flexibility and
dynamics [38]. The distribution of B factors was obtained
during the last 2 ns of MD simulation. Analysis of B factors
reveals that the interdomain, loop polymerase and β-hairpin
are flexible regions of PhoPCp. These observations are in
accordance with experimental results which suggest that the
region that binds the receptor and regulatory domains
(flexible interdomain) in an active state is intrinsically flexible
[13]. The deviation of the residues near the magnesium ion
was smaller (ESM), so we can conclude that the magnesium
stabilizes the signal activation receptor cavity.

By calculating the interaction energy for each residue, it
becomes possible to determine which residues of the active
center of the domain receptor have the strongest interaction
with Mg2+ (Fig. 6). The interaction energy values for each

Fig. 5 Graph of RMSD (in Å),
showing the stability of the
structure over 5 ns of MD
simulation

Fig. 6 Interaction energy by
residue (in kJ mol−1) for the
model PhoPCp with magne-
sium, after MD simulation.
Values below zero indicate
attraction and those above
zero indicate repulsion
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residue demonstrate attractive interactions of the residues
Asp-16, Asp-59, and Met-61 with the magnesium. Two
water molecules that interact with and stabilize the complex
were also found. Through MD simulation, we found that
the magnesium ion forms an octahedral structure, with the
magnesium atom at its geometric center (Fig. 7). This
structure is also observed in the homolog PhoB (PDB
2IYN) [37], thus indicating that this methodology correctly
describes the system. For this reason, it was possible to find
the correct structure at the active site. The residues Asp-16
(−135.03 kJ mol−1) and Asp-59 (−69.15 kJ mol−1) show the
strongest interaction with magnesium. This suggests that
these two residues are key residues to the catalytic enzyme
of PhoP. Asp-59 is the activation signal receptor [13];
however, the function of Asp-16 is still unknown. It could
be involved in the stability of the octahedral coordination
mediated by magnesium. As Asp-16 and Asp-59 are key
residues to the catalytic enzyme, the virulence of C.
pseudotuberculosis can be affected by the mutation of
Asp-59 or Asp-16 in PhoP. These results could be useful in
the design of new vaccines based on genetic attenuation to
inactivate the two-component regulatory system through a
point mutation in the PhoP gene.

Ionic interactions play a critical role in biological
systems, so a detailed analysis of the formation of the
salt bridge between PhoPCp and Mg2+ was carried out
for the MD trajectories. The mean distances (Table 1)
between magnesium and its closest atoms were calculated
in order to study the stability of the complex. The mean
distances were calculated as a function of the different
positions that the two atoms can have in relation to each
other during the MD; for this reason, a deviation is
associated with this deviation. The distances as a function
of simulation time can be found in the ESM. Considering
the mean distance values, it can be concluded that the two

oxygens (OD1 and OD2) of the side chain of Asp-16 are
strongly linked to the Mg2+ ion at mean distances of 1.94
and 1.92 Å, respectively, and show very little variation
during the MD simulation (ESM); this explains the strong
interaction of this residue as observed in the graph of
interaction energy by residue. On the other hand, the
oxygen OD1 of the side chain of Asp-59 is bonded to
magnesium at a mean distance of 1.89 Ǻ (ESM).

It is well known that water molecules play important
roles in biological systems, including in catalysis and in
ligand binding. The X-ray structure of the PhoB in the
metal ion complex [37] revealed that four interfacial water
molecules were located close to Asp-16, Asp-59, Met-61
and Mg2+. The mean distances between the waters and the
Mg2+ ion as a function of simulation time were plotted
(ESM). These water molecules, as well as the side-chain
oxygen atoms of both aspartic residues and the oxygen
atom of the methionine residue were found to coordinate
octahedrally with the Mg2+ ion. The mean distance between
the oxygen atom of the methionine residue and the Mg2+

ion is 2.02 Å (ESM).
The distances between the negatively charged group of

Asp-59 and the ammonium group of Lys-109 were plotted

Fig. 7 Octohedral coordination exhibited by magnesium and its
closest residues. The dotted lines represent the interactions and the
numerical values indicate the mean distances (in Å) during the
dynamics. Green magnesium, red oxygen, white hydrogen, cyan
carbon, blue nitrogen, yellow sulfur

Fig. 8 Map of electrostatic potential for PhoPCp in contact with a
double helix of DNA. Regions of high electron density are shown in
red, and those with a lower electron density are shown in blue

Table 1 Mean distances (Å) of the residuals for last 5 ns of MD

Residuals Mean distance Deviation

D16 and Mg (OD1...Mg) 1.94 0.05

D16 and Mg (OD2...Mg) 1.92 0.05

D59 and Mg (OD1...Mg) 1.89 0.04

D59 and Mg (OD2...Mg) 3.43 0.13

M61 and Mg (O...Mg) 2.02 0.07

Water 1 and Mg (OH2...Mg) 2.04 0.07

Water 2 and Mg (OH2...Mg) 2.00 0.06
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as a function of simulation time (ESM). The average
distances between the oxygen OD2 of the side chain of
Asp-59 and the ammonium nitrogen (NZ) of Lys-109 is
2.69 Å, implying that this strong salt bridge was
observed throughout the simulation period. In addition,
the average distances between the Mg2+ ion and key
residues were compared with the distances obtained from
B3LYP/6-31+G(d)/MM optimization and experimental
data [37] (ESM).

Electrostatic potential density maps can be used to pick
out electrophilic and nucleophilic centers, which govern
bond strengths, the strengths of nonbonded interactions,
and molecular reactivity. Regions of higher electron density
(nucleophilic regions) and those of lower electron density
(electrophilic regions) correspond to positively and nega-
tively charged regions in the molecule. Figure 8 shows a
map of electrostatic potential for PhoPCp after 5 ns of MD
simulation. In the more negative region, there are some
residues at the active site that are important in interactions
with Mg2+, such as Asp-16 and Asp-59, which coordinate
with magnesium. On the other hand, the electrophilic
character (the more positive region) is important in relation
to the binding interaction with DNA in the process of gene
regulation [36]. The regulatory domain corresponds to
regions of lower electron density, leading to a good
interaction of PhoP with DNA. In this region, there are
some residues that are important for interactions with
cofactor DNA, such as Asn-200, Val-202, Glu-203, Ser-
204 and Tyr-208.

Conclusions

We have applied homology modeling, molecular dynamics
and QM/MM techniques to determine the first structural
information for a full-length member of the OmpR/PhoP
subfamily of the two-component system. The MD results
show that the magnesium of the PhoP protein stabilizes
the receptor cavity, decreasing the deviations in residues
that are important for protein activation. Based on energy
calculations for each residue, the most important residues
for interaction with magnesium were found to be Asp-
16, Asp-59, Met-61 and two water molecules, which
together form an octahedral structure. Exploration of the
electrostatic potential density maps shows that Asp-16
and Asp-59 are in the more negative region, which is
important in interactions with Mg2+. These results may be
used to identify possible point mutations in the PhoP gene
in order to design a new vaccine based on genetic
attenuation that inactivates the two-component regulatory
system. Attenuations can be made at residues Asp-59
(which is the activation signal receptor residue) and Asp-
16 (which can overcome a lack of Asp-59 in the reception

of the activation signal, due to its strong interaction with
the Mg2+ ion in the receptor cavity).
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Abstract Density functional theory (DFT) was used to
investigate the Rh(I)-catalyzed intermolecular hydroacylation
of vinylsilane with benzaldehyde. All intermediates and
transition states were optimized completely at the B3LYP/6-
31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated
that Rh(I)-catalyzed intermolecular hydroacylation is exer-
gonic, and the total free energy released is −110 kJ mol−1. Rh
(I)-catalyzed intermolecular hydroacylation mainly involves
the active catalyst CA2, rhodium–alkene–benzaldehyde
complex M1, rhodium–alkene–hydrogen–acyl complex
M2, rhodium–alkyl–acyl complex M3, rhodium–alkyl–
carbonyl–phenyl complex M4, rhodium–acyl–phenyl com-
plex M5, and rhodium–ketone complex M6. The reaction
pathway CA2 + R2 → M1b → T1b → M2b → T2b1 →
M3b1 → T4b → M4b → T5b → M5b → T6b → M6b →
P2 is the most favorable among all reaction channels of Rh
(I)-catalyzed intermolecular hydroacylation. The reductive
elimination reaction is the rate-determining step for this
pathway, and the dominant product predicted theoretically is
the linear ketone, which is consistent with Brookhart’s
experiments. Solvation has a significant effect, and it greatly
decreases the free energies of all species. The use of the
ligand Cp′ (Cp′=C5Me4CF3) decreased the free energies in
general, and in this case the rate-determining step was again
the reductive elimination reaction.

Keywords Rh(I)-catalyzed intermolecular hydroacylation .

Vinylsilane . Benzaldehyde . Reaction mechanism . DFT

Introduction

Transition metal-catalyzed C–H bond activation has re-
ceived considerable attention in synthetic organic chemistry,
as the cleavage of an unreactive C–H bond and the
subsequent addition of the C–H unit to an unsaturated
substrate such as an alkene or alkyne can lead to the
formation of a new C–C bond [1–7]. The formation of a
C–C bond is one of the most fundamental aims of organic
chemistry, so much effort has naturally been devoted to
developing more convenient and efficient strategies for the
formation of C–C bonds. During the last two decades,
many successful applications of catalytic C–H bond
activation with a view to creating new C–C bonds have
been reported in synthetic communities [8]. C–C bond-
forming reactions based on C–H bond activation have been
a major focus of study in the fields of organic and
organometallic chemistry [7–10].

Rhodium(I)-catalyzed intramolecular (Scheme 1) and
intermolecular (Scheme 2) hydroacylation of alkenes or
alkynes are two of the most useful C–H bond activation
processes [11–24]. In these hydroacylation reactions,
monophosphorus (e.g., PPh3) or biphosphorus (e.g.,
BINAP, dppe, DUPHOS, etc.) ligands are applied. As
shown in Scheme 3, the rhodium(I) bisolefin catalyst
CpRh(vinylsilane)2 can also be used [23], which does not
contain phosphorus.

Morehead and Sargent [25] studied the mechanism of the
rhodium-catalyzed intramolecular hydroacylation of
alkenes theoretically using the software package DMol3
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and the two-layer ONIOM approach [(B3LYP/LANL2DZ:
UFF method). The calculations supported the mechanism
illustrated in Scheme 4, and indicated that reductive
elimination is the rate-limiting step (Scheme 4, D → A)
and that complex C is the less dominant route for certain
solvent and substrate concentrations. Wu et al. [26] studied
the rhodium-catalyzed intramolecular hydroacylation of 4-
alkynals for a model system using MP2 calculations. The
reaction mechanisms of 4-alkynals are similar to those
presented in Scheme 4. They speculated that the activation
of the aldehydic C–H bond (i.e., the oxidative addition of
aldehydes) is the rate-determining step.

Brookhart [23] studied intermolecular hydroacylation
catalyzed by rhodium(I) bisolefin complexes and suggested
a likely mechanism (Scheme 5). He also suggested that
reductive elimination was the turnover-limiting step (J → F),
and showed that judicious functionalization of the cyclo-
pentadienyl ligand with electron-withdrawing groups can
promote the rate of reductive elimination. The utilization of
vinylsilane in hydroacylation gave a yield of 85%, and only
the linear ketone was obtained.

In order to understand the mechanism of intermolecular
hydroacylation catalyzed by the Rh(I) olefin complex in
detail, the CpRh(I)-catalyzed intermolecular hydroacylation
of vinylsilane with benzaldehyde was studied in the present
work. Specifically, the present study focused on: (1) the
energetics of the overall catalytic pathways in intermolec-
ular hydroacylation and the rearrangement processes in-
volved; (2) the structural features of the intermediates and
transition states involved; (3) the carbonylation versus
decarbonylation reaction; (4) solvation and ligand effects
in the reaction mechanism.

Computational details

All calculations were carried out with the Gaussian 03 program
package [27]. Density functional theory (DFT) methods [28]
have been widely applied to various molecular systems with
great success because of their efficiency and accuracy [29–
31]. This is especially true of the B3LYP method [32, 33],
which includes Becke’s three-parameter-exchange functionals
and the nonlocal Lee, Yang, and Parr correlation functional,
as it generally provides better results. The basis set 6-31G(d,
p) is used for C, O, Si, and H, and LANL2DZ is used for Rh,
adding one set of f polarization functions with an exponent of
1.35 [34]. The transition states were verified by intrinsic
reaction coordinate (IRC) [35] calculations and by animating
the negative eigenvector coordinates with a visualization
program (Molekel 4.3) [36, 37]. In addition, based on the gas
phase optimized geometry for each species, the solvent
effects of toluene were studied by applying a self-consistent
reaction field (SCRF) of the polarizable continuum model
(PCM) [38] approach at the same computational level.

Furthermore, the bonding characteristics were analyzed by
using the “atoms in molecules” (AIM) theory [39], which is
based on a topological analysis of the electron charge density
and its Laplacian. The magnitude of the electron density, ρ(r),
at the bond critical points (BCPs) depends on the interatomic
distance and the degree of coordination of the atoms, and it is
often used as a measure of the bond strength or the similarity
of bonds [40]. Further analysis was performed using the
natural bond orbital (NBO) theory [41–44]. The AIM
analysis was carried out with the AIM2000 code [45] using
the B3LYP/6-31G(d,p) [LANL2DZ(f) for Rh] wavefunctions
as input. The NBO analysis was performed by utilizing the
NBO5.0 code [46] with the optimized structures.

Molecular orbital compositions and the overlap popula-
tions were calculated with the AOMix program [47, 48].
The analysis of the MO compositions in terms of occupied
and unoccupied fragment molecular orbitals (OFOs and
UFOs, respectively), the charge decomposition analysis
(CDA), and the construction of orbital interaction diagrams
were all performed using AOMix-CDA [49].

Results and discussion

The relative free energiesΔG(sol), including solvent energies,
and the relative gas-phase free energies ΔG, enthalpies ΔH,

Scheme 2 Rhodium(I)-catalyzed intermolecular hydroacylation of alkenes

Scheme 1 Rhodium(I)-catalyzed intramolecular hydroacylation of
alkenes or alkynes
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and ZPE-corrected electronic energiesΔE are summarized in
Table S1 and S2. Unless otherwise noted, the discussed
energies are the relative free energiesΔG(sol) in the following
discussions. The most favorable reaction channel predicted
by our calculations is outlined in Scheme 6.

The coordination reaction of the catalysts and benzaldehyde

The optimized structures of two catalysts are shown in Fig.
S1. The coordination reaction of CA2 with benzaldehyde

(R2) leads to three possible complexes: M1a, M1b, and
M1c (Fig. S2). The first two are formed through π
backdonation bond between rhodium and the C=O
double bond of benzaldehyde, while the latter is formed
by a coordinate bond between rhodium and the oxygen
of benzaldehyde. The occupied πC3–O1 orbital of benzal-
dehyde acts on the empty hybrid orbital of rhodium,
leading to the σ coordinate bond; on the other hand, the
occupied d orbital (dxy, dxz, dyz) of rhodium acts on the
empty π*C3–O1 orbital of benzaldehyde, leading to the π

Scheme 4 Possible reaction mechanism of the rhodium(I)-catalyzed intramolecular hydroacylation of alkenes. (Those of alkynes are similar to alkenes)

Scheme 3 CpRh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde
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backdonation bond. Obviously, the formation of the π
backdonation bond lowers the system’s energy and makes
M1a and M1b more stable.

Of the three complexes, M1b is the most stable, because
the relative free energy of M1b is the lowest (Table S1),
suggesting that it is the most likely to exist. In M1a and

Scheme 6 The most favorable reaction channel of CpRh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde

Scheme 5 Possible reaction mechanism of the CpRh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde
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M1b, the NBO energy of the C3–H1 bond is lower than
that of benzaldehyde by 30 kJ mol−1, while in M1c, the
NBO energy of the C3–H1 bond is higher by 40 kJ mol−1.
Hence, in M1a and M1b, the formation of the π back-
donation bond weakens and activates the C3–H1 bond,
which results in the oxidative addition of benzaldehyde.

The formation of a branched ketone

Figure 1 shows the potential energy hypersurface for the
pathway leading to the formation of the branched ketone
P1. The C–H activation transition state T1a leading to the
complex M2a is the rate-determining step and, with a free
energy of 44.3 kJ mol−1, the highest stationary point in the
formation process of P1. Intermediate M2a then undergoes
a trans addition to the alkene (intramolecular hydrometal-
lation) through the transition state T2a1 with a free energy
of activation of 0.5 kJ mol−1 to give the complex M3a1.
Next, intermediate M3a1 undergoes a carbonyl elimination
reaction via the transition state T4a with a free energy of
activation of 30.7 kJ mol−1, resulting in the CpRh–alkyl–
carbonyl–phenyl complex M4a. Then intermediate M4a
undergoes a carbonyl insertion reaction through the
transition state T5a with a free energy of activation of
13.4 kJ mol−1 to generate the complex M5a. Finally,
intermediate M5a undergoes a reductive elimination reac-
tion via transition state T6a with a free energy of activation
of 25.6 kJ mol−1 to form Rh–ketone complex M6a, leading
to the branched ketone P1.

In σ(Rh–H1) bond formation, the distance d(C3–H1) between
C3 and H1 increases, d(Rh–H1) decreases, and Rh shifts to C3.
It is clear that a significant interaction between Rh and H1
occurs, and the C3–H1 bond is weakened considerably, as
demonstrated by analyzing the changes in the bond orders Pij
and electron density ρ at the BCPs (Table S5; e.g., Rh–H1

bond, Pij, M1a: 0.005 → T1a: 0.234 → M2a: 0.411; ρ, M1:
0.000→ T1a: 0.104→M2a: 0.158 e Å−3). NBO analysis of
M2a indicates that the Rh–H1 and Rh–C3 bonds show
strong single-bond character, and the NBO energies of the
bonding orbitals σRh–H1 and σRh–C3 are −742 and −1015 kJ
mol−1, respectively. In the intramolecular hydrometallation,
because of the steric resistance of M2a, hydrogen migration
has only one possible reaction pathway (a trans addition to
an alkene). T2a1 involves a Rh–H1–C1–C2 four-membered
ring, and the electron density of the ring critical point (RCP)
is 0.08 e Å-3. In M3a1, the Rh–C2 and Rh–C3 bonds are
2.109 and 1.919 Å, respectively (Fig. S4). NBO analysis of
M3a1 indicates that the Rh–C2 and Rh–C3 bonds show
strong single-bond character, and the NBO energies are −785
and −1054 kJ mol−1, respectively. Obviously, the Rh–C3
bond is stronger than the Rh–C2 bond. Because C1 is sp3

hybridized, the πC1–C2 bond is broken, and then the π
backdonation bond between rhodium and the πC1–C2 bond is
also broken. InM4a, the Rh–C3 and Rh–C4 bonds are 1.850
and 2.064 Å, respectively (Fig. S6). The NBO energies of
the Rh–C3 and Rh–C4 bonds are −1519 and −961 kJ mol−1,
respectively. Clearly, the NBO energy of the Rh–C3 bond is
much lower than in M3a1 (by 465 kJ mol−1), due to the
formation of the π backdonation bond between rhodium and
the πC3–O1 bond of the carbonyl. InM5a, the Rh–C3 bond is
1.927 Å, which is longer than in M4a by 0.08 Å. The NBO
energy of the Rh–C3 bond is −1024 kJ mol−1, which is higher
than in M4a by 495 kJ mol−1. The Rh–C3 bond is markedly
weakened due to the disruption of the π backdonation bond
between rhodium and the πC3–O1 bond of carbonyl.

The formation of a linear ketone

Figure 2 shows the potential energy hypersurface for the
pathway leading to the formation of the linear ketone P2.

Fig. 1 Free-energy profile for the proposed formation pathway for branched ketone P1
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The oxidative addition reaction of benzaldehyde passes
through the C–H activation transition state T1b with a free
energy of 1.2 kJ mol−1, leading to the complex M2b.
Intermediate M2b then undergoes a cis addition to the
alkene through the transition state T2b1 with a free energy
of activation of −3.8 kJ mol−1 to give the complex M3b1.
Next, intermediate M3b1 undergoes a carbonyl elimination
reaction via the transition state T4b with a free energy of
activation of 14.3 kJ mol−1, leading to the complex M4b.
Then intermediate M4b undergoes a carbonyl insertion
reaction through the transition state T5b with a free energy
of activation of 9.9 kJ mol−1 to generate the complex M5b.
Finally, intermediate M5b undergoes a reductive elimina-
tion reaction via the transition state T6b with a free energy
of activation of 26.4 kJ mol−1 to form Rh–ketone complex
M6b, leading to the linear ketone P2. Obviously, the
transition state T6b is the highest stationary point in the
process of forming the linear ketone P2. Hence, the reductive
elimination reaction is the rate-determining step for this
pathway, which is different from that for the formation of the
branched ketone P1. Comparing and contrasting Fig. 1 with
Fig. 2, we find that the free energy of T5b is relatively close
to that of T5a, but the free energy of T1b is lower than that
of T1a by 43.1 kJ mol−1. The steric and structural resistances
between –SiMe3 and –Ph of T1a are much stronger than in
T1b, and there are two hydrogen bonds, O…H–C1 (2.244
Å) and O…H–CSi (2.470 Å), in T1b.

In the intramolecular hydrometallation, because of the
steric resistance of M2b, there is only one possible pathway
for hydrogen migration (cis addition to alkene). As
illustrated in Fig. 3, the HOMO-1 for T2b1 is a mixture
of 6.6% HOFO-0 for vinylsilane (fragment 1) and 10.9%
LUFO + 0 and 67.4% HOFO-1 for the rhodium–hydrogen
fragment (fragment 2). The LUMO + 2 for T2b1 is a
mixture of 15.1% HOFO-0 for vinylsilane and 55.8%

LUFO + 0 and 11.4% LUFO + 4 for the rhodium–hydrogen
fragment. It is clear that the reaction between vinylsilane
and the rhodium–hydrogen fragment occurs dominantly
between HOFO-0 of fragment 1 and HOFO-1, LUFO + 0,
and LUFO + 4 of fragment 2. The net charge donation,
which includes both charge donation and electronic
polarization contributions, is 0.19 electrons. Obviously, this
fact suggests that in the intramolecular hydrometallation,
vinylsilane donates electrons to rhodium and hydrogen,
which results in the formation of the Rh–C2 bond.

NBO analysis of M3b1 indicates that the Rh–C1 and
Rh–C3 bonds show strong single-bonded character, and the
π backdonation bond between rhodium and the πC1–C2

bond is also broken. Figure 4 shows that HOMO-2 for T4b
is a mixture of 22.9% HOFO-0 for the phenyl (fragment 1)
and 42.7% HOFO-1 for the rhodium–alkyl–carbonyl
fragment (fragment 2); HOMO-0 is a mixture of 4.4%
HOFO-2 for the phenyl and 11.2% HOFO-1, 36.8%
HOFO-0, and 38.9% LUFO + 0 for the rhodium–alkyl–
carbonyl fragment; LUMO + 0 is a mixture of 28.7%
LUFO + 0 for the phenyl and 11.6% LUFO + 0 and 36.5%
LUFO + 1 for the rhodium–alkyl–carbonyl fragment;
LUMO + 3 is a mixture of 31.9% LUFO + 0 for the
phenyl and 12.5% LUFO + 0 and 22.4% LUFO + 2 for the
rhodium–alkyl–carbonyl fragment. It is clear that the
reaction between the phenyl and the rhodium–alkyl–
carbonyl fragment occurs dominantly between LUFO + 0,
HOFO-0 of fragment 1 and HOFO-1, HOFO-0, LUFO + 0,
LUFO + 1, and LUFO + 2 of fragment 2. The net charge
donation, which includes both charge donation and elec-
tronic polarization contributions, is 1.07 electrons. Clearly,
this fact suggests that in the carbonyl elimination reaction,
phenyl donates electrons to carbonyl and rhodium, which
results in the formation of the Rh–C4 bond and π
backdonation bond between rhodium and carbonyl.

Fig. 2 Free-energy profile for the proposed formation pathway of the linear ketone P2
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The formation of an alkane: the decarbonylation reaction

Experimental studies [23] show that the decarbonylation
reaction will generate an alkane in CpRh(I)-catalyzed
intermolecular hydroacylation. Figure 5 shows the poten-
tial energy profiles for two pathways leading to the
formation of the branched or the linear alkane. The
optimized structures of the two transition states T7a and
T7b are shown in Fig. S7. The organometallic product of
the reductive decarbonylation have been identified as the
dimer [Rh(C5H5)(CO)]2 of CA3, which ultimately results
in catalyst death.

These results show that the branched alkane is formed
from M4a via a decarbonylation. Although the formation
of the CpRh–CO–alkane complex M7a is exergonic by
85.1 kJ mol−1, the barrier to the formation of the branched
alkane is 118.8 kJ mol−1 (prohibitively high). Contrasting
with Fig. 1, the activation free energy of T7a is higher
than that of T1a by 33.3 kJ mol−1. Hence, the branched
alkane will not be formed. The results also show that the
barrier to the formation of the linear alkane is 114.9 kJ mol−1

(again, prohibitively high). Comparing with Fig. 2, the free
energy of activation of T7b is higher than that of T6b by
23.5 kJ mol−1. It is therefore clear that the linear alkane will

Fig. 3 Orbital interaction diagram for T2b1, which is formed from Me3SiCH=CH2 and CpRh(H)PhCO [the AOMix-CDA calculation, based on
B3LYP/6-31G(d,p) results (LANL2DZ(f) for Rh)]. The net charge donation CT(1→2) − CT(2→1) is 0.19 electrons)
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not be formed, because there is an energetically more
favorable pathway for the formation of the linear ketone P2.

Other possible reaction pathways

The Rh–ketone complexes M6a and M6b will form
directly from M3a1 and M3b1 via a reductive elimination
reaction. The corresponding transition states are, respec-
tively, T3a1 with 65.4 kJ mol−1 of free energy of activation
and T3b1 with 54.9 kJ mol−1. Calculated results show that
the free energy of activation of T3a1 is higher than that of
T1a by 21.1 kJ mol−1, and that of T3b1 is higher than that
of T6b by 28.5 kJ mol−1. It is therefore clear that the
reductive elimination reaction from M3a1 and M3b1 via
T3a1 and T3b1 will be difficult to achieve.

As shown in Fig. S3, M2a and M2b have three possible
reaction pathways: in M2a, H1 attacking C1 is denoted
“a1,” while C3 attacking C1 or C2 is denoted “a2” or “a3;”
in M2b, H1 attacking C2 is denoted “b1,” and C3 attacking
C1 or C2 is denoted “a2” or “a3.” The optimized structures
are shown in Figs. S4 and S5. The reaction pathways “a1”

Fig. 5 Free-energy profile for the proposed formation pathways of the
alkanes P3 and P4: the decarbonylation reaction

Fig. 4 Orbital interaction diagram for T4b, which is formed from phenyl and CpRh(CO)CH2CH2SiMe3 [the AOMix-CDA calculation, based on
B3LYP/6-31G(d,p) results (LANL2DZ(f) for Rh)]. The net charge donation CT(1→2) − CT(2→1) is 1.07 electrons)
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and “b1” have been discussed above. In intermediates
M3a2, M3a3, M3b2, and M3b3, as well as transition states
T3a2, T3a3, T3b2, and T3b3, there is one Rh–C2–C1–
C3–O1 or Rh–C1–C2–C3–O1 five-membered ring, and the
electron densities of the RCPs are 0.03 for M3 and 0.02
e Å−3 for T3. Several results due to the possible reaction
channels in M2a and M2b can be summarized as follows.
(1) The formation of intermediate M3 is exergonic by 3~32
kJ mol−1. (2) Hydrogen migration occurs prior to the C–C
bond-forming reaction, because the free energies of
activation of transition states of hydrogen migration are
much lower than those of C–C bond-forming by 60~90 kJ
mol−1. (3) In the C–C bond-forming reaction, the carbonyl
carbon atom finds it easier to attack the terminal carbon
atom of the alkene.

Overview of the reaction mechanism

The dominant reaction pathways discussed above are
outlined in Scheme 6. The Rh(I)-catalyzed intermolecular
hydroacylation of vinylsilane with benzaldehyde mainly
involves the rhodium–alkene–benzaldehyde complex M1,
rhodium–alkene–hydrogen–acyl complex M2, rhodium–
alkyl–acyl complex M3, rhodium–alkyl–carbonyl–phenyl
complex M4, rhodium–acyl–phenyl complex M5, and
rhodium–ketone complex M6. Calculated results indicate
that the Rh(I)-catalyzed intermolecular hydroacylation
is exergonic, and that the total released free energy
is −110 kJ mol−1.

In M2a and M2b, a hydrogen migration reaction occurs
prior to the C–C bond-forming reaction. In M3a1 and
M3b1, the carbonyl elimination reaction is more dominant
than the reductive elimination reaction. In M4a and M4b,
because of the high free energies of activation, the
decarbonylation reaction is prohibited, so an alkane will

not be formed. Therefore, among the reaction channels for
the Rh(I)-catalyzed intermolecular hydroacylation of vinyl-
silane with benzaldehyde, the reaction pathway CA2 +
R2 → M1b → T1b → M2b → T2b1 → M3b1 → T4b →
M4b → T5b → M5b → T6b → M6b → P2 is the most
favorable. The reductive elimination reaction is the rate-
determining step for this pathway, and the dominant
product predicted theoretically is the linear ketone, which
is consistent with Brookhart’s experiments [23].

The effect of the solvent

To evaluate the solvent effect for toluene (ε = 2.379),
single-point computations were performed at the B3LYP/6-
31G(d,p) level [LANL2DZ(f) for Rh] using the PCM
model with default parameters, except for the temperature
(373.15 K is used) [23].

The schematic reaction profiles of the most favorable
reaction pathways of Rh(I)-catalyzed intermolecular hydro-
acylation are shown in Fig. S8. Comparing and contrasting
the blue line and red line in Fig. S8, we find that the
solvation effect greatly decreases the free energies of all the
intermediates and transition states. Clearly, the solvation
effect is considerable. Furthermore, Fig. S8 also shows that
the formation of the linear ketone P2 is the energetically
most favorable pathway (the blue line).

The effect of the ligand

Brookhart [23] show that the judicious functionalization of
the cyclopentadienyl ligand with electron-withdrawing
groups can promote the rate of reductive elimination. To
understand the effect of the ligand, these calculations were
performed on the stationary points of the most favorable
reaction pathway when using Cp′ (Cp′=C5Me4CF3) instead

Fig. 6 Free-energy profile for the most favorable pathway when using Cp′ (Cp′=C5Me4CF3) instead of Cp
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of Cp, and the resulting relative free energies ΔG(sol)

including solvent energies are summarized in Table S6. The
intermediates and transition states are shown in Fig. S9.

Comparing and contrasting Fig. 6 with Fig. 2, we find
that the free energies generally decreased when using Cp′
instead of Cp, and the free energy of T6b′ is lower than that
of T6b by 10.6 kJ mol−1. The transition state T6b′ is the
highest stationary point in the process of forming the linear
ketone P2. Hence, the reductive elimination reaction is the
rate-determining step for this pathway, which is in good
agreement with the results discussed above for Cp.

Comparison to our related computational work

We have studied the intermolecular hydroacylation of the
ethene–aldehyde– or propylene–aldehyde–[Rh(PH3)2]

+

model system at the B3LYP/6-311++G(d,p) [LANL2DZ(f)
for Rh and P] level [50, 51]. Formic acid or formaldehyde
were used instead of benzaldehyde.

We obtained some similar conclusions in our present
work and in previous works. Firstly, Rh(I)-catalyzed
hydroacylation is exergonic. Secondly, hydrogen migra-
tion reaction occurs prior to the C–C bond-forming
reaction. Thirdly, the theoretically predicted dominant
product is linear.

However, the reaction mechanism is different: the
mechanism found in the previous work is similar to that
shown in Scheme 4, and the oxidative addition of aldehyde
is the rate-determining step for the most favorable path-
ways. Carbonyl elimination and insertion, decarbonylation,
the solvation effect, and the ligand effect—which were all
studied in the present work—were not studied in our
previous works.

Conclusions

The reactionmechanism of the Rh(I)-catalyzed intermolecular
hydroacylation of vinylsilane with benzaldehyde has
been explored computationally using DFT [at the
B3LYP/6-31G(d,p) level; LANL2DZ(f) for Rh]. Calculated
results indicate that the Rh(I)-catalyzed intermolecular hydro-
acylation is exergonic, and that the total released free energy
is −110 kJ mol−1. In the intermediates M2a and M2b, a
hydrogen migration reaction occurs prior to the C–C bond-
forming reaction. In M3a1 and M3b1, the carbonyl
elimination reaction is dominant over the reductive elimina-
tion reaction. In M4a and M4b, the decarbonylation reaction
is prohibited, so an alkane will not be formed.

The reaction pathway CA2 + R2 → M1b → T1b →
M2b → T2b1 → M3b1 → T4b → M4b → T5b →
M5b → T6b → M6b → P2 is the most favorable among
all of the reaction channels of Rh(I)-catalyzed intermolecular

hydroacylation. The reductive elimination reaction is the rate-
determining step for this pathway, and the theoretically
predicted dominant product is the linear ketone, which is
consistent with Brookhart’s experiments.

The solvation effect is considerable, and it greatly
decreases the free energies of all of the species. It also
indicates that the formation of the linear ketone P2 is the
energetically most favorable pathway.

The use of the ligand Cp′ (Cp′=C5Me4CF3) generally
decreased the free energies of the complexes. In that case,
the rate-determining step was the reductive elimination
reaction, which is in good agreement with the results found
for the ligand Cp.
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Abstract The unregulated epidermal growth factor recep-
tor tyrosine kinase (ErbB1-TK or EGFR-TK) protein is
involved in the proliferation of more than 50% of all cancer
types. The reduction of EGFR-TK activity by small or
medium-sized molecules has been proven to be an effective
treatment for cancer. There is a widespread belief that
Chinese medicinal herbs are active against several diseases,
including various types of cancer. In this study, 29,960
compounds from the Chemiebase medicinal compound
database were virtually screened against the EGFR-TK
using AutoDock4.0, GOLD and GLIDE (XP). The results
revealed eight potential hits: CAS nos. 104096-45-9,
112649-21-5, 113866-89-0, 142608-98-8, 142608-99-9,
144761-33-1, 155233-17-3 and 80510-05-0. These com-
pounds have been reported to show anticancer activities in
the literature. With the help of SiMMap and MOE
interaction analysis, the protein–ligand interaction patterns
between the functional groups of these compounds and the
binding pocket residues were analyzed. Hydrogen bonding
and hydrophobic forces are the main components of the

interactions of these hits, similar to those observed for the
known inhibitors erlotinib, gefitinib and AEE. The physi-
cochemical filter indicates that compounds CAS nos.
104096-45-9 and 144761-33-1 are likely to be potential
leads in the drug discovery process.

Keywords Chemiebase database . EGFR . Tyrosine kinase .

Virtual screening . Structure-based drug design

Introduction

Aberrant activity of the protein tyrosine kinases (PTKs) is
one of the factors known to lead to cancer development.
PTKs play pivotal roles in cell regulation, taking part in
proliferation, differentiation, cell cycle progression, angio-
genesis and the inhibition of apoptosis [1]. Thus, it is
unsurprising that abnormal activity of the PTKs can lead to
the development and maintenance of various cancers.
Among the PTKs, the human epidermal receptor (HER)
and epidermal growth factor receptor (EGFR, ErbB) family
is one of the most widely studied. The overexpression,
amplification and mutation of EGFR and others within the
ErbB receptor family (ErbB2, ErbB3, and ErbB4) are
implicated in a range of malignancies, and thus hold
particular appeal as a molecular target for cancer drug
discovery [2]. There are various reports that EGFR is a
cause of mostly non-small cell lung cancer (NSCLC), while
ErbB2 is implicated in breast cancer [3].

Inhibition of EGFR-TK has been proven to be an
effective cancer therapy [4]. Such inhibitors of EGFR-
TKI can be classified into chemical categories: (1) 4-
anilinoquinazolines, (2) 4-(ar(alk)ylamino) pyridopyrimi-
dines, (3) 4-phenylaminopyrrolo-pyrimidines [5], and (4)
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oxime inhibitors [6, 7]. Examples of ErbB-TKIs (antican-
cer drugs) that are on the market or under investigation
include erlotinib (Tarceva®) [8], lapatinib (Tykerb®) [9],
gefitinib (Irressa®) [10, 11], vandetanib (Zactima®) [12],
neratinib (HKI-272) [13], BIBW 2992 (Tovok®) [14–16],

pelitinib (EKB-569) [17], canertinib [18], AEE788 [19]
and PKI166 [20], as well as the oxime inhibitors POX [7]
and HYZ [6], as shown in Fig. 1.

Even though there are several effective anticancer drugs
and active inhibitors against a number of protein targets,

Fig. 1 EGFR-TK inhibitors classified into four chemical categories
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increasing resistance coupled with many side effects mean
that there is a need for new, improved treatments [21, 22].
Plants are the most important sources of the active
ingredients used in modern medicines. More than half of
the drugs approved since 1994 are based on natural
products [23–25]. They are used in traditional medicines
around the world, especially in Asia.

The availability of EGFR-TK structures [6, 7, 26–35]
implies that virtual screening (VS) could be used as a tool
to search for potential active compounds from medicinal
herbs. The structures of the active compounds found in the
folk-medicinal herbs have been collected in the Chemiebase
database [36]. We developed a virtual screening protocol
using three docking programs, AutoDock4 [37–39], GOLD
[40, 41], and GLIDE [42]. They were applied to screen the
Chemiebase database, which contains approximately
30,000 compounds. The resulting hits were analyzed to
gain insights into the key structural features required for
good protein–ligand interactions.

Materials and methods

Ligand preparation

The Chemiebase database contains a collection of Thai
natural compounds (N=29,960) from 79 plant species. This
database was obtained from the Cheminformatics Research
Unit, Department of Chemistry, Faculty of Science,
Kasetsart University. Further details are available at http://
chemiebase.ku.ac.th. Two-dimensional (2D) structures were
converted to 3D using CORINA [43], and optimized using
semi-empirical PM3 calculations performed by the GAMESS
package [44].

Virtual screening procedures

Filter

The 29,960 compounds in Chemiebase were filtered using
the FILTER program (from Openeye Scientific Software)
[45] and drug-likeness principles in order to eliminate
unwanted compounds. The parameters in the FILTER
program were modified to select the compounds that
possess molecular weights of less than 500, clogP values
of between −5 and 5, five or less hydrogen-bond donors,
not more than ten hydrogen-bond acceptors, and fewer than
ten rotational bonds [46].

AutoDock4

The atomic protein–ligand complex (PDB ID 1M17) was
separated. Its geometry was optimized with the Tripos

forcefield in Sybyl 7.3 (Tripos Associates, St. Louis, MO,
USA) [47]. Rigid receptor docking was performed using
the AutoDock4 program. The rotational bonds of all
proteins were regarded as being rigid, while the rotation-
al bonds of the ligands were treated as flexible in a
Python script (prepare_ligand4.py). The Python script for
ligand preparation was embedded in the AutoDock
program as script commands. The hydrogen atoms, the
Kollman united-atom charges and the solvent parameter
were applied to the proteins, and the set-up process for
the grid was performed in AutoDockTools v.1.5.2. The
grid boxes were fixed around the catalytic cleft (as
shown in Fig. 2), and the dimensions of the box were set
to 70, 60 and 60, while the grid point spacing was
0.375 Å. The grid affinity maps for the A (aromatic
carbon), C, HD, N, NA (hydrogen-bond-accepting N), O,
OA (hydrogen-bond-accepting O), S, SA (hydrogen-bond-
accepting S), Cl, F, Br, I, P, and e (electrostatic) atom types
were calculated using AutoGrid 4.0. The Lamarckian
genetic algorithm search parameter was activated to
simulate protein–ligand docking with 50 trial runs. The
population size was set to 150. Docked conformations
were clustered using a root mean square deviation
(RMSD) tolerance of 2.0 Å by employing the clustering
python script (summarize_results4.py). The structure of
erlotinib (anticancer drug, complex ligand from 1M17)
was also considered as a control. The docking results were
sorted by the lowest binding energy (AutoDock4 score) as
well as OEchemscore in the FRED program [48]. The
intersection results from AutoDock4 and FRED revealed
993 selected compounds.

GOLD 4.0.1 kinase ChemScore (KCS)

All hydrogen atoms were added into the atomic
coordinates of the protein structure using the Proton-
ation and Tautomers function in theGOLD Setup window.
The other configuration parameters were set to their
defaults. The three-dimensional coordinates of the ligand,
water and ion molecules were separated from the structure
of the protein via the Set Up and Run a Docking wizard in
the GOLD program. Automatic GA parameter setting was
used in all GOLD docking calculations. One hundred
percent search efficiency was applied, with between
10,000 and 125,000 GA operations per ligand. The
binding site was defined to include all amino acid
residues within a radius of 7 Å from the center of
erlotinib; all water molecules were removed. The kinase
scoring function, modified from the ChemScore Fitness
Function (KSC), was applied in all docking calculations.
The KCS is embedded in the GOLD package. This
scoring function includes the contributions of the weak
CH···O hydrogen bond, which are mostly found in kinase
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proteins [49]. The functions Allow Early Termination,
Generate Diverse Solutions and the internal ligand energy
offset were also activated. The 527 compounds that
presented KCS scores that were better than that of
erlotinib were selected for further studies.

Glide extra precision mode (XP mode)

Protein Preparation Wizard Workflow implemented in
Maestro 8.5 was used to prepare the protein using the
default settings [50]. The 340 intersected structures from
the GOLD (KCS) and AutoDock4 results were prepared
further by LigPrep 2.2 [51]. Both protein and ligands were
parameterized with the OPLS force field. The Receptor
Grid Generation panel generated the grid map for the
receptor. The center of the grid was located in the catalytic
cleft. Docking calculations were preformed in Extra
Precision (XP) mode using the Ligand Docking panel.
The Receptor Grid Generation and Ligand Docking
panels are functions in the Glide (Grid-based Ligand
Docking with Energetics) module. The XP mode com-
bines a powerful sampling protocol with the use of an XP
scoring function that is designed to specify only good
ligand poses [52]. The compounds that had XP scores

better than that of erlotinib were screened as the candidate
compounds.

Post-docking analysis

We used several tools to analyze the interactions between
the EGFR and the hit compounds. The most important
interactions of the protein and ligand complex from the
docked results were calculated using the Ligand Interac-
tions module embedded in the MOE package (Chemical
Computing Group Inc.) [46]. The relationships between the
functional sites (on the protein) and the compound moieties
were extracted for the virtual screening compounds. The hit
compounds were further analyzed with the SiMMap server
[53] to identify binding modes with the target protein.

A new approach to predicting the absorption, distribution,
metabolism, excretion and toxicity properties (ADMET or
physicochemical properties) of drugs provides an effective
tool for filtering weak compounds [54, 55]. This tool allows
us to remove molecules with poor pharmacokinetic prop-
erties, so it helps to save limited resources. The selected
molecules were applied in further studies and MD
calculations. All figures were produced using Pymol
v.0.99 [56]

Fig. 2 The binding mode of erlotinib and the binding residue of 1M17
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Molecular dynamics simulations

The molecular dynamics (MD) simulations were carried out
to check whether the hit compounds remain bound in the
ATP-binding pocket of EGFR-TK. Three complexes,
EGFR-TK with gefitinib (WT-IRE), EGFR-TK with com-
pound A (WT-CPA) and EGFR-TK with compound F (WT-
CPF), were constructed using the crystal structure of
EGFR-TK (PDB code: 1M17) as the protein. The confor-
mation of each ligand inside EGFR-TK was obtained from
the docking results. The protein was capped at the N- and
C-termini by ACE and NME respectively in order to avoid
the tail charge problem when using the Sybyl 7.3 program
[47]. All of the classical simulations were performed with
the AMBER 03 force field [57] and the AMBER 10
package. The general AMBER force field (GAFF) param-
eters [58] and AM1-BCC charges were assigned using the
Antechamber module. Each protein ligand complex was
immersed in an isomeric truncated-octahedron box of
TIP3P water molecules [59] (12 Å from the solute surface)
and neutralized by the addition of Cl− anions. All hydrogen
atoms were added by using the TLeap module of the
AMBER package. The MD strategy consisted of a three-
step energy minimization of the solvated complexes. First
of all, the hydrogen atoms were optimized using the
steepest descent method with 3500 steps, and then the
conjugate gradient method was employed for another 3500
steps while other atoms were kept frozen. Secondly, water
molecules were minimized using the same protocol as
used in the first step, keeping the protein and ligand
frozen. Then, a third stage of minimization—using the
same approach as in the two steps above—was per-
formed with all atoms relaxed. Periodic boundary con-
ditions (PBC) were also applied. Complexes were heated
for 200 ps up to 300 K. They were then maintained in
the isothermal–isobaric ensemble (NPT) at the target
temperature and target pressure at 1 bar using a Langevin
thermostat and Berendesen barostat, respectively. After
the equilibration stage, MD simulations were carried out
for 18 ns. The time steps in the equilibration and
production runs were set to 2 fs, and bonds involving
hydrogen atoms were constrained with the SHAKE
algorithm [60]. MD simulation analyses were mainly
performed with the PTRAJ module of the AMBER10
package.

MM-PBSA calculations

The energy calculations were carried using the MM-PBSA
Perl script embedded in AMBER10. The atomic coordi-
nates of EGFR-TK and each ligand were extracted from a
single trajectory of the molecular dynamics simulation with
explicit water molecules for equilibration. Each energy term

of MM-PBSAwas evaluated for 2 ns of the trajectory, from
16 ns to 18 ns, within 250 snapshots.

The binding free energy ΔGBIND was estimated as

ΔGMM=PBSA ¼ ΔGcomplex � ðΔGprotein þΔGligandÞ ð1Þ

ΔGMM=PBSA ¼ ΔEGAS þΔΔGSOLV � TΔS ð2Þ

ΔEGAS ¼ ΔEELE þΔEVDW þΔEINT ð3Þ

ΔΔGSOLV ¼ ΔΔGSA þΔΔGPB ð4Þ
ΔEGAS is the interaction energy between the EGFR-TK

and ligand(s) in the gas phase, as shown in Eq. 3, while
ΔEELE, ΔEVDW and ΔEINT represent the receptor–ligand
electrostatic and van der Waals interactions, and the internal
energy, respectively. The solvation free energy (ΔΔGSOLV)
consists of two parts: the polar/electrostatic solvation free
energy (ΔΔGPB) and the nonpolar/hydrophobic solvation
free energy (ΔΔGSA). All energies are averaged along the
MD trajectories.

Results and discussion

Validation of the docking methodology

There are two conformations for the X-ray crystal structures
of EGFR-TK: the active and inactive conformations [26].
The focus of of this study has been on virtual screening
Thai natural product compounds against the active confor-
mation of EGFR-TK because most inhibitors have been
found to bind with the active form of EGFR-TK [26, 28,
30]. Therefore, the active conformation of EGFR, 1M17
[26], was chosen as the target protein structure for virtual
screening. In our previous study, we developed a VS
protocol for the kinase domain of EGFR using Auto-
Dock3.0.5 and GOLD 4.0.1 [61] in order to screen the NCI
diversity database. In this study, the newer AutoDock4
program and FRED (OEchemscore) for rescoring, as well
as GOLD 4.0.1 with three scores—Goldscore (GS), Chem-
Score (CS) and KCS—were used. Furthermore, the Glide
program used in standard precision (SP) and XP as well as
high-throughput virtual screening (HTVS) modes was
applied. The docking approaches were validated with three
known inhibitors from crystal structure complexes; erloti-
nib, gefitinib and AEE788 (PDB code: 1M17, 2ITO and
2J6M) [26, 30]. The atomic coordinates of three inhibitors
were retrieved after the structures were superimposed.
These were used as the standard orientation to calculate
the RMSDs for the docked conformations. The binding
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energies in Table 1 show that the experimental values
correlate well with the computational values obtained from
AutoDock and GOLD (KCS). Even though they were not
as well correlated with the results from GLIDE docking, the
overall binding energies calculated from docking programs
were still in the same range. In the tests presented in
Table 1, Glide XP gave the lowest docking RMSD, which
indicates the high quality of this docking method. Although
its scoring ability was not as good as AutoDock and
GOLD, which may be due to our rather small validation
test, we consider Glide XP to be the most generally reliable
scoring function, based on previous extensive enrichment
studies performed on the EGFR receptor [62].

All 29,960 compounds from the Thai herbal compound
database were filtered using Lipinski’s rule of five in the
FILTER program [45]. The 15,758 compounds that passed
through the filter process were prepared and docked into the
pocket site of the EGFR-TK structure using combination
methods including AutoDock4 and GOLD with KCS,
similar to those used in our previous publication [61]. The
docked results from AutoDock4 and GOLD (KCS)
revealed 993 and 527 compounds, respectively, that were
better scored than known inhibitors. A total of 304
consensus compounds were identified by both docking
methods according to the flowchart (Fig. 3). We then
applied the Glide docking method in the XP mode to these
hits. Finally, eight unique compounds that gave XP scores
that were better than the reference inhibitors were selected
(Tables 2 and 3).

The eight hit compounds show anticancer activities

The eight hit compounds are found in plants, and they have
already been reported to possess anticancer activities. Awas
first specified by Loder and group in 1957 [63]. This
compound was found in a plant from the genus Diospyros,
commonly known as the ebony tree (Table 2), and has been
reported to show anticancer activity [64]. The derivatives of
B were reported to possess anticancer activity in relation to
several types of cancer, such as hepatocellular carcinoma
[65], human leukemia cell line HL60 [66], and oral human
epidermoid carcinoma (KB) [67]. C, which is found in
custard apple and makrut lime, has been reported to inhibit
5α-reductase enzyme activity, which is involved in prostate
cancer [68]. The small molecules exiguaflavone A and
exiguaflavone B (D and E) are found in Sophora exigua (or
legume) [69] and Artemisia indica Willd (or “kho-hia,” its
local name) [70, 71]. The analogs of curcumin (F; CAS no.
144761-33-1), which is found in wild turmeric plants, show
cytotoxicity towards lymphocytes and promising tumor-
reducing activity towards Dalton’s lymphoma ascites tumor
cells [72]. G (lespedezaflavanon B) is an antimutagenic
constituent of neem (Azadirachta indica) [73]. Although T
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the inhibitory mechanisms of these compounds are un-
known, it is possible that this mechanism may be related to
the EGFR pathway.

The atomic interactions of the eight candidates
with the EGFR kinase domain

The interactions of the eight candidates with the kinase domain
are shown in the two- and three-dimensional diagrams (2D and
3D) in Fig. 4. These reveal hydrogen-bond interactions and
cation–π interactions between pocket residue(s) and ligand(s).
These interactions were also seen for known inhibitors. A

strong hydrogen bond is consistently formed with Met769.
The quinazoline rings of the candidates also show lipophilic
stacking interactions with the hydrophobic residues in
hydrophobic pocket region I: Val702, Lys721, Met742,
Leu764 and Thr766 [74]. The interaction patterns of the
eight compounds were analyzed based on the MOE–ligand
interaction [46] and a site-moiety map that was statistically
derived using several anchors by the SiMMap server [53].
The main interactions of the docked hit compounds with
EGFR-TK were a combination of hydrogen bonding and
hydrophobic interactions with the residues around the
catalytic cleft. The polar moieties of seven of the eight
compounds formed strong hydrogen bonds with the residue
Met769 (Fig. 4a–f, h), which was also noted in the SiMMap
analysis; see anchor H1 (Fig. 5). This hydrogen bonding was
also seen in all three reference inhibitors (erlotinib, gefitinib
and AEE), indicating that this is the most important hydrogen
bonding associated with the TK inhibitors.

In addition, Lys721 plays a significant role, because it
interacts with seven of the eight candidates in various ways:
(1) through hydrogen bonding (cation H-bond; Fig. 4a–b,
g–h), (2) through a weak π–cation interaction between the
Nζ-atom of Lys721 and the benzene ring of the compound
(Fig. 4d–f), and (3) through a hydrophobic interaction
between the side chain of Lys721 and the aromatic moiety
of the hit compound (Fig. 4c). The side chain of this residue
also participates in a hydrophobic interaction with the
aniline rings (aromatic moiety) of known inhibitors (erlo-
tinib and gefitinib as well as AEE788). This interaction was
also found in the SiMMap analysis; Lys721 represents the
van der Waals (VDW) anchor (V2), which forms a
hydrophobic interaction with the aromatic moiety, as
presented in Fig. 5. Furthermore, the residues Asp831,
Pro770, Thr766 and Arg817 also formed hydrogen bonds
with the hit compound, which were similar to the hydrogen
bonds that the reference inhibitors formed with Thr766 and
Thr830 through water molecules.

These eight hits can be classified into five groups:
xanthones (B, G), flavanones (D–E, H), phenylated flavone
(C), binaphthalene (A), and diphenylheptanoid or curcumin
analog (F). The compounds in the xanthone group showed
similar binding modes: hydrogen bonds between the Nζ
atom of Lys721 and the O atom of the hydroxyl group on the
xanthone backbone, and between the carboxy O atom of
Asp831 and the H atom of the hydroxyl group on the
xanthone backbone (Fig. 4b, g). Conserved residues that
interact with compounds in flavanone and phenylate flavone
include Lys721 and Met769, both of which participate in π–
cation and hydrogen-bond interactions (Fig. 4c–e, h).

We also analyzed all eight compounds based on
physicochemical property predictions [75]. There are only
two hits, A and F, that are likely to provide good oral
bioavailability, absorption and permeation. Therefore, we

Fig. 3 Schematic diagram of the computational virtual screening
workflow
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Table 3 Score of each docking method and total electrostatic energy values

CAS no. ADT4 GOLD GLIDE

Structure name ΔGa
ADT Oechemscore KCSscore ΔGa

GOLD XPscore
(Compound) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

183321-74-6 Erlotinib −7.71 −7.86 28.65 −7.42 −8.32
104096-45-9

N/A* −8.93 −9.62 32.81 −8.23 −9.22
(A)

112649-21-5

Garcinone E −10.07 −10.24 34.18 −8.41 −9.13
(B)

113866-89-0

AC 5-1 −8.27 −9.97 34.18 −9.25 −8.85
(C)

142608-98-8

Exiguaflavanone A −8.05 −10.18 31.20 −7.60 −9.43
(D)

142608-99-9

Exiguaflavanone B −8.38 −10.38 33.43 −8.23 −9.53
(E)

144761-33-1

1,6-Heptadiene-3,5-dione −8.24 −8.30 33.02 −9.05 −8.48
(F)

155233-17-3

Caloxanthone B −10.24 −9.60 35.07 −8.48 −8.57
(G)

80510-05-0 Euchrestaflavanone A; −9.24 −8.65 35.07 −8.68 −8.61
(H) Lespedezaflavanone B

N/A* not available
a Estimated binding energy from docking programs

Table 2 Chemical name(s) and plant source(s)

CAS no.
(compound)

Structure name Scientific name(s) of plant source(s) Common name(s)
of plant source(s)

104096-45-9 (A) N/A Diospyros mollis Griff, Diospyros
ehretioides wall.ex G.Don

Ebony tree

112649-21-5 (B) Garcinone E Garcinia mangostana L. Mangosteen

113866-89-0 (C) AC 5-1 Annona squamosa L., Citrus hystrix DC. Custard apple and
makrut lime

142608-98-8 (D) Exiguaflavanone A Artemisia indica Willd, Sophora exigua Legume

142608-99-9 (E) Exiguaflavanone B Artemisia indica Willd, Sophora exigua Legume

144761-33-1 (F) 1,6-Heptadiene-3,5-dione Curcuma aromatica Salisb, Curcuma
xanthorrhiza

Wild turmeric

155233-17-3 (G) Caloxanthone B Calophyllum inophyllum Ballnut

80510-05-0 (H) Euchrestaflavanone A;
lespedezaflavanone B

Azadirachta indica A.Juss Neem

N/A not available
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further investigated these two compounds in complex with
EGFR-TK, WT-CPA and WT-CPF, using molecular dynam-
ics, and compared the results with the WT-IRE complex. As
shown in Fig. 6, the RMSD plots for A were more stable

than those for F. This can be explained by their different
ligand structures; the binaphthalene group of compound A
seems to be more rigid than the middle part of F. Moreover,
in the WT-CPF complex, the structure of F changes

Fig. 4 2D (right panels) and 3D (left panels) diagrams showing
protein–ligand interactions between EGFR-TK and the eight hit
compounds (a–h). The hit compounds, the amino acid residue
involved in the interaction with the hit compound, and the other
residues around the binding pocket are represented in ball and stick

and stick and line forms, respectively. The hydrogen bond, π−π, and
cation–π interactions between the compounds and the binding
residues are shown as green dashed and light blue dashed lines,
respectively
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dramatically after 10 ns and then appears to converge after
14 ns. Furthermore, binding site analyses showed that there
are differences in the residue(s)–compound interactions
between these two complexes (Fig. 4a and f). The MD
results also revealed that the hydrogen bond between the
carbonyl oxygen atom of Met 769 and the H atom of the
hydroxyl group of A (see Fig. 4a) existed approximately

77% of the time during the MD simulation. At the same
time, the H atom of the hydroxyl group from Awas able to
form hydrogen bonds with the Oδ1 atom and the Oδ2 atom
of Asp 831, which existed approximately 50% and 10% of
the time during the MD simulation, respectively (Fig. 4a,
Table S1). On the other hand, no hydrogen bond between
Pro770 and A was found. In addition, the probability that

Fig. 4 (continued)
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Fig. 5 The site-moiety map anchors in the binding pocket of EGFR-TK that interact with the eight candidate compounds

Fig. 6 Backbone root mean
square deviation (RMSD) plots
for the simulated complexes
WT-IRE, WT-CPA and WT-CPF
from top to bottom, respectively

Table 4 Binding free energies (kcal/mol) resulting from MM-PBSA analyses of the WT-IRE, WT-CPA and WT-CPF complexes

Complex ΔΕ ELE ΔE VDW ΔE INT ΔΔG SA ΔΔG PB ΔG MM/PBSA Nonpolar/hydrophobic Polar/electrostatic

WT-IRE 9.16 −49.41 0.00 −6.61 19.26 −27.61 −56.02 28.42

WT-CPA −55.31 −32.59 −4.79 −5.71 75.47 −22.92 −43.09 20.16

WT-CPF −14.33 −45.02 0.00 −6.11 44.19 −21.27 −51.13 29.86

Nonpolar contribution=ΔE VDW+ΔEINT+ΔΔGSA; polar contribution=ΔEELE+ΔΔG PB
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these two hydrogen bonds were present in the WT-CPF
complex (Fig. 4f, Table S1) wasonly around 7–9%.
According to Table 4, van der Waals interactions play an
important role in the simulations, contributing more than
the electrostatic interactions to the total energy in all three
calculations.

Conclusions

Our results showed that the eight chemical compounds
obtained as hits using our screening method could all be
inhibitors of EGFR-TK. This suggests that our docking
procedure can be reliably used to predict the binding modes
of Chemiebase compounds. These small molecules were
obtained from fruits and vegetables that are available
locally, and have been used as components of ancient
medicinal recipes. Anticancer activities were reported for
all eight of the hit compounds based on traditional
medicinal sources, which means they could be potential
leads in the drug discovery process in the future. In
addition, these results suggested that Asian medicines
extracted from plants might contain potential compounds
against many types of cancer.
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